ДИНАМИКА ПОРШНЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

И.Н. Москаленко, В.Н. Доценко, А.В. Белогуб, А.А. Дойкин

Представлена методика математического описания движения поршня в цилиндре, учитывающая силы, действующие в кривошипно-шатунном механизме (КШМ), гидродинамические силовые факторы в смазочном слое и переменное напряженно-деформированное состояние (НДС) пары поршень-цилиндр. Рассчитана индикаторная диаграмма и определены переменные нагрузки, действующие на поршень в КШМ. Выделены граничные условия для расчета переменного НДС поршня от действия тепловых и силовых факторов. Определены стационарные тепловые и переменные силовые деформации поршня. Опираясь на методы, разработанные для подшипников скольжения, получены гидродинамические силы и моменты, действующие в паре поршень — цилиндр. В результате реализации методики получена траектория движения поршня. Результаты сопоставлены с экспериментальными данными.

Ключевые слова: поршень, напряженно-деформированное состояние, зазор, профиль, смазочный слой.

Введение. Долговечность цилиндропоршневой группы (ЦПГ) двигателя зависит от ряда факторов, которые можно разделить на конструктивные, технологические и эксплуатационные. Конструктивные факторы являются основополагающими и в значительной мере предопределяют степень влияния всех остальных факторов на работоспособность сопряжения во время всего жизненного цикла. Поэтому более полное понимание происходящих в ЦПГ процессов еще на стадии проектирования закладывает основу для достижения более эффективной работы двигателя в целом. Основным узлом трения ЦПГ, влияющим на механические потери, является пара трения «поршень — цилиндр». От совершенства этого сопряжения зависит траектория поршня в цилиндре, тепловое состояние двигателя, количество поступающего масла к поршневым кольцам, уровень вибраций и шума. Работоспособность этой пары характеризуется зазорами между поршнем и цилиндром, профилем юбки, местом расположения пальцевого отверстия. Кроме этого, особенностью работы поршня является то, что он находится под действием крайне нестационарных тепловых и силовых факторов, в результате чего происходят тепловые и силовые деформации, приводящие к существенному изменению зазоров в сопряжении.

В рамках данной работы поршень двигателя внутреннего сгорания (ДВС) рассматривается как деформируемое материальное тело, совершающее сложное плоскопараллельное движение в пределах цилиндра. При описании этого движения, помимо усилий, действующих в кривошипношатунном механизме, учитываются также силовые факторы, возникающие при работе пары трения «поршень – цилиндр» в условиях жидкостной смазки. При этом учет гидродинамических сил и моментов производится с использованием методов, разработанных при исследовании подшипников скольжения, так как пара трения «поршень – цилиндр» представляет собой своеобразный подшипник скольжения. Величина гидродинамической реакции смазочного слоя является функцией от положения поршня в цилиндре (толщины смазочного слоя), и определяется с учетом того, что поршень деформируется в пределах цикла под действием переменных тепловых и силовых нагрузок.

Таким образом, для математического описания движения поршня в такой постановке представлена методика, основанная на совместном решении нестационарной гидродинамической задачи о распределении нормальных и касательных давлений, возникающих в зазоре, задачи определения переменного напряженно-деформированного состояния поршня и задачи динамического равновесия поршня. Данная методика включает в себя использование ряда стандартных численных методов, предусматривает применение CAD/CAE систем для решения задач определения НДС методом конечных элементов и частично опирается на результаты экспериментальных исследований.

Объект исследований. Объектом исследований является ЦПГ 4-го цилиндра двигателя ВАЗ-21083 с серийным комплектом поршней. Двигатель ВАЗ-21083 в штатном исполнении четырехтактный, бензиновый, карбюраторный с рабочим объемом 1,5 л, степенью сжатия 9,9. Номинальная мощность двигателя 51,5 кВт при частоте вращения коленчатого вала 5600 мин⁻¹; максимальный крутящий момент 106,4 Нм при n = 3400 мин⁻¹. Для смазки двигателя использовалось полусинтетическое моторное масло Esso 20W40.

В качестве расчетного режима выбран режим ($n = 3522 \text{ мин}^{-1}$; $M_{\text{кp}} = 57,8 \text{ Hm}$), для которого имеются результаты экспериментальных исследований динамики поршня.

Уравнения движения поршня. Движение поршня в цилиндре складывается из поступательных перемещений вдоль оси цилиндра, перемещений в плоскости, перпендикулярной оси цилиндра, а также вращения вокруг оси поршневого пальца. Для описания этого движения в рамках данной методики рассматривается динамическое равновесие (принцип Даламбера) деформированного поршня, «всплывающего» на смазочном слое в пространстве зазора цилиндра двигате-

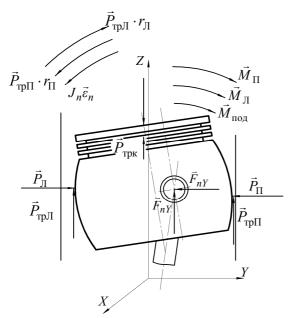


Рис. 1. Расчетная схема нагружения поршня

- ля. При составлении системы уравнений динамического равновесия поршня приняты следующие допущения:
- 1) палец с поршнем в расчете принимается как одно целое в массово-инерционные характеристики поршня включены масса и момент инерции пальца;
- 2) зазорами в парах «палец шатун» и «шатун коленчатый вал» пренебрегаем ввиду их малости;
- 3) частота вращения коленчатого вала на расчетном режиме постоянна;
- 4) силы, действующие в направлении, перпендикулярном плоскости движения поршня, не рассматриваются ввиду симметричности поршня.

Осевая скорость, ускорение, боковая и инерционные силы, действующие на поршень, по всему циклу определялись из уравнений кинематики и динамики кривошипно-шатунного механизма. Индикаторная диаграмма установившегося расчетного режима работы двигателя получена пу-

тем классического расчета рабочего процесса. Таким образом, расчетная схема динамического равновесия поршня представлена на рис. 1. Система уравнений равновесия поршня под действием приложенных сил и сил инерции имеет вид:

$$\begin{split} \vec{P}_{\rm B} + \vec{P}_{\rm H} + \vec{R}_{t{\rm cp}} + \vec{P}_{{\rm TpK}} + \vec{F}_{nZ} - m_n \vec{z} &= 0; \\ \vec{P}_{\rm JI} + \vec{P}_{\Pi} + \vec{F}_{nY} - m_n \vec{y} &= 0; \\ \vec{P}_{\rm B} r_{\rm B} + \vec{P}_{{\rm Tp\Pi}} r_{\Pi} + \vec{P}_{{\rm TpJI}} r_{\rm JI} + \vec{M}_{JI} + \vec{M}_{\Pi} + \vec{M}_{\Pi \rm og} - J_n \vec{\varepsilon}_n &= 0, \end{split}$$

где $\vec{P}_{\rm B}$, $\vec{P}_{\rm H}$ — равнодействующие давлений газа и картерных газов (соответственно сверху и снизу поршня); $\vec{P}_{\rm \Pi}$, $\vec{P}_{\rm \Pi}$ — равнодействующая нормальных гидродинамических сил в смазочном слое, действующих на боковую поверхность поршня (справа и слева относительно пальцевого отверстия); $r_{\rm B}$, $r_{\rm H}$, $r_{$

2013, том 13, № 2

Расчет и конструирование

слое, действующих на боковые поверхности поршня (справа и слева соответственно); \vec{M}_Π , \vec{M}_Π — моменты, опрокидывающие поршень, возникающие от действия нормальных гидродинамических сил в смазочном слое (справа и слева относительно пальцевого отверстия); $\vec{M}_{\text{под}}$ — момент трения в подшипнике пальца; J_n — массовый момент инерции поршня (с учетом пальца); $\vec{\epsilon}_\Pi$ — угловое ускорение поршня.

Переменное напряженно-деформированное состояние поршня. Переменное напряженно-деформированное состояние поршня на расчетном установившемся режиме получено по методи-ке [1–3] в CAD/CAE системе автоматизированного проектирования SolidWorks 2012 Cosmos. Определение НДС поршня по всему циклу двигателя предусматривало проведение двух расчетов:

- 1) расчет температурного поля и тепловых деформаций поршня;
- 2) расчет деформаций поршня, вызванных силовыми факторами.

В обоих расчетах использовалась объемная конечно-элементная модель серийного поршня, состоящая из 65722 тетраэдральных элементов. С целью уменьшения объемов вычислений и затрат машинного времени расчеты проводились на модели половины поршня, что допустимо ввиду симметричности.

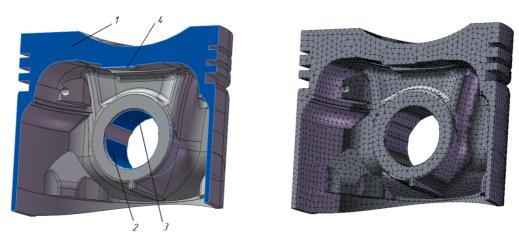


Рис. 2. Схема закрепления поршня и сетка конечных элементов

Закрепление поршня (рис. 2) осуществлялось: по поверхности 1 от перемещения перпендикулярно этой поверхности и вращений по 2 осям, перпендикулярным оси пальцевого отверстия (3 степени свободы); от радиальных перемещений относительно пальцевого отверстия по поверхностям 2 или 3 в зависимости от направления действия силы в паре «поршень – палец» (2 степени свободы); от поворота вокруг оси пальцевого отверстия – по кромке 4 (1 степень свободы).

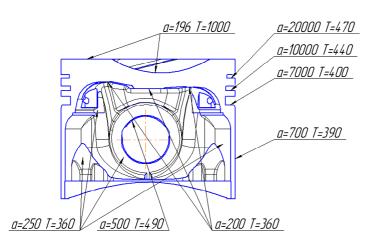


Рис. 3. Граничные условия теплообмена 3-го рода: $a - \kappa o \Rightarrow \phi \phi$ ициент теплоотдачи, $B T/m^2 K$; $T - T \Rightarrow \phi \phi$ температура, $K \Rightarrow \phi \phi$

Определение температурного поля и тепловых деформаций поршня представляло собой решение задачи теплопроводности при заданных граничных условиях. Расчет проводился в стационарной постановке при осредненных за цикл значениях граничных условий на поверхностях теплообмена.

Граничные условия 3-го рода определялись на основании расчета рабочего процесса в цилиндре на заданном режиме, а также по экспериментальным данным ПАО «АВТРАМАТ» (рис. 3). Результаты расчетов стационарного температурного поля и теплового деформированного состояния поршня представлены на рис. 4.

Расчет деформаций поршня, вызванных силовыми факторами, проводился с дискретностью по углу поворота коленчатого вала -5° . Нагрузки, действующие на поршень, определялись по расчетной индикаторной диаграмме и из системы уравнений динамики кривошипно-шатунного механизма. При этом для каждого расчетного положения поршня вычислялось значение и знак боковой силы (или пары сил), которые равномерно распределялись по эллиптическим площад-кам, выполненным на трехмерной модели поршня отдельно для каждого расчетного случая.

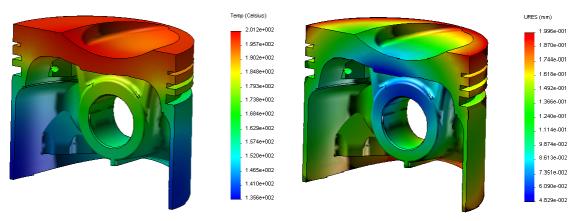


Рис. 4. Поле температур (слева) и тепловых деформаций поршня на расчетном режиме (справа)

Расположения центров эллиптических площадок (плеч приложения боковых сил) определялись по величине боковой силы и по значениям момента, вращающего поршень относительно оси пальцевого отверстия. Размеры эллиптических площадок в первом приближении определялись конструктивными соображениями (ограничения по ширине и высоте), результатами экспериментальных исследований проведенных ПАО «АВТРАМАТ» [2] и уточнялась в процессе расчетов. Таким образом, схема силового нагружения была реализована следующим образом: давление от газовых сил прикладывалось к донцу поршня, инерционная сила задавалась величиной ускорения и прикладывалась в центре тяжести, боковые силы (реакции) распределялись равномерно по эллиптическим площадкам на юбке поршня.

В результате расчета переменного НДС были определены деформации юбки поршня (рис. 5) в зависимости от угла поворота коленчатого вала. Эти результаты сформированы в виде 144 массивов составляющих суммарных деформаций в направлении осей OX и OY в 48 дискретных точках поверхности юбки поршня.

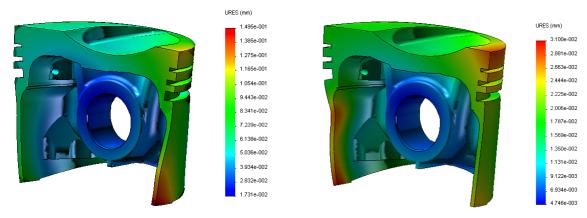


Рис. 5. Поле деформаций поршня под действием силовых факторов в кривошипно-шатунном механизме. Угол поворота коленчатого вала $_{\varpi}=_{375}$ ° (слева) и $_{\varpi}=_{420}$ ° (справа)

Гидродинамические силы и моменты в смазочном слое. При решении задачи нахождения гидродинамических реакций в смазочном слое приняты следующие допущения:

- 1) давление по толщине смазочного слоя принято постоянным;
- 2) давление на границах конечно-разностной сетки принимается картерным;

2013, том 13, № 2 31

Расчет и конструирование

- 3) вязкость смазочной жидкости принимается постоянной и не зависит от давления и координат точек слоя смазки;
- 4) смазка рассматривается как ньютоновская жидкость, в которой напряжения пропорциональны скоростям деформации;
 - 5) течение смазочного слоя принято ламинарным;
 - 6) температура смазочного слоя принята по результатам экспериментальных исследований [4, 5].

Для получения гидродинамических сил и моментов, определялись функции распределения нормальных и касательных давлений в смазочном слое по всей боковой поверхности поршня. Исходным уравнением для определения этих давлений являлось уравнение Рейнольдса [6–9]. При этом решение уравнения Рейнольдса получено совместно с решением системы уравнений движения поршня и с учетом результатов расчета переменного НДС поршня. Таким образом, если не учитывать инерционные эффекты в смазочном слое и считать масло несжимаемым (ρ = const), уравнение Рейнольдса может быть записано в следующем виде:

$$\frac{\partial}{\partial x} \left(\frac{h^3}{\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h^3}{\mu} \frac{\partial p}{\partial z} \right) = 6 \left[-2V - U \frac{\partial h}{\partial x} + W \frac{\partial h}{\partial z} \right],$$

после преобразований

$$\frac{3h^{2}}{\mu}\frac{\partial h}{\partial x}\frac{\partial P}{\partial x} + \frac{h^{3}}{\mu}\frac{\partial^{2} p}{\partial x^{2}} + \frac{3h^{2}}{\mu}\frac{\partial h}{\partial z}\frac{\partial P}{\partial z} + \frac{h^{3}}{\mu}\frac{\partial^{2} p}{\partial z^{2}} = 6\left[-2V - U\frac{\partial h}{\partial x} + W\frac{\partial h}{\partial z}\right],$$

где h — текущая толщина смазочного слоя; p — нормальное давление, возникающее в смазочном слое в рассматриваемой точке боковой поверхности; U, V, W — окружная, радиальная и осевая скорости поверхности поршня, ограничивающей смазочный слой; μ, ρ — динамическая вязкость и плотность смазочного материала.

Течение смазочного слоя в зазоре между поршнем и цилиндром порождает касательные усилия, преодоление которых требует затрат энергии. Суммарные касательные напряжения, эквивалентные этим затратам определяются по зависимостям:

$$\tau_x = \frac{h}{2} \frac{\partial p}{\partial x} + \mu \frac{U}{h}; \ \tau_z = \frac{h}{2} \frac{\partial p}{\partial z} + \mu \frac{W}{h}.$$

Анализ вязкостно-температурной характеристики моторного масла показал, что в диапазоне температур рабочего режима вязкость масла в течение цикла изменяется не более чем на 6 %, и может быть принята как постоянная при расчете гидродинамических параметров в смазочном слое. Тепловое состояние масляного слоя в зазоре между поршнем и цилиндром было получено экспериментально [4, 5].

Поскольку профиль юбки поршня представляет собой сложную овально-бочкообразную поверхность, возможно только численное решение уравнения Рейнольдса с дискретизацией расчетного поля слоя смазки. Такая дискретизация была достигнута созданием конечно-разностной сетки на юбке поршня — разбиением боковой поверхности на двумерные прямоугольные регионы. Граничные условия для гидродинамических давлений задавались в виде постоянных величин картерного давления на границах юбки поршня.

Таким образом, решение данного дифференциального уравнения (краевой задачи) конечно-разностным методом свелось к формированию и решению системы линейных алгебраических уравнений $\overline{A} \cdot \overline{X} = \overline{B}$, где \overline{A} – матрица коэффициентов, \overline{X} – вектор неизвестных гидродинамических давлений, \overline{B} – вектор правой части уравнения.

Для решения этой системы был применен метод $\overline{L}\overline{U}$ разложения матрицы \overline{A} , основанный на том, что если главные миноры матрицы отличны от нуля, тогда матрицу \overline{A} можно представить, причем единственным образом, в виде произведения $\overline{A}=\overline{L}\overline{U}$, где \overline{L} — нижняя треугольная матрица с ненулевыми диагональными элементами и \overline{U} — верхняя треугольная матрица с единичной диагональю.

Результатом решения данной системы являются функции распределения нормальных и касательных давлений (рис. 6). Суммарная величина гидродинамической реакции была получена интегрированием элементарных составляющих сил по всем элементарным площадкам на боковой поверхности поршня. **Траектория движения поршня в цилиндре.** Наибольшую информацию о параметрах нагруженности ЦПГ дает траектория движения поршня. Для заданных нагрузок решение системы уравнений движения одновременно с гидродинамической задачей позволяет рассчитать координаты центра поршневого пальца, а затем и критерии, характеризующие механические потери сопряжения.

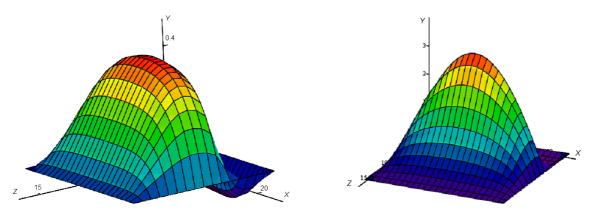


Рис. 6. Распределение нормальных давлений по боковой поверхности поршня, МПа, (слева и справа соответственно) при угле поворота коленчатого вала $_{\odot}$ = 420°

Однако описание поведения вязкой несжимаемой смазки в зазоре между поршнем и цилиндром уравнениями гидродинамики возможно только при условии ненулевых скоростей поршня. А поскольку поршень в цилиндре совершает возвратно-поступательные движения со знакопеременными скоростями и ускорениями, то при работе ЦПГ возникают участки, на которых скорость поршня близка к нулю. Такие участки, как правило, лежат в окрестностях верхней и нижней мертвых точек и характеризуются недостаточной несущей способностью смазочного слоя или граничным режимом трения в сопряжении. В рамках данной методики траектория поршня на этих участках определяется по результатам экспериментальных данных [5]. В дальнейшем планируется провести сравнительные расчеты по методике, описанной и примененной в работах [10, 11], которая позволяет рассчитывать динамику поршня на смазочном слое вблизи мертвых точек.

Одновременно с этим участки, где поршень движется со скоростями, при которых гидродинамические реакции от смазки достаточны для уравновешивания боковой силы и опрокидывающего момента, характеризуются жидкостным режимом трения. Величина гидродинамической реакции в этом случае является функцией от положения поршня в цилиндре (толщины смазочного слоя), т. е. справедлива система уравнений движения поршня:

$$m_{n}\vec{z} = \vec{R}_{z} + \vec{F}_{z}(\varphi);$$

$$m_{n}\vec{y} = \vec{R}_{y} + \vec{F}_{y}(\varphi);$$

$$J_{n}\vec{\varepsilon}_{n} = \vec{M}_{o} + \vec{M}_{o}(\varphi);$$

$$\varphi = \varphi(t).$$

где $\vec{F}_z(\phi)$, $\vec{F}_y(\phi)$, $\vec{M}_o(\phi)$ — внешние силы и моменты, действующие на поршень в КШМ; \vec{R}_z , \vec{R}_y , \vec{M}_o — реакции и момент, действующие на поршень со стороны смазочного слоя; ϕ — угол поворота коленчатого вала; t — текущее время.

Для решения этой системы уравнений был применен метод, основанный на так называемых формулах дифференцирования назад (ФДН). Этот метод предусматривает сведение системы дифференциальных уравнений второго порядка к системе первого порядка и использование обратного метода Эйлера. Обратный метод Эйлера — это пример неявного алгоритма интегрирования, в котором для определения функции на i+1 шаге требуются дополнительные вычисления, так как неизвестные значения i+1 входят как в левую, так и в правую части разностного уравнения. При этом неявные методы по сравнению с аналогичными прямыми алгоритмами более устойчивы и дают более высокую точность вычислений — это обусловлено наличием именно i+1 члена в правой части разностного уравнения, что может рассматриваться как вид обратной связи.

2013, том 13, № 2

Расчет и конструирование

Таким образом, результатом решения этой системы являются функции перемещения поршня в поперечном направлении цилиндра (вдоль оси OY) и функции угла наклона поршня в цилиндре по времени. Эти зависимости в сравнении с экспериментальными данными на расчетном режиме представлены на рис. 7, 8.

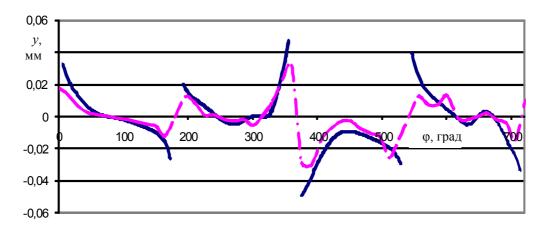


Рис. 7. Координаты центра пальцевого отверстия поршня *у* в зависимости от угла поворота коленчатого вала φ (сплошная кривая – расчет; штрихпунктирная – эксперимент)

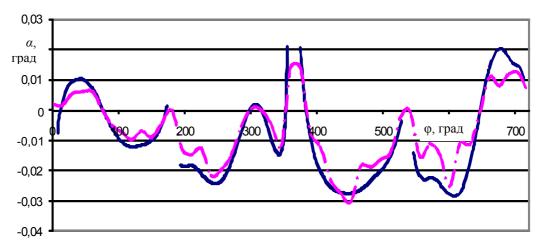


Рис. 8. Угол наклона поршня α в зависимости от угла поворота коленчатого вала φ (сплошная кривая – расчет; штрихпунктирная – эксперимент)

Анализ полученных результатов позволяет определить точки перекладки поршня и с учетом рассчитанного НДС выделить пятна контакта пары. Кроме этого, представляется возможным выявить участки с характерными режимами трения (жидкостным и граничным), а также оценить величину механических потерь в условиях жидкостного режима трения. Для двигателя ВАЗ-21083 на расчетном режиме установлено, что поршень 4-го цилиндра работает в условиях граничного трения 12.63 % времени цикла.

Сравнение результатов расчетов по предложенной методике с экспериментальными данными показывает достаточную качественную сходимость. Осредненная погрешность расчетной методики при определении траектории составляет не более 21 %. Данная погрешность может быть связана со значительными допущениями, принятыми при расчете переменного НДС поршня, и погрешностями измерений при экспериментальных исследованиях.

Заключение. Предложенная методика описания динамики поршня позволяет установить функциональную связь между конструкцией ЦПГ и параметрами, характеризующими эффективность работы двигателя в целом. Расчетная часть методики представляет собой математическую модель, реализованную в виде прикладной программы разработанной в среде Turbo Pascal v. 7.0.

Дальнейшее направление исследований будет связано с практическим применением разработанных математических моделей и средств измерительной техники [4] для разработки методики оптимизации конструкции поршней ДВС.

Литература

- 1. Белогуб, А.В. Новые подходы к конструированию пориней / А.В. Белогуб // Авиационно-космическая техника и технология: сб. науч. тр. Харьков: ХАИ, 2000. Вып. 19: Тепловые двигатели и энергоустановки. С. 201—206.
- 2. Белогуб, А.В. Методика расчета переменного напряженно-деформированного состояния поршня в цикле для различных режимов работы двигателя / А.В. Белогуб, О.С. Стрибуль // Авіаційно-космічна техніка і технологія: Зб. наук. праць. Харків: ХАІ; Миколаїв: Вид-во МФ НаУКМА, 2002. Вип. 30. Двигуни та енергоустановки. С. 124—126.
- 3. Исследование температурного поля поршня / Ю.О. Гусев, О.О. Зотов, А.В. Белогуб, А.Г. Щербина // Авіаційно-космічна техніка і технологія: Зб. наук. праць. Харків: ХАІ; Миколаїв: Вид-во МФ НаУКМА, 2002. Вип. 31. Двигуни та енергоустановки. С. 120—123.
- 4. Москаленко, И.Н. Разработка измерительной системы малых перемещений для экспериментальных исследований динамики поршня ДВС / И.Н. Москаленко // Двигатели внутреннего сгорания. -2012. -№ 1. -C. 41–45.
- 5. Экспериментальные исследования динамики поршня ДВС / И.Н. Москаленко, В.Н. Доценко, А.В. Белогуб, В.А. Байков // Двигатели внутреннего сгорания. 2012. № 2. С. 73—78.
- 6. Динамика и смазка трибосопряжений поршневых и роторных машин: моногр. / В.Н. Прокопьев, Ю.В. Рождественский, В.Г. Караваев и др. — Челябинск: Издат. центр ЮУрГУ, 2010. — Ч. 1. — 136 с.
- 7. Динамика и смазка трибосопряжений поршневых и роторных машин: моногр. / В.Н. Прокопьев, Ю.В. Рождественский, В.Г. Караваев и др. — Челябинск: Издат. центр ЮУрГУ, 2011. — Ч. 2. — 221 с.
- 8. Константинеску, В.Н. Газовая смазка: пер. с рум. / Н.В. Константинеску; под ред. М.В. Коровчинского. М.: Машиностроение, 1968. 709 с.
- 9. Гидростатические опоры роторов быстроходных машин / Н.П. Артеменко, А.И. Чайка, В.Н. Доценко и др. Харьков: Изд-во «Основа» при Харьковском ун-те, 1992. 197 с.
- 10. Влияние вязкостно-температурных свойств моторных масел на гидромеханические характеристики трибосопряжения «поршень цилиндр» / Ю.В. Рождественский, К.В. Гаврилов, А.А. Дойкин, И.В. Мухортов // Двигателестроение. 2010. № 2. С. 23—26.
- 11. Решение задач оптимизации трибосопряжений поршневых и роторных машин с использованием алгоритма сохранения массы / Ю.В. Рождественский, К.В. Гаврилов, А.А. Дойкин, М.А. Макарихин // Трение и смазка в машинах и механизмах. 2011. № 8. С. 38–43.

Москаленко Иван Николаевич. Аспирант кафедры «Теоретическая механика, машиноведение и роботомеханические системы», Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт», уа vanilin@mail.ru.

Доценко Владимир Николаевич. Доктор технических наук, профессор, профессор кафедры «Теоретическая механика, машиноведение и роботомеханические системы», Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт», dovl202@ukr.net.

Белогуб Александр Витальевич. Доктор технических наук, старший научный сотрудник, доцент, технический консультант ПАО «АВТРАМАТ» (Харьковский завод «ПОРШЕНЬ»), профессор кафедры «Конструкции авиационных двигателей», Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт», а belogub@mail.ru.

Дойкин Алексей Алексеевич. Младший научный сотрудник, инженер кафедры «Автомобильный транспорт и сервис автомобилей», Южно-Уральский государственный университет (Челябинск), r.a.s.h.86@mail.ru.

2013, том 13, № 2

Series "Mechanical Engineering Industry" 2013, vol. 13, no. 2, pp. 28–36

THE DYNAMIC OF PISTON IN INTERNAL COMBUSTION ENGINE

- I.N. Moskalenko, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine, ya vanilin@mail.ru,
- V.N. Dotsenko, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine, dovl202@ukr.net,
- **A.V. Belogub**, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine, a belogub@mail.ru,
- A.A. Doykin, South Ural State University, Chelyabinsk, Russian Federation, r.a.s.h.86@mail.ru

Methodology of mathematical formulation of the piston motion in cylinder is presented. Methodology take into consideration actuating forces in crank-and-rod mechanism, hydro dynamical force factors in lubricating film and variable stress-deformed state of piston-cylinder pair. Indicator diagram was drawn and variable loads which act on the piston in crank-and-rod mechanism had been determined. Boundary conditions for the calculations of the variable stress-deformed state of piston as a result of action of the thermal and force factors. Stationary thermal and variable force deformation of the piston are determined. Hydrodynamic forces and torques that acting in the pair piston – cylinder were obtained, using methods that are developed for slider bearings. Piston motion trajectory was obtained as a result of methodology implementation. Results have been compared with experimental data.

Keywords: piston, stress-deformed state, gap, profile, lubricating film.

Поступила в редакцию 19 марта 2013 г.