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Аннотация. В данной статье рассматриваются принципы расчёта смазочных систем, 

включая определение расхода масла, давления, вязкости и производительности масляного на-

соса двигателя внутреннего сгорания. Приводится ретроспектива развития методов расчета 

смазочных систем, отмечается тенденция на разработку энергосберегающих решений для со-

временных и перспективных ДВС. Рассматриваются методы уменьшения расхода смазочной 

жидкости, проблемы в области расчета смазочной системы ДВС. Указывается, что основными 

узлами трибосистемы, определяющими её надёжность, являются именно опоры скольжения 

жидкостного трения как части общей смазочной системы двигателя. Следовательно, модель 

смазочной системы в своей основе должна иметь для опор скольжения, смазываемых под 

давлением, метод гидродинамического расчёта. Предлагается в моделях смазки сложнона-

груженных гидродинамических трибосопряжений двигателей использовать для расчета дав-

лений в смазочном слое вместо уравнения Рейнольдса с допущением о полном заполнении за-

зора смазочной жидкостью между шипом и подшипником универсальное уравнение для сте-

пени заполнения зазора, предложенное Элродом. Результаты решения этого уравнения 

являются физически обоснованными, что позволит использовать разработанные алгоритмы 

для моделирования смазочных систем ДВС с учетом динамики и смазки гидродинамических 

опор скольжения коленчатого вала и других трибосопряжений, смазываемых под давлением, 

прогнозировать режимы масляного голодания опор. С практической точки зрения такой под-

ход позволит проектировать опоры скольжения и смазочные системы ДВС на новом уровне, 

снизить потери мощности на привод масляных насосов, не применять насосы с избыточной 

производительностью.  
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Abstract. This article discusses the principles of calculating lubrication systems, including deter-

mining oil consumption, pressure, viscosity, and performance of an internal combustion engine oil 

pump. A retrospective of the development of methods for calculating lubrication systems is given, and 

there is a tendency to develop energy-saving solutions for modern and promising internal combustion 

engines. The methods of reducing the consumption of lubricating fluid, problems in the calculation of 

the internal combustion engine lubrication system are considered. It is indicated that the main elements 

of the lubrication system, as part of the overall tribosystem, determining its operability and reliability, 

are liquid friction sliding bearings, therefore, the algorithm should be based on the hydrodynamic calcu-

lation of all pressure lubricated sliding bearings. It is proposed to use the universal Elrod equation for 

the degree of gap filling to calculate the pressures in the lubricating layer instead of the Reynolds equa-

tion, assuming that the gap is completely filled with lubricating fluid between the spike and the bearing. 

This will make it possible to describe the processes in the lubricating layer in a physically reasonable 

manner, and significantly improve the accuracy of predicting oil starvation in tribo-conjugations. The 

use of the computational capabilities of the Elrod algorithm for the joint calculation of tribo-

conjugations of internal combustion engines and their oil supply system will allow us to reach a new 

level of creation and refinement not only of individual hydrodynamic sliding bearings of internal com-

bustion engines, but also of the entire internal combustion engine lubrication system, avoid the use of oil 

pumps with excessive capacity, and reduce power losses to their drive. 

Keywords: lubrication system, internal combustion engine, oil consumption, oil pressure, hydrody-

namic complex-loaded tribocompositions, Reynolds equation, Elrod algorithm 
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Система смазки необходима для снижения трения и износа деталей двигателей внутреннего 

сгорания (ДВС), отвода тепла и удаления загрязнений. Эффективность работы смазочной систе-

мы определяется правильностью её проектирования и эксплуатации [1].  

 Общий расход масла в двигателе определяется суммой частных расходов через подшипники, 

зазоры в поршневой группе и системы фильтрации [2]: 

 Q_общ = ∑ Q_i, 

где Q_i – расходы масла на отдельных участках смазочной системы.  

 Давление масла в системе определяется в общем виде балансом между производительно-

стью масляного насоса и гидравлическим сопротивлением каналов [3]: 

 P = (Q_n / S) * R, 

где P – давление масла в смазочной системе, Q_n – производительность масляного насоса,  

S – площадь сечения всех масляных каналов системы, R – гидравлическое сопротивление масля-

ных каналов смазочной системы. Такой подход не учитывает процессы в трибосопряжениях дви-

гателя, смазываемых под давлением и, прежде всего, в подшипниках коленчатого вала.  
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Как правило, считается, что производительность насоса должна превышать потребность дви-

гателя с учётом запаса [3]: 

 Q_n = K_z * Q_p, 

где Q_n – производительность насоса, Q_p – потребность двигателя в масле, K_z – коэффициент 

запаса [4]. Однако такая модель ведет к дополнительным затратам на привод насоса, холостому 

перекачиванию масла, снижению его функциональных свойств. В результате насос рассчитыва-

ется с учетом износа всех сопряжений на последний день работы двигателя перед ремонтом. Не-

обходим учет каждого потребителя смазочной системы, нагрузочных и тепловых режимов двига-

теля.  

Эффективность работы двигателя во многом зависит от функционирования его смазочной 

системы. Поэтому в этой области было проведено много исследований, направленных на совер-

шенствование методов расчёта и алгоритмов моделирования смазочных систем.  

 До 1990-х годов методы расчёта смазочных систем двигателей внутреннего сгорания и дру-

гих поршневых машин основывались, как правило, на эмпирических формулах, полученных на 

основе экспериментальных данных. Эти методы включали: 

 упрощённые расчёты давления масла в каналах [3]; 

 эмпирические зависимости расхода масла через подшипники; 

 табличные данные по потере масла на испарение и угар [5]. 

Основные недостатки: 

 ограниченная точность из-за высокой степени обобщения данных; 

 слабый учёт локальных изменений температуры и давления масла [1]; 

 невозможность анализа сложных конструкций системы смазки. 

 С развитием вычислительной техники в начале 2000-х годов началось активное применение 

численных методов расчета элементов смазочных систем: 

 метода конечных элементов (МКЭ) для оценки несущей способности смазочного слоя в 

опоре скольжения; 

 метода конечных объёмов (МКО) для расчёта гидродинамических процессов в каналах 

смазочной системы [6]; 

  применения вычислительной гидродинамики (CFD) для моделирования потоков смазоч-

ной жидкости в системе. 

Основные достижения: 

 повышение точности расчётов за счёт учёта реальной геометрии каналов смазочной сис-

темы; 

 включение в расчёты тепловых эффектов и влияния вязкости масла при различных темпе-

ратурах; 

 возможность анализа работы системы смазки в динамических режимах [3]. 

Основные ограничения: 

 высокие вычислительные затраты [8]; 

 сложность калибровки моделей на основе реальных данных. 

В 2010-х годах получили развитие комплексные подходы к моделированию, включающие: 

 полноценные 3D-CFD-модели системы смазки [4]; 

 интеграцию термодинамических и гидродинамических расчётов [7]; 

 учёт деформации деталей [9]. 

Достижения: 

 возможность анализа нестационарных режимов работы двигателя [10]; 

 учёт взаимодействия системы смазки с другими системами [11]; 

Методы расчёта смазочных систем ДВС за последние 30–40 лет прошли путь от простых эм-

пирических зависимостей до сложных многомерных моделей, использующих CFD, термодина-

мику и машинное обучение. Дальнейшие исследования должны быть направлены на совершенст-

вование методов расчёта, верификацию моделей с реальными экспериментальными данными и 

разработку энергосберегающих решений для современных и перспективных ДВС [9]. 
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Однако, несмотря на существенный прогресс в методах расчета смазочных систем, исследо-

ватели при этом мало внимание уделяют моделям смазки гидродинамических подшипников дви-

гателя, хотя основными узлами трибосистемы, определяющими её надёжность, являются именно 

опоры скольжения жидкостного трения. Поэтому в основе метода расчета смазочной системы 

двигателя должен лежать гидродинамический расчёт всех опор скольжения, смазываемых под 

давлением. На наш взгляд, неучёт этого обстоятельства является наиболее существенным недос-

татком современных методов расчета смазочных систем ДВС.  

В гидродинамических трибосопряжениях шип на смазочном слое в подшипнике двигается в 

пределах зазора по траектории, определяемой нагрузками и скоростным режимом работы маши-

ны. В поршневых ДВС это прежде всего опоры скольжения коленчатого вала, а также опоры 

распределительных валов, уравновешивающего механизма, турбокомпрессора. Течение смазоч-

ной жидкости через эти опоры, их гидравлическое сопротивление зависит в каждый момент вре-

мени от траектории движения шипа в подшипнике, расположения источников смазки на поверх-

ностях шипа и подшипника, их углового положения относительно минимального зазора в сопря-

жении. Его нельзя считать постоянным. Кроме того, гидродинамическое давление, возникающее 

в опоре при работе, в десятки раз превышает давление подачи смазочной жидкости для смазки 

трибосопряжения. Повышение давления вызывает повышение температуры опоры и смазочной 

жидкости, а следовательно, падение вязкости. Смазка становится более текучей, что существенно 

сказывается на гидравлическом сопротивлении сопряжения [12]. 

Алгоритмы и методы расчета смазочных систем поршневых и роторных машин разработан-

ные в ЮУрГУ на основе теории гидравлических цепей [13–15], учитывают эти связи и исполь-

зуют для расчета гидромеханических характеристик сложнонагруженных трибосопряжений 

уравнение Рейнольдса. Общая схема круглоцилиндрического сложногруженного подшипника 

показана на рисунке. Основные обозначения размеров и скоростей движения шипа и подшипника 

понятны из схемы. Эксцентриситет 1 2e O O  и угол   будут определять положение центра шипа, 

 2 1    – относительную скорость его вращения, а выражения de dt  и ed dt  – характе-

ризовать относительные скорости движения центра шипа.  

 

Обозначим B  – ширина под-

шипника,   2 1 2 1h M M M M     – 

толщина смазочного слоя. 

Используя обозначения экс-

центриситета и угла линии цен-

тров, запишем толщину смазочно-

го слоя в виде 

 0 cosh h e     ,  

где 0h  – радиальный зазор, опре-

деляем ее производные по времени 

 

 

cos

sin .

h t de dt

e d dt

       

    
 

Если координаты и скорости 

движения шипа на смазочном слое 

в подшипнике известны, то поле 

гидродинамических давлений 

 , ,p z t для подшипника конеч-

ной длины определяется интегри-

рованием уравнения Рейнольдса 

[12]:  

 
Схема сложнонагруженного подшипника 

Model of a complexly loaded bearing 

 

   
3 3

12 12 2Э Э

h p h p
h h

z z

         
       

             

.                     (1) 
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В формуле 

0 ;h h h   0 ;    0 ;Э Э     
2

0 0 0, ;p p h r z z r       ,  

, ;a z a a B D         x r  ;       2 1 0    ; 0t   . 

 В этих выражениях использованы известные обозначения, приведенные в монографии [12].  

Значения безразмерных толщины смазочного слоя и ее производной определяются из выра-

жений 

     1 cos , cos sin ,h h                       

где относительный эксцентриситет шипа обозначен 0e h  ; производные положения шипа по 

безразмерному времени обозначены ,  . 

Уравнение Рейнольдса для конечного подшипника интегрируют в области 

 0,2 ; ,z a a    , при этом, как правило, используют граничные условия Свифта –

 Штибера: 

 
   

    *

, ; ( , ) ( 2 , ); , 0,

, , , 1, 2... .

a

S S

p z a p p z p z p z

p z p на z S S

          

    
                       (2) 

В этих условиях используется понятие источников смазки на поверхности шипа и подшип-

ника в виде канавок и отверстий. Количество этих источников обозначено 
*S . Область источника 

смазки S , характеризуется допущением, что давление постоянно и равно давлению подачи сма-

зочной жидкости в данный момент времени Sp . 

Граничные условия Свифта – Штибера работают таким образом: когда в какой-либо точке 

области интегрирования   в процессе расчета гидродинамических давлений по уравнению (1) 

не выполняется условие 0,p   давление в этой точке приравнивается к нулю.  

Использование граничных условий (2) позволяет хорошо описать физику процесса разрыва 

смазочного слоя в районе максимальных гидродинамических давлений. Однако эти условия не-

корректно представляют границу начала эпюры давления. Такое обстоятельство не позволяет 

точно определить баланс расходов смазочной жидкости, поступающей и вытекающей из опоры. 

Торцевой расход жидкости может оказаться значительно больше, чем расход из источника на 

входе в опору. В результате в процессе компьютерного моделирования смазочной системы при 

отсутствии давления подачи смазочной жидкости на входе в подшипник масляное голодание не 

наступает и расчет продолжается. Кроме того, допущение о полном заполнении смазочной жид-

костью зазора между шипом и подшипником при выводе уравнения Рейнольдса не позволяет 

корректно использовать его для моделирования смазочных систем.  

Для того чтобы преодолеть это недостаток граничных условий (2), предлагается использо-

вать граничные условия Якобсона – Флоберга – Ольсена, позволяющие выполнить условия не-

разрывности смазочного слоя в гидродинамической опоре скольжения:  

 

 

    *

, 0; ( , ) ( 2 , );

, / ( , ) 0; ( , ) 0;

, , , 1, 2... .

р p в

S S

p z a p z p z

p z p z p z

p z p на z S S

        

       

    
                              

(3) 

Здесь ,р в   – границы разрыва и восстановления смазочного слоя.  

В этом случае граница восстановления смазочного слоя становится физически более обосно-

ванной. Реализация условий Якобсона – Флоберга – Ольсена базируется на идее Элрода и Адамса 

[16–18] по расчету гидродинамических давлений в смазочном слое на основе интегрирования 

универсального уравнения (4) для степени заполнения зазора  : 
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       
3 3

.
12 12 2Э Э

h h
g g h h

z z

           
         

             
                  (4) 

Здесь 
2

0 0     – безразмерный коэффициент сжимаемости смазки,    его размерное зна-

чение, ( )g  переключающая функция: 

  
1, 1;

0, 1.

если
g

если

 
  

 
 

Степени заполнения   приписывается двоякий смысл. В области давлений c    , где c – 

плотность смазки при давлении, равном давлению кавитации cp . В области кавитации 

,c cp p   , причем   определяет массовое содержание жидкой фазы (масла) в единице объе-

ма пространства между шипом и подшипником. 

Гидродинамические давления связаны с   соотношением 

   ln .cp p g       (5) 

Оригинальные методы решения универсального уравнения (4), разработанные в ЮУрГУ, 

приведены в работах [19, 20]. Результаты решения являются физически обоснованными, что по-

зволяет использовать эти алгоритмы для моделирования смазочных систем ДВС, с учетом дина-

мики и смазки гидродинамических опор скольжения коленчатого вала и других трибосопряже-

ний, смазываемых под давлением, прогнозировать режимы масляного голодания опор.  

С практической точки зрения такой подход позволит проектировать опоры скольжения и 

смазочные системы ДВС на новом уровне, снизить потери мощности на привод масляных насо-

сов, не применять насосы с избыточной производительностью.  
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