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Аннотация. В статье описывается современный подход к изучению динамических характе-

ристик быстроходных гусеничных машин. Вопросами моделирования различных систем и от-

дельных агрегатов гусеничных машин занималось большое количество отечественных и зару-

бежных специалистов из различных отраслей машиностроения. Благодаря использованию рас-

чётно-имитационных моделей у инженеров появляется возможность исследовать характеристики 

проектируемого изделия с высокой точностью до этапа его изготовления.  

Модели, построенные в современных программных пакетах, насыщенны математическим 

аппаратом. Для полной реализации потенциала таких пакетов требуется не только глубокое изу-

чение их алгоритмов и методов работы, но и уравнений, из которых составляются модели. Целью 

данной статьи является изучение математического аппарата программного пакета, в котором ра-

нее была реализована одномерная расчётно-имитационная модель быстроходной гусеничной 

машины, для нахождения её динамических характеристик. Рассмотренные в статье дифференци-

альные алгебраические уравнения, обыкновенные дифференциальные уравнения и дифференци-

альные уравнения с частными производными, методы и проблематика, связанная с их решением 

(наличием разрывов), позволяют инженеру глубже понять алгоритмы функционирования про-

граммных пакетов имитационного моделирования. Как следствие, в будущем это даёт возмож-

ность создавать более качественные расчётно-имитационные модели, что на самых ранних эта-

пах проектирования позволит прогнозировать поведение разрабатываемых систем и комплексов 

более точно.  

В дальнейшем планируется более углублённое изучение представленных в статье уравнений 

и методов, а также определение оптимальных из них для получения необходимых результатов с 

минимальными затратами времени, компьютерных ресурсов и с высокой точностью. 

Ключевые слова: дифференциальные алгебраические уравнения, быстроходная гусеничная 

машина, имитационное моделирование, методы решения, обыкновенные дифференциальные 

уравнения 
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Abstract. This article describes a modern approach to studying the dynamic characteristics of high-

speed tracked vehicles. A large number of domestic and foreign specialists from various branches of 

mechanical engineering have studied the issues of modeling various systems and individual units of 

tracked vehicles. Through the use of calculation and simulation models, engineers have the opportunity 

to study the characteristics of the designed product with high accuracy before the stage of its manufac-

ture.  

Models built in modern software packages are saturated with mathematical apparatus. To fully real-

ize the potential of such packages, not only a deep study of their algorithms and operating methods is 

required, but also the equations from which the models are composed. The purpose of this article was to 

study the mathematical apparatus of the software package, in which a one-dimensional calculation and 

simulation model of a high-speed tracked vehicle which was previously implemented, to find its dynam-

ic characteristics. The differential algebraic equations, ordinary differential equations and differential 

equations with partial derivatives, methods and problems related to their solution (the presence of dis-

continuities) considered in the article allow the engineer to better understand the algorithms of the func-

tioning of simulation modeling software packages. As a result, in the future this makes it possible to 

create higher-quality calculation and simulation models, which at the earliest stages of design will allow 

predicting the behavior of the systems and complexes being developed more accurately.  

In the future, a more in-depth study of the equations and methods presented in the article is 

planned, as well as determining the most optimal of them for obtaining the necessary results with mini-

mal time and computer resources and with high accuracy. 

Keywords: differential algebraic equations, high-speed tracked vehicles, ordinary differential equa-

tions, methods of solution, simulation modeling 
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Введение 

Современный подход к проектированию изделий в наукоёмких областях подразумевает обя-

зательное использование систем автоматизированного проектирования (САПР), таких как CAE 

(аббр. Computer-aided engineering; в пер. с англ. система инженерного анализа), CAD (аббр. Com-

puter-aided design; в пер. с англ. система автоматизации проектных работ), их гибридные системы 

и т. д. При создании трёхмерных моделей инженер не вдаётся в подробности работы САПР-

программ, к тому же во многом различия между ними влияют только на удобство работы пользо-

вателя, нежели на конечный результат. В случае расчётных исследований и при создании имита-
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ционных моделей важность понимания архитектур, методов и алгоритмов заложенных в функ-

ционал программ САПР (так называемого «чёрного ящика») становится обязательным условием 

для качественной работы инженера в них. Большинство современных CAE-программ добились 

такой автоматизации процесса подбора уравнений, что позволили практически полностью изба-

вить инженеров – специалистов по техническим расчётам от необходимости выбора используе-

мых при расчёте алгоритмов и базовых уравнений. Целью данной статьи являлся обзор матема-

тического аппарата одной из зарубежных CAE-программ, на базе которой была реализована рас-

чётно-имитационная модель быстроходной гусеничной машины (БГМ). 

Вопросами моделирования различных систем и отдельных агрегатов БГМ занимались мно-

гие авторы [1–6]. Большой вклад был сделан в вопросы взаимодействия гусеничного движителя и 

опорной поверхности как наиболее наукоёмкой и сложной темы [7, 8]. В таких работах акцент 

делается на проектируемые системы, при этом остальными авторы в силу тех или иных причин 

пренебрегают. Во многом данный подход понятен, так как выявить прямое влияние одних ком-

понентов на другие крайне затруднительно. Для точного прогнозирования работы такой сложной 

многокомпонентной, взаимосвязанной и взаимовлияющей системы, как ходовая часть или мо-

торно-трансмиссионное отделение (МТО) БГМ, требуется учёт колоссального количества пара-

метров. 

Таким образом, для наиболее подробного учёта взаимного влияния множества факторов ра-

боты систем БГМ требуется максимально подробно изучить математический аппарат «чёрных 

ящиков» программ CAE. Это позволит учитывать наиболее важные и значимые параметры при 

проектировании систем БГМ. 

Структура работы 
В данной статье проанализированы работы отечественных и зарубежных авторов по имита-

ционному моделированию БГМ. Представлена расчётно-имитационная модель БГМ, построенная 

на основании проанализированных статей. Рассмотрены обыкновенные дифференциальные и 

дифференциальные алгебраические математические уравнения, входящие в состав расчётно-

имитационной модели БГМ. Изучена проблематика появления разрывов при проведении расчё-

тов в программных пакетах (ПП). Приведены примеры жёстких и нежёстких задач. Рассмотрены 

алгоритмы и методы решения представленных уравнений с учётом разрывов. 

Материалы и методы 

Современные мировые тенденции в области разработок [9–11], изучения и анализа работы 

МТО, моделирования движения БГМ и работы их отдельных компонентов диктуют новые требо-

вания к подходам проектирования изделий с активным применением расчётно-имитационного 

моделирования. В результате изучения научных трудов по вопросам моделирования была по-

строена расчётно-имитационная модель отечественной БГМ.  

В статьях [12, 13] рассматривался вопрос расчётно-имитационного моделирования прямоли-

нейного движения БГМ с учётом рабочих процессов в узлах и параметрах. В данных работах ис-

пользовалась одномерная модель БГМ с сосредоточенными параметрами. При этом за счёт блоч-

ной структуры существует возможность её расширения до двух- или трёхмерной с подключени-

ем внешних CAD-программ и использования их решателей при проведении виртуального 

эксперимента и расчётов.  
Расчётно-имитационная модель состоит из: 

  компонентов, имитирующих работу силовой установки согласно внешней характеристике, 

полученной со стендовых испытаний; 

  входного редуктора с приводами на обслуживающие системы и агрегаты, в которых учте-

ны потери мощности на их работу согласно поверочному тяговому расчёту; 

  бортовых планетарных коробок передач с управляющими элементами и бортовыми редук-

торами; 

  системы управления движением, с имитацией работы механика-водителя, с ручным пере-

ключением передач; 

  шасси с учётом массово-инерционных характеристик ходовой части и потерями мощности 

в гусеничном движителе. 

Данная модель включает в себя большое количество систем и компонентов, связанных меж-

ду собой, и включает в себя большое количество различных уравнений и их систем. Поэтому да-
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лее рассмотрим математический аппарат, используемый в ПП имитационного моделирования для 

решения и интегрирования уравнений, описывающих созданную модель. 

Математический аппарат расчётно-имитационной модели 
При проектировании расчётно-имитационных моделей перед разработчиком всегда встаёт 

сложное решение о принимаемых допущениях и упрощениях. При наличии высокой точности 

детализации модели важные переменные будут представлены функциями как от времени, так и 

от положения в пространстве. К примеру, давление  P  будет функцией 4 переменных: 

( , , , )P P t x y z . 

Изменения данных переменных во времени регулируются системами уравнений в частных 

производных. В различных отраслях существуют специальные пакеты для решения уравнений 

данного типа, например, для вычислительной гидродинамики. Такое программное обеспечение 

используется для детального анализа отдельных компонентов системы. 

Однако в инженерных расчётах часто необходимо моделировать крупные многоэлементные 

технические системы. В нашем случае модель может состоять из двигателя внутреннего сгора-

ния, трансмиссии, системы гидроуправления и смазки и т. д. В этом случае принято сводить 

дифференциальные уравнения в частных производных к обыкновенным дифференциальным 

уравнениям (ОДУ). Таким образом, получаются модели, описываемые как ОДУ, так и дифферен-

циально-алгебраическими уравнениями (ДАУ). Большинство современных ПП могут решать оба 

представленных типа дифференциальных уравнений. 

Под решением уравнений подразумевается определение изменения переменных состояния по 

мере того, как время симуляции прогрессирует от начального до конечного значения. Перемен-

ные состояния, определяющие систему, изменяются, потому что: 

 начальные значения не представляют собой положение равновесия; 

 вводятся некоторые внешние возмущения и/или изменения (рабочий цикл модели). 

Опишем особенности и основную проблематику при решении ОДУ и ДАУ.  

Обыкновенные дифференциальные уравнения [14] 

Классическая система ОДУ имеет N переменных состояния 1,..., ny y , каждая из которых име-

ет уравнение для своей производной вида: 

 1 2, , , ,i
i N

dy
f t y y y

dt
 . 

На практике такое уравнение выполняется в некотором временном промежутке от 0t   и до 

некоторого конечного момента fint t . Данное условие можно представить в виде 

0 fint t  . 

Кроме того, для каждой переменной состояния должно быть известно начальное значение: 

 0i iy A . 

Удобно выразить это в векторной записи, используя и присваивая для промежутка времени

0 fint t  : 

 

 

 

1 21) , , , ,

2) , ,

0 .

T

Ny y y y

dy
f t y

dt

y A







 

Представленную выше систему часто называют проблемой начального значения (англ. initial 

value problem).  

Уравнения, описывающие технические системы, значительно различаются по своим харак-

теристикам. Для анализа локальных характеристик в некоторой точке решения применяется спо-

соб оценки матрицы Якоби и определение её собственных значений i : 



Численные методы моделирования 
Numerical simulation methods 

Bulletin of the South Ural State University. Ser. Mechanical Engineering Industry. 
2025, vol. 25, no. 1, pp. 68–79 72 

.
f

J
y



  

Получаемые значения, как правило, комплексные, с действительными частями, обычно от-

рицательными. Инженеру интересны соответствующие постоянные времени 
i
 , которые опреде-

ляются следующим образом: 

 

1

Rei

i


 


. 

Они дают представление о затухании отдельных компонентов решения. Соответствующие 

мнимые части собственных значений дают некоторое представление о локальных частотах. 

Две задачи, которые особенно требовательны к методам интегрирования: 

1. Задачи, где наименьшая постоянная времени намного меньше общего времени симуляции, 

к примеру: 

1000i

fint
  . 

Такой тип задач называют жёсткими (англ. stiff). Они требуют крайне стабильных методов 

интегрирования для их эффективного решения. Самым известным и наиболее подходящим алго-

ритмом для решения таких задач является метод Гира (англ. Gear’s method). 

2. Задачи, где частота больше, чем конечное время ,fint а затухание крайне мало. В этом слу-

чае нормальные методы интегрирования показывают неэффективные результаты расчётов (тре-

буется значительное количество времени для их решения). 

Дифференциальные алгебраические уравнения [15] 

Для более наглядного изучения вопроса приведём несколько примеров ДАУ. 

1. Представим движущуюся под действием внешней силы массу. Она имеет некоторый ко-

эффициент трения с поверхностью, по которой движется, а также учтём наличие сопротивления 

воздуха .F  Тогда движение массы можно представить следующими уравнениями: 

1 2

dx
v

dt

dv
M F c v c v v

dt





   


.

 

Полученные ОДУ называются явными (англ. explicit). Но если мы решим, что выражение в 

левой части второго уравнения пренебрежимо мало, тогда получим 

1 20
dx dx dx

F c c
dt dt dt

    

Теперь данное ОДУ будет неявным (англ. implicit). 

2. Значение расхода жидкости, протекающей через трубу, можно найти, используя зависи-

мость: 

2
,q

P
Q C A


 


 

где qC  – константа, задаваемая пользователем. Данная зависимость пример явного алгебраиче-

ского уравнения.  

С другой стороны, 

 qC f Q . 

В этом случае мы получаем неявное алгебраическое уравнение, и значение величины рас-

хода жидкости Q  должно определяться итеративно. 
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Если управляющая система уравнений включает в себя любой вид неявного ОДУ или неяв-

ного алгебраического уравнения, то они описываются как ДАУ. Наиболее общий способ записи 

системы ДАУ следующий: 

, , 0
dy

F t y
dt

 
 

 
. 

Различия между перемещением  x  в первом примере и расходом  Q  во втором нет. Обе 

данные переменные считаются переменными состояния. Следовательно, требуются начальные 

значения для неявных алгебраических переменных и для переменных состояния. При решении 

этих уравнений основная цель – свести два следующих остатка  1 2,   к нулю: 

1 1 2

dx dx dx
F c c

dt dt dt
    , 

 2

2 P
Q f Q A


   


. 

Разрывы 

В расчётно-имитационных моделях существует шанс возникновения разрывов (англ. 

Discontinuities) [16]. Проблема заключается в алгоритмах интегрирования, используемых для ре-

шения ОДУ и ДАУ. Они основаны на методах интегрирования, которые работают с принятым 

предположением, что переменные состояния и некоторые их производные являются непрерыв-

ными. Если это предположение нарушается, происходит разрыв. В этом случае требуются специ-

альные методы для обработки в точках разрыва для сохранения приемлемой точности расчётов.  

Если никаких специальных мер не было предпринято, то большинство интеграторов будут 

резко сокращать свой шаг вблизи точки P в попытке удовлетворить требованиям точности. В 

этом случае большинство интеграторов, когда шаг станет минимальным, прервут расчёт и выда-

дут ошибку, так как требования по точности не будут удовлетворены. Часть интеграторов по 

достижению минимального шага продолжат работу, даже если требования по точности не будут 

выполнены, но это может привести к крайне неточным результатам. 

1. Явные методы Рунге – Кутта [17] 

Для вычисления 1ny   требуется только значение ny . Вычисляется ряд значений k , которые 

выбирают производные состояний между временем nt t  и 1nt t  . Пример такого вычисления: 

 1 1 2
2

n n

h
y y k k     , 

 1 ;n nk f t y , 

 2 1; ,nk f t h y hk    

где h  – текущая длина шага, т. е. 1n nh t t  . 

В этом методе используются только два значения ,k поэтому он известен как 2-этапный ме-

тод. Для повышения точности расчётов может быть использовано большее количество значений 

.k  По мере увеличения числа этапов порядок метода тоже будет увеличиваться. В данном случае 

невозможно точно дать определение данному термину, но существует тенденция: чем выше по-

рядок метода, тем выше потенциальная точность расчётов. В самых популярных методах ЯРК 

используются 4, 5 или 6 этапов, что соответствует 4-му и 5-му порядку. 

ЯРК являются самыми простыми в реализации методами, потому что они явные. Большинст-

во современных алгоритмов ПП, реализующих данные формулы, используют автоматическое 

управление шагом. Основываясь на данном методе, можно получать хорошие результаты при 

условии, что решаемые уравнения не слишком сложны. Но стоит отметить, что данный метод 

совершенно не подходит для жёстких задач. 

2. Линейные многошаговые методы [18] 

В данных методах используются следующие обозначения: 
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   1 1 1; ; ;n n n n n nf f t y f t y   и т. д. 

Вместо использования одного предыдущего значения ny  в данном методе дополнительно 

используются все предыдущие значения y . Приведём три широко используемых линейных мно-

гошаговых метода: 

1 1 1

4 1 2

3 3 3
n n n ny y y hf     , 

 1 1 15 8
12

n n n n n

h
y y f f f      , 

 1 13
2

n n n n

h
y y f f    . 

Первые два метода являются неявными, поскольку правая часть содержит 1nf   и, следова-

тельно 1ny  . Третий метод является явным.  

Среди всех алгоритмов ПП присутствуют три наиболее широко используемые для решения 

задач с разрывами: 

1) код Адамса (Adams code) – алгоритм для нежёстких задач. Он использует методы Адамса –

 Моултона с порядками до 12. Это обеспечивает большую гибкость для решений как с низкой, 

так и с высокой точностью [19]; 

2) метод Гира (Gear’s method) – вероятно, лучший алгоритм для жёстких задач [19]. Он ис-

пользует методы, известные как формулы обратного дифференцирования (англ. backward 

differentiation formule) порядков от 1 до 5 [20]; 

3) алгоритм LSODA (аббр. Livermore Ordinary Differential Equations) объединяет в себе луч-

шие характеристики и от кода Адамса, и от метода Гира [21]. Интегрирование начинается с мето-

дов кода Адамса. Характеристики уравнений отслеживаются, и, если обнаруживается жёсткость, 

выполняется переключение на метод Гира. Мониторинг характеристик уравнений не прекраща-

ется после переключения между методами Адамса – Моултона и формулами обратного диффе-

ренцирования по мере изменения характеристик уравнений. 

Проработка разрывов 

Во всех моделях компонентов должна применяться строгая обработка разрывов. Если есть 

разрыв в переменной состояния или в её 1-й или 2-й производной, метод, описанный ранее, ис-

пользуется для определения разрыва и перезапуска интегратора. Если разрыв происходит в из-

вестное время, то обработка разрыва пройдёт за наименьший промежуток времени. В иных слу-

чаях, когда точное время происхождения разрыва неизвестно, для поиска точки разрыва исполь-

зуется интерполяция. 

Решения дифференциальных уравнений с частными производными 

Во введении было заявлено, что для моделирования сложных технических систем, а не от-

дельных компонентов внутри системы, необходимо преобразовать уравнения с частными произ-

водными в ОДУ или ДАУ [22]. Это приводит к концепции модели со сосредоточенными пара-

метрами её компонентов. Предполагается, что можно взять единственное репрезентативное зна-

чение переменной, такое как давление  P . Внутри компонента вместо предположения, что 

 , , ,P P t x y z , мы предполагаем, что  P P t . Данное предположение о сосредоточенных па-

раметрах позволяет успешно взаимодействовать с ними. Но есть случаи, когда оно будет недей-

ствительным. Рассмотрим гидравлические трубы при следующих двух случаях. 

1. Очень длинная труба при малом диаметре. Если диаметр трубы составляет 10 мм, а 

длина 30 м, то изменения давления в зависимости от точки расположения жидкости внутри тру-

бы могут быть экстремальными. 

2. Значительные волновые эффекты. Если время, необходимое для прохождения волны 

давления по трубе, составляет   секунд, 
100

fint
  , то тогда волновые эффекты могут значительно 

изменить поведение системы. Поскольку предположение о сосредоточенных параметрах не по-
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зволяет точно представить волновые эффекты в трубах, необходимо учитывать геометрические 

изменения давления и расхода жидкости. 

В представленных случаях можно предположить, что изменения переменных относительно 

положения в пределах длины трубы значительны, а изменения по сечению – нет. В терминах 

уравнений мы предполагаем, что  

 , ,P P t x  

где x  – измеряется по длине трубы. 

Полное описание процесса преобразования уравнений потока в гидравлической трубе в фор-

му, подходящую для классических решателей ОДУ, затруднительно. Однако данный процесс 

можно проиллюстрировать, взяв более простой пример теплопроводности вдоль изолированного 

стержня с управляющим уравнением: 

2

2
,

T T
K

t x

 


 
 

где K  зависит от теплопроводности, плотности и удельной теплоёмкости и будет считаться кон-

стантой. Чтобы преобразовать управляющее уравнение в ОДУ, мы вводим набор узловых точек 

вдоль стержня и сохраняем температуру iT  в каждом узле. Нам требуется выражение для произ-

водных каждой температуры по времени. Для этого мы аппроксимируем предыдущее уравнение 

следующим образом: 

 1 1

2

2i i ii
K T T TdT

dt x

  



. 

Используя простые приближения для производных в пространственном измерении и остав-

ляя измерение времени за стандартным интегратором, получаем метод, известный как метод ли-

ний (англ. Method of lines). Он используется для преобразования уравнений с частными произ-

водными в ОДУ. При необходимости он может быть расширен до 2 или даже 3 пространствен-

ных измерений, но в таких случаях обычно лучше использовать специализированное 

программное обеспечение для уравнений с частными производными [23]. 

Для гидравлических труб ситуация более сложная, поскольку необходимо использовать 

уравнения с частными производными как для давления, так и для расхода жидкости. Тем не ме-

нее метод всё ещё применим и используется в более сложных моделях гидравлических труб. 

Обычно используются переплетённые сетки для давления и расхода. 

На основании проведенного анализа математических методов решения задач применительно 

к описанию движения БГМ принято решение использовать метод Рунге – Кутта интегрирования 

системы ДАУ, которая имеет вид: 
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где  – прямолинейное ускорение БГМ; .двF  – движущая сила; тросF  – внешняя сила на тросе; 

. .общ сопрF  – суммарное сопротивление движению БГМ; .статC  – коэффициент сцепления, назна-

чаемый пользователем для состояния покоя перед началом движения БГМ; m  – масса БГМ; 

.вх ВКiM  – входной момент, приходящий на ведущие колёса из бортового редуктора; .дин iR  – дина-

мический радиус подвесок; .подF  – сила сопротивления при подъёме; .аэрF  – аэродинамическое 

сопротивление; .качF  – сила сопротивления качению БГМ; n  – коэффициент приращения сопро-

тивления качению; .вых БРiM  – момент на выходном звене бортового редуктора;   – коэффициент 

полезного действия гусеничного движителя; V  – линейная скорость БГМ; G  – вес БГМ;   – 

угол наклона поверхности движения; .возд  – плотность воздуха; S  – площадь поперечного сече-

ния изделия; xC  – коэффициент обтекаемости; ветраV  – скорость ветра; f  – коэффициент сопро-

тивления качению; k  – коэффициент вязкого трения; W  – коэффициент парусности. 

В дальнейшем планируется дополнить систему ДАУ уравнениями, описывающими гидро-

объёмный механизм поворота с помощью ДАУ. 

Результаты и обсуждения 

Таким образом, на основании рассмотренных уравнений и методов их решения сформулиро-

вана математическая модель движения БГМ на базе дифференциальных алгебраических уравне-

ний, оптимальных для получения необходимых результатов с минимальными затратами времени, 

компьютерных ресурсов и с большой точностью.  
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