Научная статья УДК 330.88

DOI: 10.14529/em230211

ОЦЕНКА РИСКОВ ВНЕДРЕНИЯ СКВОЗНЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ В ПРОМЫШЛЕННОСТИ

А.Д. Шаблаков, И.А. Соловьева⊠

Южно-Уральский государственный университет, Челябинск, Россия [™] solovevaia @susu.ru

Аннотация. В статье изучена проблема оценки рисков внедрения сквозных цифровых технологий в промышленности. Рассмотрены теоретические основы сущности и видов сквозных цифровых технологий. Проанализированы тенденции и практика их внедрения в отечественных компаниях промышленного сектора. Авторами разработана классификация рисков внедрения сквозных цифровых технологий на предприятиях промышленности, включающая в себя два уровня: общие риски, связанные с процессом цифровизации в целом, и специальные риски, присущие отдельным цифровым технологиям. На основе предложенной системы общих и специальных рисков разработан метод оценки рисков, позволяющий определить целесообразность внедрения рассматриваемой сквозной цифровой технологии на предприятии в текущих внешних и внутренних условиях ведения деятельности. В статье предложена система интерпретации результатов использования метода и сформулированы рекомендации по принятию управленческих решений относительно краткосрочной и долгосрочной возможности и целесообразности внедрения сквозных цифровых технологий в бизнес-процессы промышленных предприятий.

Ключевые слова: сквозные цифровые технологии, цифровая экономика, промышленность, цифровая модернизация промышленности, риски внедрения сквозных цифровых технологий

Для цитирования: Шаблаков А.Д., Соловьева И.А. Оценка рисков внедрения сквозных цифровых технологий в промышленности // Вестник ЮУрГУ. Серия «Экономика и менеджмент». 2023. Т. 17, № 2. С. 133–143. DOI: 10.14529/em230211

Original article

DOI: 10.14529/em230211

ASSESSING THE RISKS OF INTRODUCING END-TO-END DIGITAL TECHNOLOGIES IN INDUSTRY

A.D. Shablakov, I.A. Solovyeva[™]

Abstract. The article studies the problem of assessing the risks of introducing end-to-end digital technologies in industry. Theoretical foundations of the concept of end-to-end digital technologies and their types are considered. The trends and practices of their implementation in domestic companies of the industrial sector of the economy are analyzed. A classification of the risks of introducing end-to-end digital technologies at industrial enterprises has been developed, which includes two levels of risks: general risks associated with the digitalization process as a whole, and special risks inherent in individual digital technologies. Based on the proposed system of general and special risks, a risk assessment method has been developed to determine the feasibility of introducing the considered end-to-end digital technology at an enterprise in the current internal and external conditions of activity. A system for interpreting the results of using the method is proposed, and recommendations are formulated for making managerial decisions with regard to the short-term and long-term possibility and feasibility of implementing end-to-end digital technologies in business processes at industrial enterprises.

Keywords: end-to-end digital technologies, digital economy, industry, digital upgrade of industry, risks of introducing end-to-end digital technologies

For citation: Shablakov A.D., Solovyeva I.A. Assessing the risks of introducing end-to-end digital technologies in industry. *Bulletin of the South Ural State University. Ser. Economics and Management*, 2023, vol. 17, no. 2, pp. 133–143. (In Russ.). DOI: 10.14529/em230211

© Шаблаков А.Д., Соловьева И.А., 2023

Введение

В XXI веке технологический прогресс стремительно набирает обороты, 2010—2020 годы были связаны с прорывными достижениями в области науки и техники, катализатором которых выступил процесс цифровизации всех сфер общественных отношений, имеющий мировой охват. Ускорению процесса цифровизации также способствуют кардинальная перестройка бизнес-процессов и социальных взаимодействий потребителей товаров и услуг в силу распространения новой коронавирусной инфекции COVID-19 в 2020 году, которая в той или иной степени коснулась каждого государства без исключений [10].

Благодаря использованию различных цифровых технологий как в экономической, так и в социальной сфере создается возможность обеспечить экономический рост посредством снижения издержек производства и распределения и упростить доступ потребителей к товарам и услугам путем формирования совершенно новых рынков и создания цифровых площадок. Одними из таких технологий являются сквозные цифровые технологии [10]. Последние, с одной стороны, способствуют существенному повышению эффективности бизнес-процессов, а, с другой стороны, их внедрение влечет за собой возникновение большого количества рисков, которые на сегодняшний день малоизучены, а убытки от их возникновения весьма существенны.

Целью настоящей работы является разработка методического подхода к оценке и анализу рисков внедрения сквозных цифровых технологий на предприятиях промышленного сектора.

Теория

Сквозные цифровые технологии являются следствием 4-й промышленной революции, которая также известна как «Индустрия 4.0». В России основные принципы новой промышленной революции закреплены в нормативном документе «Национальная технологическая инициатива», в соответствии с которым предполагается внедрение инновационных разработок в области технологичных сфер экономики, государственной кибербезо-

пасности, а также социальной сферы [10].

Выделение определенных цифровых технологий в отдельную категорию «сквозные» объясняется тем, что их использование в одной области экономики создает необходимость цифровой модернизации остальных связанных областей, что впоследствии выражается в синергетическом эффекте их использования [10].

Согласно федеральной программе «Цифровая экономика РФ» выделяют следующие основные сквозные цифровые технологии: системы распределенного реестра (блокчейн), большие данные (Big Data), промышленный Интернет, робототехника и сенсорика, квантовые технологии, технологии виртуальной и дополненной реальностей, технологии беспроводной связи, а также нейротехнологии и искусственный интеллект (рис. 1).

Ключевую роль в процессе цифровизации отечественной экономики играет цифровая модернизация промышленности.

Цифровая трансформация промышленности непосредственно связана с созданием на предприятии системы взаимодействия производственного оборудования между собой. Важным моментом при создании цифровой среды предприятия выступает перенос лучших качеств и характеристик эксплуатируемого оборудования [1]. Этот вопрос особенно остро стоит при цифровой трансформации опасных и вредных производств, в которых присутствует большая доля морально и физически устаревшей техники, что может стать причиной настоящей техногенной катастрофы. В связи с этим цифровая трансформация промышленного предприятия позволяет не только изменить подход к управлению системами производства, что влечет за собой увеличение эффективности их работы, но и уменьшить риски возникновения чрезвычайных ситуаций на производстве [3].

Согласно исследованию Industry 4.0 Market [5], темпы роста расходов на цифровизацию отечественной промышленности в 2022 опередили средние показатели в мире (20,7 %). Также показатели 2022 года превзошли показатели 2021 года.

После потери отечественными компаниями

Рис. 1. Основные виды сквозных цифровых технологий

доступа к зарубежным технологическим решениям в 2022 году резко возрос спрос на продукты российских ИТ-компаний, связанных в том числе с цифровой трансформацией производства. Таким образом, для отечественных разработчиков сложилась благоприятная обстановка в связи с тем, что они получили возможность сотрудничать с ранее недоступными для них контрагентами [5].

Также наблюдается рост случаев внедрения предприятиями цифровых решений, разработанных собственными усилиями. Более того, подобные решения являются не тестовыми версиями или пилотными проектами, а полноценными универсальными и функциональными решениями, формирующими базу цифровой модернизации промышленности в условиях импортозамещения (табл. 1).

Самыми популярными ИТ-решениями в области цифровой модернизации промышленности в 2022 стали такие технологии, как LTE, средства создания безопасного программного обеспечения, а также технологии искусственного интеллекта [5].

Среди лидеров промышленной отрасли наибо-

лее часто внедряются цифровые двойники оборудования, автоматизация производственного процесса и машинное обучение. Однако на сегодняшний день на отечественном рынке присутствует множество других технологий, которые пока не в полной мере оценены потребителями (табл. 2).

В 2022 в российской промышленности сформировались два основных направления цифровизации производства. В первую очередь, в ближайшие годы отечественные компании будут наращивать затраты на внедрение ИТ-решений, связанных с киберфизической безопасностью. Вторым трендом развития является активное импортозамещение во всех сферах. Как показывает практика внедрения ИТ-решений, отечественные разработки являются не только более доступными для потребителя, еще для их внедрения отечественные компании затрачивают, как правило, в разы меньше финансовых ресурсов. Совокупность двух направлений развития призвана ускорить процесс внедрения цифровых технологий в отечественной промышленности в 2023 году и далее [5].

Однако осуществление любой цифровой

Таблица 1 Отечественные разработки в области цифровой модернизации производственных предприятий

Разработчик технологии	Наименование технологии	Отрасль применения	Суть технологии	
«Сигма»	«Сигма»	Топливно-энерге-	Двадцать различных ИТ-решений для топл но-энергетического комплекса, более поло ны из которых включены в реестр отечеств ного программного обеспечения	
«Гринатом»	«ПДС»	Универсальное решение для про- мышленности	Использование усовершенствованной электронной подписи в информационной системе компании	
«Цифра», «Газпром- нефть»	«ZIIOT O&G»	Металлургический комплекс, добыча нефти и газа	Система объединения поступающей с логистических цепочек информации, представляющая собой совокупность из 30 различных приложений, которые формируют цифрового двойника компании	

Таблица 2 Недооцененные разработки в области цифровой модернизации производственных предприятий

Цифровое решение	Причина недооцененности			
Промышленная робототехника	Высокая стоимость внедрения и отсутствие должной доступности отечественных разработок			
Отечественные тяжелые производственные системы	Низкая эффективность и надежность, сложность внедрения в производственный процесс			
Технология предоставления надежного дистанционного соединения с оборудованием	Несмотря на то, что технология используется отечественными промышленными компаниями уже несколько лет, на сегодняшний день не является приоритетным направлением цифровой трансформации промышленности			
Искусственный интеллект в совокупности с промышленным интернетом вещей	На сегодняшний день присутствуют сложности с доступностью подобных технологий для большинства компаний; ограниченный инструментарий			
Физико-информированный искусственный интеллект	Высокая стоимость внедрения, а также отсутствие развитого рынка подобных ИТ-решений			

трансформации производства связано не только с определенным положительным экономическим и операционным эффектом, но и с рядом рисков, некоторые из которых могут нанести существенный ущерб компании и нести в себе серьезную угрозу для ее безопасности [9].

На сегодняшний день присутствует достаточное количество литературы, посвященной описанию рисков внедрения сквозных цифровых технологий в промышленности.

Например, авторы Л.В. Юрьева и Е.В. Долженкова в своем исследовании приводят свой вариант классификации рисков цифровой экономики, основанный на PEST-анализе [6]. Авторы выделили четыре группы рисков: политические, экономические, социальные и технологические. В качестве политических рисков авторы определены такие риски, как риск киберугроз, геополитическую обстановку и импортозамещение: в качестве экономических факторов - появление новых рынков, конкуренция и появление новых продуктов; в качестве социальных рисков - безработица, уход старых и появление новых профессий, информационная грамотность персонала; в качестве технологических рисков - масштабная роботизация, увеличение темпов развития информационных технологий, уязвимость конфиденциальной информации [6]. В качестве преимущества предложенной классификации можно отметить, что она является всесторонней и учитывает как внешние, так и внутренние факторы, влияющие на функционирование компании. Однако предложенная классификация имеет общий характер и может быть применима к процессу цифровизации в целом, но не при проведении цифровой модернизации в конкретной отрасли с внедрением конкретных цифровых решений.

Также можно отметить исследование В.В. Борисова, О.В. Демькиной и А.В. Савина [2]. Авторами не предлагается определенная классификация рисков внедрения цифровых технологий, однако выделены основные риски цифровой модернизации именно на промышленных предприятиях. Так, в частности, авторы отмечают, что при создании копии предприятия в цифровом пространстве происходит перенос центра принятия решений, что влечет за собой резкий рост киберфизических угроз в адрес компании, данный риск выделяется в качестве основного риска внедрения цифровых технологий в производстве. Также в рамках значимых рисков проведения цифровой модернизации производства авторы выделяют такой риск, как цифровая грамотность рабочих и менеджмента [2]. Еще одним важным риском, по мнению авторов, является риск морального устаревания внедряемой технологии. В силу стремительного развития технологий применимость внедряемого решения может очень быстро лишиться актуальности при потраченных серьезных финансовых и временных ресурсах. Авторы статьи очень подробно разбирают самые значимые риски цифровой модернизации производства, однако в описании отсутствует структура и упорядоченность, позволившая бы поэтапно оценить риски цифровизации производства. Более того, в работе также говорится о рисках, затрагивающих процесс цифровой модернизации в целом, без описания угроз использования конкретных цифровых решений.

Анализ имеющейся на сегодняшний день литературы в области оценки рисков внедрения сквозных цифровых технологий в промышленности позволяет сделать следующие выводы.

- 1. На сегодняшний день присутствует достаточное количество работ, описывающих риски цифровой модернизации в целом, однако недостаточно рассмотрено или вовсе отсутствует описание рисков цифровой модернизации промышленных предприятий, а также риски внедрения конкретных сквозных цифровых технологий [12, 16].
- 2. Классификации рисков, предлагаемые авторами, носят обобщенный характер, описываемые потенциальные угрозы представляются не в рамках общей системы и структуры, что затрудняет их анализ и принятие соответствующих управленческих решений.
- 3. Отсутствуют исследования, описывающие методику оценки предлагаемых авторами рисков внедрения сквозных цифровых технологий в промышленности.

Таким образом, на сегодняшний день является актуальным разработка метода оценки рисков внедрения сквозных цифровых технологий на предприятиях промышленности, позволяющая учесть как общие риски цифровой трансформации, так и риски внедрения конкретных сквозных цифровых технологий.

Результат

Прежде чем приступать к разработке метода оценки рисков, необходимо разработать систему рисков, в которой будут отражены все сферы деятельности производственного предприятия. Более того, как было отмечено в работе ранее, одним из недостатков имеющихся на сегодняшний день исследований в области рисков цифровизации является описание общих рисков цифровой модернизации без упоминания внедрения конкретных технологий [4].

В связи с этим предлагаемая нами классификация рисков будет включать в себя два уровня: классификация общих и специальных рисков внедрения сквозных цифровых технологий. Общая классификация рисков включает в себя риски, присущие процессу цифровой модернизации промышленного предприятия в целом, в специальную классификацию включены риски, связанные с внедрением конкретной сквозной цифровой технологий [7, 15]. Начнем рассмотрение предлагаемой классификации с общих рисков (рис. 2).

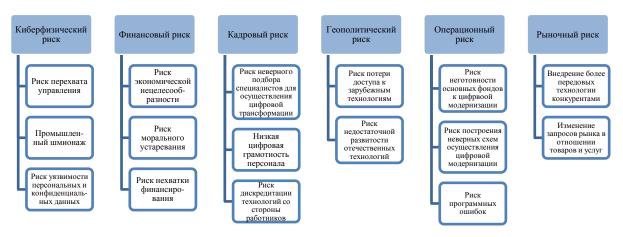


Рис. 2. Классификация общих рисков внедрения сквозных цифровых технологий

В рамках предлагаемой классификации выделяется шесть видов рисков внедрения цифровых технологий на промышленном предприятии: киберфизический, финансовый, кадровый, геополитический, операционный и рыночный. Включение в классификацию именно этих групп рисков объясняется тем, что, на наш взгляд, предлагаемая структура рисков охватывает все области хозяйственной деятельности компании и позволяет учесть как внутренние, так и внешние факторы, оказывающие влияние на ее хозяйственную деятельность.

В разрезе каждого вида риска, охватывающего определенную область деятельности компании, формулируются конкретные риски, связанные с этой сферой. Так, в рамках киберфизического риска выделяются такие риски, как риск перехвата управления, промышленный шпионаж, а также риск уязвимости персональных и конфиденциальных данных. Финансовый риск включает в себя риск экономической нецелесообразности, риск морального устаревания и риск нехватки финансирования. Кадровый риск состоит из риска неверного подбора специалистов для осуществления цифровой трансформации предприятия, риска низкой цифровой грамотности персонала и риска дискредитации технологий со стороны работников. Также в силу секционного давления, оказываемого на Россию, в рамках предлагаемой классификации отдельно выделен геополитический риск, который состоит из риска потери доступа к зарубежным технологиям и риска недостаточной развитости отечественных технологий. Операционный риск в рамках предлагаемой системы состоит из риска неготовности основных фондов к цифровой модернизации, риска построения неверных схем осуществления цифровой модернизации и риска программных ошибок. Рыночный риск включает в себя риск внедрения более передовых технологий конкурентами и риск изменения запросов рынка в отношении товаров и услуг.

Далее рассмотрим риски, связанные с использованием конкретных сквозных цифровых технологий (рис. 3).

В предыдущих разделах работы нами были выделены основные цифровые технологии, входящие в группу «сквозные» [8, 14]. В предлагаемой системе рисков помимо общих рисков в отдельном уровне выделены риски, присущие каждой из основных сквозных цифровых технологий. Так, в рамках использования системы распределенного реестра (блокчейн) выделены такие риски, как риск уязвимости смарт-контрактов и риск использования ключей безопасности; технология «Большие данные» включает в себя риск переполнения хранилища и риск снижения эффективности больших данных; использование промышленного интернета влечет за собой модельный риск и риск внедрения в опытном производстве; риск несовместимости продукции с автоматизацией ее производства и риск безопасности людей в непосредственной близости к роботу присущ технологии «Робототехника и сенсорика» [11]; для квантовых технологий характерны проблема разработки и проблема декогеренции (процесс потери связи при взаимодействии квантовой системы и окружающей среды); в качестве рисков, присущих технологиям виртуальной и дополненной реальности, были выделены малое количество реализованных на практике кейсов и сложность оценки экономического эффекта; внедрение технологий беспроводной связи связано с риском безопасности сетей нового поколения и уязвимостью средств криптографии; использование нейротехнологий сопряжено с риском процессов обучения и риском обучающих данных [13].

Таким образом, нами была предложена система рисков внедрения сквозных цифровых технологий на промышленном предприятии. В рамках системы было выделено два уровня: общий и специальный. Общий уровень состоит из шести видов рисков, которые, в свою очередь, включают в себя

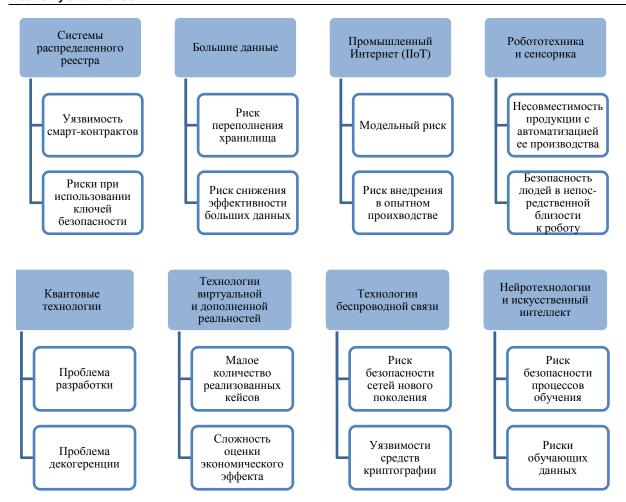


Рис. 3. Классификация специальных рисков внедрения сквозных цифровых технологий

конкретные риски, связанные с этим видом. В рамках специального уровня выделяются риски, связанные с внедрением конкретных сквозных цифровых технологий.

Предложенная классификация рисков позволяет получить структурированное и всестороннее понимание рисков, принимаемых компанией при осуществлении цифровой трансформации. Однако сформулировать и структурировать риски – только один из этапов риск-менеджмента. Далее рассмотрим методику оценки рисков внедрения сквозных цифровых технологий на промышленном предприятии, основанную на предложенной их систематизации.

Методика оценки рисков

Степень подверженности тому или иному риску субъективна и зависит от условий функционирования каждого отдельного предприятия, в связи с этим оценку рисков внедрения сквозных цифровых технологий целесообразно проводить с использованием как количественных, так и качественных методов. В том числе экспертных оценок.

Выше нами были выделены общие и специальные риски внедрения сквозных цифровых тех-

нологий. Подразумевается, что каждый вид общего риска в той или иной степени присущ всем из выделенных цифровых технологий, поэтому при проведении оценки экспертами будет оцениваться влияние внедрения конкретной технологии в рамках как специальных, так и общих рисков.

Этап 1. Оценка общих рисков

На первом этапе оценки каждому эксперту предлагается количественно оценить, с какой величиной общих рисков сопряжено внедрение каждой из сквозных цифровых технологий в соответствии с финансовыми и кадровыми ресурсами предприятия, состоянием основных фондов, опыта внедрения цифровых решений и т. д. Каждой величине риска присваивается балл от 1 до 3 (1 – низкий риск, 2 – средний риск, 3 – высокий риск). Результаты оценки общих рисков каждого из экспертов представляется в итоговой таблице (табл. 3).

Таким образом, количественная оценка общего риска внедрения отдельной сквозной цифровой технологии каждого эксперта рассчитывается по следующей формуле:

$$R$$
общ $_{ik} = \sum a_{ij}$,

Таблица 3 Оценка значимости общих рисков внедрения сквозных цифровых технологий

Вид риска		СЦТ							
		Системы распределенного реестра (блокчейн)	Большие данные	Промышленный Интернет (ПоТ)	Робототехника и сенсорика	Квантовые технологии	Технологии виртуальной и дополненной реальностей	Технологии беспроводной связи	Нейротехнологии и искусственный интеллект
Кибер- физический риск	Риск перехвата управления	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Промышленный шпионаж	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск уязвимости персональных и конфиденциальных данных	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск экономической нецелесообразности	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Финансовый риск	Риск морального устаревания	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск нехватки финансирования	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
TC 4	Риск неверного подбора спе- циалистов для осуществления цифровой трансформации	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Кадровый риск	Низкая цифровая грамотность персонала	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск дискредитации технологий со стороны работников	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Гео-	Риск потери доступа к зару- бежным технологиям	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
политический риск	Риск недостаточной развито- сти отечественных техноло- гий	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Операционный риск	Риск неготовности основных фондов к цифровой модернизации	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск построения неверных схем осуществления цифро- вой модернизации	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
	Риск программных ошибок	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Рыночный	Внедрение более передовых технологии конкурентами	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
риск	Изменение запросов рынка в отношении товаров и услуг	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}	a_{ij}
Итого		$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$	$\sum a_{ij}$

где Rобщ $_{ik}$ — количественная оценка общего риска внедрения i-й цифровой технологии k-м экспертом, в баллах; a_{ij} — величина j-го риска при внедрении i-й цифровой технологии, в баллах.

По результатам выставления баллов каждым экспертом рассчитывается среднее значение ито-

говой оценки общего риска для каждой цифровой технологии:

$$R$$
общ $_i = \frac{\sum R_{ik}}{n}$,

где R_i — количественная оценка общего риска внедрения i-й цифровой технологии, в баллах; n — количество экспертов.

Этап 2. Оценка специальных рисков

После оценки общих рисков, которые в определенной степени присущи каждой из рассматриваемых цифровых технологий, необходимо оценить ранее сформулированные специальные риски, которые свойственны отдельным цифровым решениям. Аналогично первому этапу, на втором этапе предполагается оценка рисков экспертами в соответствии с располагаемыми ресурсами и опытом компании, каждой величине риска также присваивается балл от 1 до 3. Результаты оценки специальных рисков каждого из экспертов представляется в итоговой таблице (табл. 4).

Таким образом, количественная оценка общего риска внедрения отдельной сквозной цифровой технологии рассчитывается по следующей формуле:

$$R$$
спец $_{ik} = \sum a_{ij}$,

где Рспецік - количественная оценка специального риска внедрения і-й цифровой технологии к-м экспертом, в баллах; a_{ij} – величина j-го риска при внедрении і-й цифровой технологии, в баллах.

По результатам выставления баллов каждым экспертом также рассчитывается среднее значение итоговой оценки специального риска для каждой цифровой технологии:

$$R$$
спец $_i = \frac{\sum R_{ik}}{n}$

 $R\mathtt{cne}\mathfrak{q}_i = \frac{\Sigma R_{ik}}{n},$ где R_i — количественная оценка специального риска внедрения і-й цифровой технологии, в баллах; n – количество экспертов.

Этап 3. Расчет итоговой величины риска

При расчете итоговой величины риска внедрения сквозных цифровых технологий необходимо учесть результаты оценки как общих, так и специальных рисков. При расчете итогового балла оценка общего риска внедрения цифровой технологии будет скорректирована на оценку специфического риска:

$$R$$
итог $_i = R$ общ $_i + R$ спец $_i$.

Таким образом, итоговая величина риска внедрения і-й сквозной цифровой технологии будет являться суммой двух оценок.

Интерпретация результатов

Целью проведения оценки рисков внедрения сквозных цифровых технологий является обоснование целесообразности проведения цифровой трансформации предприятия по конкретному сценарию. Экспертное мнение позволит оценить готовность предприятия к внедрению цифровых решений и масштаб этих внедрений: предприятие располагает ресурсами для внедрения полного спектра цифровых продуктов, возможна реализация лишь нескольких решений или же ресурсная база, состояние основных фондов и управленческий опыт вовсе не позволяют компании начать цифровую трансформацию.

Результатом экспертной работы является балльная оценка уровня риска внедрения отдельной сквозной цифровой технологии. Как было описано выше, в рамках рассматриваемого метода экспертам предлагается оценить величину риска с присвоением ему от 1 до 3 баллов. В рамках предложенной системы рисков было выделено 16 общих рисков, присущих каждой из рассматриваемых технологий, и по 2 специальных риска для каждой отдельной технологии. В связи с этим ито-

Таблица 4 Оценка значимости специальных рисков внедрения сквозных цифровых технологий

СЦТ	Специальный риск	Балл	Итого		
Системы распределенно-	Уязвимость смарт-контрактов		∇_a		
го реестра (блокчейн)	Риски при использовании ключей безопасности	a_{ij}	$\sum a_{ij}$		
Большие данные	Риск переполнения хранилища		\sum_{α}		
вольшие данные	Риск снижения эффективности больших данных	a_{ij}	$\sum a_{ij}$		
Промышленный Интер-	Модельный риск		$\overline{\nabla}_{a}$		
нет (IIoT)	Риск внедрения в опытном производстве	a_{ij} $\sum a_{ij}$			
Робототехника и сенсо-	Несовместимость продукции с автоматизацией ее производства a_{ij}		$\sum a_{ij}$		
рика	Безопасность людей в непосредственной близости к роботу	a_{ij}			
L'action to marine month	Проблема разработки		ν.		
Квантовые технологии	Проблема декогеренции	a_{ij}	$\sum a_{ij}$		
Технологии виртуальной	Малое количество реализованных кейсов	a_{ij}]		
и дополненной реально- стей	Сложность оценки экономического эффекта	a_{ij} $\sum a_{ij}$			
Технологии беспровод-	Риск безопасности сетей нового поколения		\sum_{α}		
ной связи	Уязвимости средств криптографии		$\sum a_{ij}$		
Нейротехнологии и ис-	Риск безопасности процессов обучения	a_{ij}	∇_{a}		
кусственный интеллект	Риски обучающих данных	a_{ij}	$\sum a_{ij}$		

говая оценка риска внедрения каждой технологии находится в пределах от 18 баллов (минимальный риск) до 54 баллов (максимальный риск). Полученные результаты должны быть основой для принятия дальнейших управленческих решений. Нами предлагаются следующие рекомендации по внедрения цифровых технологий в зависимости от итоговой оценки (табл. 5).

Далее на основе предложенной классификации был разработан метод оценки рисков внедрения цифровых технологий. В основе модели лежит использование метода экспертных оценок. Проведение оценки включает в себя 3 этапа: оценка общих рисков, оценка специальных рисков и расчет итоговой интегральной величины риска.

Интерпретация результатов оценки

Таблица 5

Величина итогового балла $(R$ итог $_i)$	Уровень риска	Интерпретация Предприятия располагает всеми необходи-	Рекомендация Внедрение технологии
18–25 баллов	Низкий риск	мыми ресурсами и условиями для внедрения цифровой технологии	Внедрение технологии целесообразно
26–33 баллов	Умеренный риск	Предприятие имеет возможность внедрения технологии с привлечение незначительного уровня ресурсов, ожидания положительного экономического эффекта высокие	Внедрение технологии целесообразно при привлечении дополнительного количества экспертов
34–41 баллов	Средний риск	Для реализации цифрового решения предприятию потребуется значительная подготовка, однако возможные риски сопоставимы с ожидаемым положительным эффектом	Внедрение технологии представляется возможным при проведении более детального анализа возможностей и уязвимостей инфраструктуры предприятия
42–49 баллов	Значительный риск	Для внедрения цифровой технологии предприятию потребуется привлечение существенного объема финансовых, кадровых и материальных ресурсов, что может повлечь за собой серьезные экономические и операционные потери	Внедрение технологии предполагается только при наличии обоснованной необходимости, не подразумевающей положительного экономического эффекта от внедрения
50–54 баллов	Высокий риск	Предприятие не располагает необходимыми ресурсами и условиями для внедрения технологии. Использование технологии может нанести критический ущерб инфраструктуре предприятия	Внедрение технологии не представляется возможным при текущих возможностях предприятия

Выводы

В работе был предложен метод оценки рисков внедрения сквозных цифровых технологий на промышленном предприятии. В качестве базы проведения оценки была разработана система рисков, которая состоит из двух уровней: классификация общих и специальных рисков внедрения сквозных цифровых технологий. Общая классификация рисков включает в себя риски, присущие процессу цифровой модернизации промышленного предприятия в целом; в специальную классификацию включены риски, связанные с внедрением конкретной сквозной цифровой технологии.

В заключение был предложен вариант интерпретации полученных результатов оценки и даны рекомендации по принятию управленческих решений, связанных с внедрением цифровых решений на промышленном предприятии.

Предложенная модель является универсальной для использования оценки рисков внедрения цифровых технологий в промышленности. Состав рисков, максимальный присваиваемый балл и количество экспертов могут быть адаптированы под размер предприятия и отрасль промышленности, в которой предприятие осуществляет свою хозяйственную деятельность.

Список литературы

- 1. Акбердина В.В., Пьянкова С.Г. Методологические аспекты цифровой трансформации промышленности // Научные труды Вольного экономического общества России. 2021. № 1. С. 292–309.
- 2. Борисова В.В., Демкина О.В., Савин А.В. Риски цифровизации промышленных компаний // Инновации и инвестиции. 2019. № 12. С. 294–297.
- 3. Ештокин С.В. Сквозные технологии цифровой экономики как фактор формирования технологического суверенитета страны // Вопросы инновационной экономики. 2022. Том 12, № 3. С. 1301–1314.
- 4. Индикаторы цифровой экономики: 2019: статистический сборник / Г.И. Абдрахманова, К.О. Вишневский, Л.М. Гохберг и др. М.: НИУ ВШЭ, 2019. 248 с.
- 5. Промышленность: итоги цифровизации в 2022 году и прогнозы. URL: https://cdo2day.ru/analytics/promyshlennost-itogi-cifrovizacii-v-2022-godu-i-prognozy/. Загл. с экрана.
- 6. Рискоориентированная концепция адаптации промышленных предприятий к условиям цифровой экономики: монография / Л.В. Юрьева, Е.В. Долженкова. Нижний Тагил: Изд-во УрФУ, 2019. 100 с.
- 7. Тебекин А.В., Тебекин П.А., Егорова А.А. Анализ перспектив развития национальной экономики при внедрении сквозных цифровых технологий // Журнал экономических исследований. 2020. № 6 (4). С 3–18.
- 8. Токарева М.С., Вишневский К.О., Чихун Л.П. Влияние технологий Интернета вещей на экономику // Бизнес-информатика. 2018. № 3 (45). С. 62–78.
- 9. Шабалкина А.А. Необходимость внедрения ERP-системы на российских предприятиях // Научнопрактический журнал «Аллея Науки». 2018. № 3(19). С. 498–501.
- 10. Шаблаков А.Д. Сквозные цифровые технологии и их применение в промышленности // Умные технологии в современном мире: материалы V Всероссийской научно-практической конференции, 22–23 ноября 2022 г. / под ред. И.А. Соловьевой, Е.Д. Вайсман. Челябинск: Издательский центр ЮУрГУ, 2022. Т. 1. С. 178–185.
- 11. Barabaner H., Babkin A., Glukhov V., Shkarupeta E., Kharitonova N. Methodology for Assessing Industrial Ecosystem Maturity in the Framework of Digital Technology Implementation // International Journal of Technology. 2021. T. 12, № 7. P. 1397–1406.
- 12. Bendiek A., Romer M. Externalizing Europe: the global effects of European data protection // Digital policy regulation and governance. 2019. Vol. 21, № 1. P. 32–43.
- 13. Grekul V.I., Isaev E.A., Korovkina N.L., Lisienkova T.S. Developing an approach to ranking innovative IT projects // Business Informatics. 2019. Vol. 13, № 2. P. 43–58.
- 14. Holford W.D. The future of human creative knowledge work within the digital economy // Futures. 2019. Vol. 105. P. 143–154.
- 15. Nissen V., Lezina T., Saltan A. The Role of IT-Management in the Digital Transformation of Russian Companies // Foresight and STI Governance. 2018. Vol. 12, № 3. P. 53–61.
- 16. Silkina G.Y., Shevchenko S., Sharapaev P. Digital Innovation In Process Management // Academy of Strategic Management Journal. 2021. № 20. P. 1–25.

References

- 1. Akberdina V.V. Methodological aspects of digital transformation of industry. *Scientific works of the Free Economic Society of Russia*, 2021, no. 1, pp. 292–309. (In Russ.)
- 2. Borisova V.V. Risks of digitalization of industrial companies. *Innovation and investment*, 2019, no. 12, pp. 294–297. (In Russ.)
- 3. Eshtokin, S.V. End-to-end technologies of the digital economy as a factor in the formation of the country's technological sovereignty. *Issues of innovation economy*, 2022, vol. 12, no. 3, pp. 1301–1314. (In Russ.)
- 4. Abrdahmanova G.I. et al. *Indikatory tsifrovoy ekonomiki: 2019: statisticheskiy sbornik* [Digital Economy Indicators: Statistical Compendium]. Moscow, 2019. 248 p.
- 5. Promyshlennost': itogi tsifrovizatsii v 2022 godu i prognozy [Industry: results of digitalization in 2022 and forecasts]. URL: https://cdo2day.ru/analytics/promyshlennost-itogi-cifrovizacii-v-2022-godu-i-prognozy/
- 6. Yur'eva L.V., Dolzhenkova E.V. *Riskoorientirovannaya kontseptsiya adaptatsii promyshlennykh predpriyatiy k usloviyam tsifrovoy ekonomiki* [Risk-oriented concept of adaptation of industrial enterprises to the conditions of the digital economy]. Nizhniy Tagil, 2019. 100 p.
- 7. Tebekin A.V., Tebekin P.A., Egorova A.A. Analysis of the prospects for the development of the national economy in the implementation of end-to-end digital technologies. *Journal of Economic Research*, 2020, no. 6 (4), pp. 3–18. (In Russ.)
- 8. Tokareva M.S., Vishnevskiy K.O., Chikhun L.P. The impact of Internet of Things technologies on the economy. *Business Informatics*, 2018, no. 3 (45), pp. 62–78.

- 9. Shabalkina A.A. The need to implement an ERP system in Russian enterprises. *Scientific and practical journal "Avenue of Science"*, 2018, no. 3(19), pp. 498–501. (In Russ.)
- 10. Shablakov A.D. End-to-end digital technologies and their application in industry. *Smart Technologies in the Modern World*. Chelyabinsk, 2022, vol. 1, pp. 178–185. (In Russ.)
- 11. Barabaner H., Babkin A., Glukhov V., Shkarupeta E., Kharitonova N. Methodology for Assessing Industrial Ecosystem Maturity in the Framework of Digital Technology Implementation. *International Journal of Technology*, 2021, vol. 12, no. 7, pp. 1397–1406.
- 12. Bendiek A., Romer M. Externalizing Europe: the global effects of European data protection. *Digital policy regulation and governance*, 2019, vol. 21, no. 1, pp. 32–43.
- 13. Grekul V.I., Isaev E.A., Korovkina N.L., Lisienkova T.S. Developing an approach to ranking innovative IT projects. *Business Informatics*, 2019, vol. 13, no. 2, pp. 43–58.
- 14. Holford W.D. The future of human creative knowledge work within the digital economy. *Futures*, 2019, vol. 105, pp. 143–154.
- 15. Nissen V., Lezina T., Saltan A. The Role of IT-Management in the Digital Transformation of Russian Companies. *Foresight and STI Governance*, 2018, vol. 12, no. 3, pp. 53–61.
- 16. Silkina G.Y., Shevchenko S., Sharapaev P. Digital Innovation In Process Management. *Academy of Strategic Management Journal*, 2021, no. 20, pp. 1–25.

Информация об авторах

Шаблаков Александр Дмитриевич, аспирант, Южно-Уральский государственный университет, Челябинск, Россия.

Соловьева Ирина Александровна, д.э.н., доцент, заведующий кафедрой «Экономика и финансы», Южно-Уральский государственный университет, Челябинск, Россия, solovevaia@susu.ru

Information about the authors

Aleksandr D. Shablakov, postgraduate student, South Ural State University, Chelyabinsk, Russia.

Irina A. Solovyeva, Doctor of Sciences (Economics), Associate Professor, Head of the Department of Economics and Finance, South Ural State University, Chelyabinsk, Russia, solovevaia@susu.ru

Статья поступила в редакцию 06.05.2023 The article was submitted 06.05.2023