
 

Bulletin of the South Ural State University. Ser. Mechanical Engineering Industry. 
2024, vol. 24, no. 4, pp. 124–139 

124 

Научная статья 
УДК 629.015 
DOI: 10.14529/engin240410 
 

ИССЛЕДОВАНИЕ РАБОТОСПОСОБНОСТИ И ЭФФЕКТИВНОСТИ 
АЛГОРИТМА ПОДАВЛЕНИЯ АВТОКОЛЕБАНИЙ  
ПРИ ИНТЕНСИВНОМ НАЧАЛЕ ДВИЖЕНИЯ НА ПОДЪЁМЕ 
 

А.В. Климов
1,2

, klimmanen@mail.ru, https://orcid.org/0000-0002-5351-3622 
1 
ООО «Инновационный центр «КАМАЗ», Москва, Россия 

2 
Московский политехнический университет, Москва, Россия 

 
Аннотация. Актуальность. Одним из возможных режимов эксплуатации, при котором ав-

токолебания валов и передач тягового электропривода проявляются наиболее ярко, является ре-

жим фиксации транспортного средства на уклоне при начале его скатывания за счёт создания 

крутящего момента на валах электродвигателей, препятствующих вращению колёс в сторону 

скатывания транспортного средства. При этом штатная тормозная система задействована и ве-

дущие колеса находятся в тормозном режиме, поскольку активирована функция помощи на 

подъёме. В данном случае возможна несогласованность процессов снижения тормозного момен-

та и нарастания тягового момента при старте, что может привести к накоплению в системе энер-

гии, возбуждающей автоколебания при отрицательном трении и отсутствии или малости демп-

фирования. Данный рабочий режим в эксплуатации является высоковероятным, поскольку дви-

жение транспортного средства сопряжено всегда с остановками и последующим началом 

движения, в особенности в условиях населённых пунктов, что нередко бывает на уклонах дороги. 

Цель исследования. Необходимо проверить работоспособность и эффективность метода подав-

ления автоколебаний в электромеханической системе привода колеса при начале движения и ра-

боте системы помощи на подъёме. Материалы и методы. Исследование работоспособности и 

эффективности алгоритма выполнено с применением методов экспериментальных исследований. 

Результаты исследования. С помощью метода натурных экспериментов установлена работо-

способность и эффективность алгоритма подавления автоколебаний при интенсивном начале 

движения на уклоне и активированной системе удержания на подъёме. По результатам исследо-

ваний можно заключить, что при активации алгоритма подавления автоколебаний амплитуды 

колебаний угловой скорости роторов ТЭД снижены до 8 раз. Для крутящих моментов автоколе-

бания подавлены полностью, что свидетельствует об эффективности алгоритма подавления. При 

этом работа алгоритма подавления автоколебаний привела к повышению эффективности работы 

алгоритма фиксации транспортного средства на уклоне, так как откат при фиксации уменьшился 

на 8…15 %. Заключение. Алгоритм подавления автоколебаний при испытаниях показал свою 

работоспособность и эффективность и можно рекомендовать для практической разработки сис-

тем управления замедлением транспортных средств. 
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Abstract. One of the possible operating modes in which the self-oscillation of the shafts and gears of 

the traction electric drive are most pronounced is the mode of fixing the vehicle on a slope at the beginning 
of its rolling due to the creation of torque on the shafts of electric motors that prevent the wheels from rotat-
ing towards the rolling of the vehicle. At the same time, the standard braking system is activated, and the 
driving wheels are in braking mode, since the lifting assistance function is activated. In this case, there may 
be inconsistency in the processes of reducing the braking torque and increasing the traction torque at start, 
which can lead to the accumulation of energy in the system exciting self-oscillations with negative friction 
and the absence or smallness of damping. This operating mode in operation is highly probable, since the 
movement of the vehicle is always associated with stops and the subsequent start of movement, especially 
in populated areas, which often happens on road slopes. The purpose of the study. It is necessary to check 
the operability and effectiveness of the self-oscillation suppression method in the electromechanical wheel 
drive system at the beginning of movement and the operation of the lifting assistance system. Materials 

and methods. The study of the efficiency and effectiveness of the algorithm was carried out using experi-
mental research methods. The results of the study. Using the method of field experiments, the efficiency 
and effectiveness of the algorithm for suppressing self-oscillations at the intensive start of movement on a 
slope and an activated ascent retention system were established. According to the research results, it can be 
concluded that when the self-oscillation suppression algorithm is activated, the amplitude of oscillations of 
the angular velocity of the TED rotors is reduced by up to 8 times. For torques, self-oscillations are com-
pletely suppressed, which indicates the effectiveness of the suppression algorithm. At the same time, the 
operation of the self-oscillation suppression algorithm led to an increase in the efficiency of the vehicle fix-
ation algorithm on an incline, since the rollback during fixation decreased by 8...15 %. 

Keywords: self-oscillation, intensive start of movement on a slope, retention on a slope, damping, im-
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Введение 

При взаимодействии 2 тел при определённых условиях могут возбуждаться колебания, со-

провождаемые отрицательным демпфированием или без оного. Такие процессы называются ав-

токолебательными или релаксационными колебаниями [1, 2]. При взаимодействии эластичной 

пневматической шины могут иметь место автоколебания, обусловленные трением. Возбуждение 

данного процесса может оказать влияние на безопасность движения машины [3–6] и может яв-

ляться диагностическим признаком для выработки управляющего воздействия для корректиров-

ки на параметры рабочих процессов [7–13]. 

Для рудничного электротранспорта в работе [14] возникновение автоколебаний, регистри-

руемых по датчикам токов, потребляемых тяговым приводом, является диагностическим призна-

ком появления буксования, что используется в дальнейшем для борьбы с буксованием. Анало-

гичная задача исследована для железнодорожного транспорта в работах [15–22] при обеспечении 

движения при реализации максимально возможного сцепления возникновения автоколебаний в 

зоне взаимодействия колеса с рельсом. 

В трансмиссиях автомобилей, рабочие процессы которых характеризуются действием сил 

трения, возможны условия для возбуждения релаксационных колебаний. В работе [23] рассмат-

риваются автоколебательные явления в механических передачах при начале движения, а в работе 
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[24] – при переключении передач в коробках передач со сближенными передаточными числами. 

Из-за изменения коэффициента трения при изменении скорости скольжения в процессе включе-

ния и выключения фрикционных сцеплений могут возникать толчки и вибрации («рывки» сцеп-

ления) [25, 26]. Автоколебания могут также привести к галопированию, рысканию транспортного 

средства [27]. 

Особый интерес представляют колебательные процессы в электромеханических приводах, 

применяемых для привода ведущих колёс аккумуляторных транспортных средств (электромоби-

лей и электробусов), поскольку некоторым типам электрических машин в силу их конструкций 

при определённых условиях свойственна склонность к возбуждению автоколебаний [27, 28]. По-

этому они могут возникать в ситуациях, когда в механическом приводе их бы не было, что при-

водит к негативным явлениям, снижающим технические показатели, приводящим к увеличению 

потерь, повышению динамических нагрузок и даже поломок кинематических звеньев [29], в том 

числе вследствие потери устойчивости электропривода в составе электромеханической системы 

[30, 31]. Однако свойство электропривода прямого управления моментом позволяет методами 

управления исключать ситуации возникновения автоколебаний, тогда как в чисто механическом 

приводе они будут возбуждаться. 

Поэтому исследование автоколебательных явлений для электромеханического привода 

транспортных средств и синтез законов управления приводом является актуальной задачей. 

Постановка проблемы 

Одним из возможных режимов эксплуатации, при котором автоколебания валов и передач 

тягового электропривода проявляются наиболее ярко, является режим фиксации транспортного 

средства на уклоне при начале его скатывания за счёт создания крутящего момента на валах 

электродвигателей, препятствующих вращению колёс в сторону скатывания транспортного сред-

ства. При этом штатная тормозная система задействована и ведущие колеса находятся в тормоз-

ном режиме, поскольку активирована функция помощи на подъёме. В данном случае возможна 

несогласованность процессов снижения тормозного момента и нарастания тягового момента при 

старте, что может привести к накоплению в системе энергии, возбуждающей автоколебания при 

отрицательном трении и отсутствии или малости демпфирования 

Поэтому необходимо проверить методами экспериментальных исследований работоспособ-

ности и эффективности функционирования закона управления приводом, позволяющего подав-

лять возбуждаемые автоколебательные явления при начале движения и работе системы помощи 

на подъёме. 

Средняя вероятность начала движения на уклоне достигает в среднем до 43 %, что показано 

на рис. 1. 

 
Рис. 1. Соотношение общего времени движения ко времени стоянок  

(участок движения на маршруте – пример):  – время стоянок 

Fig. 1. The ratio of the total travel time to the parking time  
(a section of traffic on the route is an example):  – parking time 
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Наиболее вероятные значения подъёмов и спусков находятся в диапазоне 0…3 % с вероятно-

стью более 99 %. Большие значения уклонов не превышают по вероятности 1 %. 

Усреднённый эквивалентный профиль дороги на маршруте показан на рис. 2. 

 

Рис. 2. Эквивалентный профиль дороги 

Fig. 2. Equivalent road profile 

 

Данный рабочий режим в эксплуатации является высоковероятным, поскольку движение 

транспортного средства сопряжено всегда с остановками и последующим началом движения, в 

особенности в условиях населённых пунктов, что нередко бывает на уклонах дороги. Поэтому 

важно исследовать работоспособность и эффективность функционирования алгоритма подавле-

ния автоколебаний в процессе начала движения на небольших уклонах 2 %. 

Как показывает анализ, проведённый в [32, 33], автоколебания в зоне взаимодействия эла-

стичного колеса с опорным основанием при торможении возбуждаются в конечной фазе процес-

са замедления и могут иметь значительную интенсивность, что негативно сказывается на качест-

ве фиксации транспортного средства при скатывании с уклона и приводит к увеличению нагру-

женности элементов привода. 

Алгоритм [34] работает следующим образом.  

При обнаружении повышенного скольжения по диагностическим признакам скольжения ко-

лёс     и     [35, 36] происходит определение управляющих сигналов u2 и u4, снижающих кру-

тящие моменты. В случае поворота рулевого колеса рассчитываются коэффициенты коррекции k2 

и k4, учитывающие криволинейность движения для колёс левого и правого борта, перераспреде-

ляющие крутящие моменты между колёсами. Тем самым система при регистрации повышенного 

скольжения, вплоть до полного скольжения, при снижении силы трения в пятне контакта, при 

росте скорости [32, 33] детектирует по сигналам от датчиков колёсных скоростей, датчиков угло-

вого положения и частоты вращения вала электродвигателя, датчиков тока, положения органов 

управления ситуацию, провоцирующую возбуждение автоколебаний, и реализует последующее 

управляющее воздействие. Как указано в [32, 33], данные процессы распространяются на осталь-

ные элементы электромеханической силовой передачи. 

Для этого рассчитывают приведённую угловую жёсткость электромеханического привода 

вместе с колесом в процессе управления как отношение приращения, реализуемого приводом 

момента и ускорения/замедления колеса     
    

    
 (где      – изменение/приращение крутяще-

го момента,      – изменение угловой скорости колеса) и для активного подавления автоколеба-

ний коэффициент демпфирования должен быть          . После этого вычисляется демпфи-

рующий крутящий момент     прямо пропорциональный угловой скорости колёс  

              , который при назначении реализуемого крутящего момента вычитается из 
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запрашиваемой водителем уставки, обеспечивая тем самым затухание колебаний, с учётом ре-

лейной функции       , исключающей возбуждение автоколебаний в системе управления. 

При этом обеспечивается изъятие провоцирующей автоколебания энергии и их подавление. 

Для активного подавления автоколебаний коэффициент демпфирования должен быть 

          [37], где    – момент инерции колеса и механического привода, а угловую жёст-

кость     для системы привода колеса можно оценить в процессе управления как отношение 

приращения реализуемого приводом момента и ускорения/замедления колеса. 

Обратная связь обеспечивается посредством также анализа скольжения колеса, при его от-

сутствии или малости автоколебания считаются подавленными. 

Методология исследования 

Исследование работоспособности и эффективности данного алгоритма проведено методом 

экспериментальных исследований. 

Программа экспериментальных исследований и оборудование, применяемое при испы-

таниях 

Поскольку автоколебания повышают динамическую нагруженность элементов привода, с 

целью исключения их повреждения исследования проводились для случая трогания транспортно-

го средства [38] на сухом асфальте с уклоном дороги 3% (рис. 3). При испытании транспортное 

средство в момент начала движения стремилось откатиться назад, и при нарастании тягового 

крутящего момента в процессе начала движения вперёд происходило провоцирование ситуации 

повышенного скольжения колеса, сопровождаемое снижением силы трения в процессе измене-  

 
 

Рис. 3. Схема испытаний при трогании  
транспортного средства на уклоне 

Fig. 3. Test scheme when starting  
a vehicle on an incline 

ния направления его движения. В начале отката сила 

трения в пятне контакта направлена назад и постепен-

но по мере начала движения снижается и изменяется 

по направлению. 

В процессе испытаний на неподвижно стоящем на 

уклоне транспортном средстве водитель отпускал пе-

даль тормоза при активированной функции предот-

вращения отката средствами тягового электропривода. 

При появлении отрицательных значений угловой ско-

рости колёс система предотвращения отката создаёт 

тяговые моменты на ведущих колёсах, необходимые 

для неподвижного удержания электробуса. Цикл удер-

живания на уклоне повторялся несколько раз. 

Материалы и методы 

Транспортное средство для фиксации значений параметров рабочих процессов тягового 

электромеханического привода колеса в процессе экспериментальных исследований оснащено 

датчиками частоты вращения ротора электродвигателя, фазных токов, по значениям которых оп-

ределяется электромагнитный крутящий момент, сопротивление вращению колеса определяется 

с помощью наблюдателя момента сопротивления, посредством датчиков угловых скоростей ко-

лёс регистрируются их угловые скорости. Все значения параметров посылаются управляющим 

контроллером в CAN-шину и в процессе экспериментальных исследований фиксируются адапте-

ром Vector VN1630А (рис. 4) на ЭВМ. Для анализа данных использовалось программное обеспе-

чение Vector CANoe (рис. 5, а) и MATLAB  Simulink (рис. 5, b). Анализировался характер реали-

зации регистрируемых параметров, величины амплитуд колебательных явлений, степень их сни-

жения при сопоставлении парных пиков реализаций, приведённых в [36–38]. 

Силовые и кинематические параметры на ведущих колёсах измеряются с помощью тензо-

метрических колёс Kistler RoaDyn и регистрируются системой сбора данных IMC-CRFX-400 

(рис. 6), которыми в процессе испытаний дополнительно был оснащён электробус. Данное обо-

рудование использовалось в качестве резервного источника информации, с помощью которой 

осуществлялась проверка работоспособности и функциональности алгоритма подавления авто-

колебаний. В эксплуатации алгоритм не требует установки дополнительных датчиков и функ-

ционирует посредством обработки информации от штатных систем транспортного средства, 

транслируемой по CAN-шине: тормозной системы и системы тягового электрического привода, а 

именно датчиков колёсных скоростей, частоты вращения вала электродвигателя, датчиков тока 
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электродвигателя, датчиков положения органов управления и определяемых параметров рабочих 

процессов с помощью программных наблюдателей состояний систем. 

 

 

              а)                          b) 

Рис. 4. Адаптер Vector VN1630А и ЭВМ 

Fig. 4. Vector VN1630A and Computer Adapter 

 

     

а)                        b) 
 

Рис. 5. Окно программ для анализа данных: а) Vector CANoe; b) MATLAB  Simulink 

Fig. 5. The window of programs for data analysis: a) Vector CANoe; b) MATLAB  Simulink 

 

 

 

Рис. 6. Тензометрические измерительные колёса Kistler RoaDyn и система сбора данных IMC-CRFX-400 

Fig. 6. Kistler Roading Strain Gauge Wheels and IMC-CRFX-400 Data Acquisition System 

 

Результаты экспериментальных исследований 

На первом этапе алгоритм подавления автоколебаний был деактивирован. На рис. 7–12 пред-

ставлены результаты измерения крутящих моментов тяговых электродвигателей и угловые ско-

рости их роторов для 3 эпизодов трогания транспортного средства и работы системы помощи на 

подъёме. Перед началом испытаний электробус фиксировался на подъёме 3 % (как наиболее ве-

  

                 а)                 b) 
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роятном в эксплуатации), активируется система помощи на подъёме кнопкой на приборной пане-

ли. Далее водитель осуществляет старт при нажатии на педаль хода. При этом система управле-

ния машиной не имеет алгоритма подавления автоколебаний в своём составе. 

 

 

Рис. 7. Частота вращения и крутящий момент правого электродвигателя (эпизод 1) 

Fig. 7. Angular velocity of rotation and torque of the right electric motor (Episode 1) 

 

 

Рис. 8. Частота вращения и крутящий момент правого электродвигателя (эпизод 1) 

Fig. 8. Angular velocity of rotation and torque of the left electric motor (Episode 1) 

 

На графиках рис. 7–12 отчётливо видны участки возбуждения автоколебаний как угловых 

скоростей роторов ТЭД, так и их крутящих моментов при затормаживании колёс. 

На втором этапе алгоритм подавления автоколебаний был активирован. На рис. 13–18 пред-

ставлены результаты измерения крутящих моментов тяговых электродвигателей и угловые ско-

рости их роторов для 3 эпизодов трогания транспортного средства и работы системы помощи на 

подъёме. Процесс проведения исследовательских заездов аналогичен указанному выше, за ис-

ключением того, что система управления имеет в своём составе алгоритм подавления автоколе-

баний. 
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Рис. 9. Частота вращения и крутящий момент правого электродвигателя (эпизод 2) 

Fig. 9. Angular velocity of rotation and torque of the right electric motor (Episode 2) 

 

 

Рис. 10. Частота вращения и крутящий момент левого электродвигателя (эпизод 2) 

Fig. 10. Angular velocity of rotation and torque of the left electric motor (Episode 2) 

 

 

Рис. 11. Частота вращения и крутящий момент правого электродвигателя (эпизод 3) 

Fig. 11. Angular velocity of rotation and torque of the right electric motor (Episode 3) 
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Рис. 12. Частота вращения и крутящий момент левого электродвигателя (эпизод 3) 

Fig. 12. Angular velocity of rotation and torque of the left electric motor (Episode 3) 

 

На графиках рис. 13–18 видно, что при активации алгоритма подавления автоколебаний в 

процессе интенсивного начала движения на уклоне амплитуды колебаний угловой скорости ро-

торов ТЭД существенно снижены, а автоколебаний крутящих моментов вообще не наблюдалось. 

Результаты и обсуждения 

По результатам исследований можно заключить. что при активации алгоритма подавления 

автоколебаний амплитуды колебаний угловой скорости роторов ТЭД снижены до 8 раз. Для кру-

тящих моментов автоколебания подавлены полностью, что свидетельствует об эффективности 

алгоритма подавления. При этом работа алгоритма подавления автоколебаний привела к повы-

шению эффективности работы алгоритма фиксации транспортного средства на уклоне, так как 

откат при фиксации уменьшился на 8…15 %. Алгоритм подавления автоколебаний при испыта-

ниях показал свою работоспособность и эффективность, и его можно рекомендовать для практи-

ческой разработки систем управления замедлением транспортных средств. 

 

 

 
Рис. 13. Частота вращения и крутящий момент правого электродвигателя (эпизод 1) 

Fig. 13. Angular velocity and torque of the right electric motor (Episode 1) 
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Рис. 14. Частота вращения и крутящий момент левого электродвигателя (эпизод 1) 

Fig. 14. Angular velocity and torque of the left electric motor (Episode 1) 

 

 

 
Рис. 15. Частота вращения и крутящий момент правого электродвигателя (эпизод 2) 

Fig. 15. Angular velocity and torque of the right electric motor (Episode 2) 

 
Время, с 
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Рис. 16. Частота вращения и крутящий момент левого электродвигателя (эпизод 2) 

Fig. 16. Angular velocity and torque of the left electric motor (Episode 2) 

 

 

Рис. 17. Частота вращения и крутящий момент правого электродвигателя (эпизод 3) 

Fig. 17. Angular velocity and torque of the right electric motor (Episode 3) 
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Рис. 18. Частота вращения и крутящий момент левого электродвигателя (эпизод 3) 

Fig. 18. Angular velocity and torque of the left electric motor (Episode 3) 
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