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Аннотация. Статья посвящена выбору параметров моделирования при проведении численно-

го исследования течения жидкости в проточной части вихревого гидравлического диода. Течение 

жидкости в вихревом диоде является сложным, включающим в себя плоские и объемные вихри. 

Поэтому корректный выбор параметров моделирования при проведении численного эксперимента 

затруднителен. Обзор научно-технической литературы показал, что в настоящее время отсутствует 

единый подход при численном моделировании потоков в вихревом диоде. 

В данной работе проведено численное моделирование течения жидкости в прямом и обратном 

направлениях вихревого гидравлического диода с применением параметров, выявленных в ходе 

выполненного обзора литературы, как наиболее часто используемых в исследованиях вихревых 

диодов. Так, в качестве моделей турбулентностей применены k-ε, SST, RSM и ламинарная модель. 

Представлены результаты моделирования и их анализ. Кроме того, в ходе работы проведен физи-

ческий эксперимент, целью которого явилось получение действительных характеристик исследуе-

мого вихревого диода. Для проверки адекватности результатов численного моделирования с при-

менением различных моделей турбулентности и ламинарной модели проведено сравнение резуль-

татов физического эксперимента и результатов численного моделирования. При этом сравнение 

производилось по сосредоточенным параметрам. 

Установлено, что в исследуемом диапазоне чисел Рейнольдса наиболее предпочтительной с 

точки зрения точности получаемых результатов моделирования течения в вихревом диоде является 

модель турбулентности RSM для моделирования потока в прямом и обратном направлениях. При 

этом модель SST ввиду меньших требований к ресурсу в сравнении с RSM и относительно высокой 

точности моделирования потоков в вихревых диодах при больших числах Рейнольдса может быть 

использована в моделировании для предварительных расчетов гидродиода. 
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Abstract. The article is devoted to the selection of modeling parameters when conducting a numerical 

study of fluid flow in the flow part of a vortex fluidic diode. The fluid flow in a vortex diode is complex, 

including flat and volume vortices. Therefore, the correct choice of modeling parameters when conducting 

a numerical experiment is difficult. A review of scientific and technical literature has shown that there is 

currently no unified approach to numerical modeling of flows in a vortex diode.  

In this paper, a numerical modeling of fluid flow in the forward and reverse directions of a vortex flu-

idic diode is carried out using the parameters identified during the literature review as the most frequently 

used in vortex diode studies. Thus, k-ε, SST, RSM and the laminar model are used as turbulence models. 

The modeling results and their analysis are presented. In addition, a physical experiment was conducted 

during the work, the purpose of which was to obtain the actual characteristics of the vortex diode under 

study. To check the adequacy of the numerical simulation results using various turbulence models and a 

laminar model, a comparison of the results of a physical experiment and the results of numerical simula-

tion was carried out. In this case, the comparison was made using integrated parameters.  

It has been established that in the studied range of Reynolds numbers the most preferable from the 

point of view of the accuracy of the obtained results of flow modeling in a vortex diode is the RSM turbu-

lence model for flow modeling in the forward and reverse directions. At the same time, the SST model, 

due to lower resource requirements in comparison with the RSM and relatively high accuracy of flow 

modeling in vortex diodes at high Reynolds numbers, can be used in modeling for preliminary calculations 

of a vortex diode. 

Keywords: vortex diode, computational fluid dynamics, turbulence model, numerical analysis, exper-

imental research 
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Введение 

Гидравлический диод является проточным элементом, коэффициент гидравлического сопро-

тивления которого существенно различается при прямом и обратном направлении движения 

жидкости через него. Таким образом, поток жидкости с равным расходом в прямом направлении 

диода движется при значительно меньшем перепаде давлений на гидродиоде, чем в обратном [1, 

2]. Отличительной особенностью гидравлических диодов является отсутствие подвижных эле-

ментов в проточной части. 

Гидродиоды нашли применение в трубопроводных системах для предотвращения гидравли-

ческого удара [3], для ограничения расхода теплоносителя через теплообменники системы вспо-

могательного охлаждения ядерных реакторов при принудительной циркуляции с обеспечением 

беспрепятственного течения теплоносителя в противоположном направлении при естественной 

циркуляции [4, 5], в качестве кавитаторов в системах очистки и обеззараживания воды [6], в ка-

честве органов распределения жидкости в насосах с вытеснителем возвратно-поступательного 

действия [7–9], а также в различных приложениях в микрофлюидике [10, 11]. 

Основной характеристикой диода, определяющей его качество, является диодность, которая 

представляет собой отношение коэффициентов гидравлического сопротивления при движении 

жидкости в обратном ζоб и в прямом ζпр направлениях: 
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Наиболее перспективным с точки зрения диодности является вихревой диод [12]. Так, суще-

ствуют исследования, в которых диодность вихревых диодов достигалась более 200 единиц [13]. 

Разработка новых устройств, включающих в свой состав вихревые гидравлические диоды, 

требует анализа течения жидкости в проточной части диода в стационарной и нестационарной 

постановках. При этом следует отметить, что течение жидкости в диоде является сложным, 

включающим в себя плоские и объемные вихри. Следовательно, применение средств вычисли-

тельной гидродинамики для решения задачи анализа течения жидкости в вихревом диоде являет-

ся обоснованным ввиду комплексности математического описания такого течения. При этом 

сложность течения жидкости в проточной части диода требует подбора адекватных параметров 

моделирования, позволяющих с удовлетворительной точностью описать явления, имеющие ме-

сто быть в потоке. 

В работе [14] показано, что использование моделей вихревой вязкости, положительно заре-

комендовавших себя для плоских течений, при наличии объемных вихрей дают неудовлетвори-

тельный результат. Автор предпринимает попытки усовершенствования двухпараметрических 

моделей за счет внесения эмпирических поправок корректировки самой турбулентной вязкости. 

В статье [15] проведено исследование точности и ресурсоемкости различных моделей турбу-

лентности, полученные результаты говорят о том, что с увеличением числа Рейнольдса роль под-

сеточного моделирования возрастает. В работе [16] авторы приходят к выводу, что успешное 

применение модели крупных вихрей (LES) требует решения некоторых вопросов, таких как соз-

дание методической базы метода LES, определение критериев сходимости и др. 

Отсутствие единого подхода к моделированию вихревых течений является проблемой при 

проектировании вихревых диодов. Авторы используют различные модели турбулентности, на-

стройки сетки и критерии сходимости. Так, в работе [17] Kulkarni и др. проводят серию расчетов 

вихревых диодов, пренебрегая напряжениями Рейнольдса и учитывая только молекулярную вяз-

кость, верифицируя свой подход путем сравнения результатов моделирования с эксперименталь-

ными данными [18]. При этом в первом приближении авторы используют модель турбулентности 

k-ε, однако полученные результаты не показывают удовлетворительной сходимости с экспери-

ментом. Цветков и др. [19] моделируют в ANSYS диод повышенной диодности при помощи мо-

дели вихревой вязкости SST, а Yin и др. в своей работе [20] описывают моделирование вихревого 

диода с помощью модели больших вихрей LES. В работе [21] Pandare и др. используют для чис-

ленного моделирования вихревого диода модель турбулентности SST. В работах [22] и [13] авто-

ры используют модель турбулентности RSM. 

Аналитический обзор научно-технической литературы показывает, что в настоящее время 

отсутствует единый подход к моделированию течения жидкости в проточной части вихревого 

гидравлического диода. Это затрудняет применение численного моделирования при постановке 

численных экспериментов, направленных на исследования вихревых диодов. 

Данная работа направлена на определение оптимальных параметров численного моделиро-

вания, применение которых при постановке численного эксперимента позволяет получить ре-

зультаты удовлетворительной точности. 

Для решения поставленной задачи проведена серия численных экспериментов с применени-

ем ряда моделей турбулентности, адекватность которых оценивалась путем сопоставления ре-

зультатов численного моделирования и физического эксперимента. 

В качестве объекта исследования выбран вихревой гидравлический диод, профиль и размеры 

проточной части которого описаны в статье [17]. 

В данном исследовании рассмотрены четыре наиболее часто используемые при моделирова-

нии течений в вихревых диодах математические модели турбулентности. В результате каждого 

численного эксперимента были определены зависимости перепадов статических давлений на 

гидродиоде в прямом и обратном направлении и основная характеристика диода – зависимость 

диодности от числа Рейнольдса. 

С целью проверки адекватности применения выбранных для исследования моделей турбу-

лентности проведен физический эксперимент, в результате которого получены зависимости пе-
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репадов давлений в прямом и обратном направлении диода от расхода, а также зависимость ди-

одности от числа Рейнольдса 

Верификация численной модели осуществлялась методом сравнения результатов численного 

моделирования и физического эксперимента. 

Материалы и методы 

Геометрическая модель исследуемого вихревого диода представлена на рис. 1. 

 
Рис. 1. Модель проточной части диода 

Fig. 1. The model of the flow part of the diode 

Для проведения численного эксперимента в 

данной работе использовались следующие моде-

ли турбулентности: k-ε, SST, RSM. Также исполь-

зовалась ламинарная модель. Модели k-ε, SST, 

RSM относятся к методу, основанному на осред-

нении по Рейнольдсу уравнений Навье–Стокса 

(Reynolds averaged Navie–Stokes или RANS). Мо-

дель k-ε является двухпараметрической моделью, 

в которой турбулентная вязкость высчитывается 

путем решения двух дополнительных уравнений: 

кинетической энергии турбулентности k и скоро-

сти диссипации турбулентности ε. Данная модель 

позволяет  рассчитывать  турбулентные течения с  

приемлемой точностью, однако при моделировании отрывных течений точность расчетов оказы-

вается низкой. 

Модель SST сочетает в себе модели k-ε и k-ω. Для расчета течения свободного потока ис-

пользуются уравнения k-ε, а для расчета потока вблизи стенок – уравнения k-ω. Модель SST хо-

рошо показывает себя в расчетах отрывных течений с небольшой зоной отрыва. 

Модель RSM основана на уравнениях переноса компонентов тензора напряжений Рейнольд-

са и скоростей диссипации. Эти модели основаны не на гипотезе вихревой вязкости, а решают 

уравнения переноса напряжений Рейнольдса в жидкости. Уравнения переноса модели RSM ре-

шаются для компонентов напряжения по отдельности. Модели RSM хорошо описывают эффекты 

кривизны линий тока, внезапных изменений скорости (например, интенсивные вихревые потоки) 

по сравнению с моделями вихревой вязкости. 

При моделировании ламинарных течений используется ламинарная модель и движение по-

тока полностью описывается уравнениями RANS. Обычно условием применения ламинарной 

модели является низкое число Рейнольдса (Re < 1000). Передача энергии в жидкости в этом слу-

чае осуществляется молекулярным взаимодействием. В данной работе использование ламинар-

ной модели связано с рекомендациями, приведенными в статье [17], в которой авторы аргумен-

тируют ее выбор ламиниризирующей структурой потока внутри вихревой камеры, однако отме-

чают некачественное описание течения в тангенциальном и осевом соплах диода. 

Помимо модели турбулентности существенное влияние на результат моделирования оказы-

вает значение шага по времени. Высокое значение шага по времени негативно повлияет на точ-

ность результатов моделирования, однако использование слишком малого значения шага приве-

дет к чрезмерно высокому времени расчета. Оптимальные значения шага по времени для каждой 

из используемых моделей турбулентности определялись итерационным методом. 

Также на точность расчетов оказывает влияние сетка. Для определения оптимального коли-

чества элементов сетки для каждой из используемых моделей турбулентности был проведен ана-

лиз сеточной сходимости. Результаты для модели турбулентности RSM в виде графика приведе-

ны на рис. 2. В результате анализа сеточной сходимости стало ясно, что для моделей k-ε и лами-

нарной может быть использована одна сетка, так же как и для моделей SST и RSM. Сетки, 

используемые для моделей k-ε и ламинарной, для моделей SST и RSM приведены на рис. 3 и 4 

соответственно. Сетки состоят из тетраэдрических элементов с призматическим приграничным 

слоем. 

Параметры моделирования при проведении численных экспериментов приведены в таблице.  

На рис. 5 приведены поля скоростей для каждой из моделей в прямом направлении, а на 

рис. 6 – в обратном. 
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Рис. 2. Результат анализа сеточной сходимости для модели турбулентности RSM 

Fig. 2. The result of the grid convergence analysis for the RSM 

 

 

 
Рис. 3. Сетка, используемая при численном моделировании с моделью турбулентности k-ε  

и ламинарной моделью 

Fig. 3. The grid used in numerical simulation with the k-ε turbulence model and the laminar model 

 

 

 
 

Рис. 4. Сетка, используемая при численном моделировании с моделями турбулентности SST и RSM 

Fig. 4. The grid used in numerical simulations with SST and RSM turbulence models 
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Параметры численных экспериментов 
Parameters of numerical experiments 

Модель  

турбулентности 

Шаг по времени  

(явный/мнимый), с 

Количество 

элементов, 

млн 

Размер первого 

пристеночного 

элемента, мм 

Время счета  

одной расчетной 

точки, ч 

Laminar 0,005 1,8 0,2 0,3 

k-ε 0,002 1,8 0,2 0,5 

SST 0,0001 3,2 0,005 2 

RSM 0,00005 3,2 0,005 3 

 

 
 

Рис. 5. Поля скоростей в прямом направлении: а) ламинарная модель; 
b) модель k-ε; c) модель SST; d) модель RSM 

Fig. 5. Velocity fields in the forward direction: a) laminar model;  
b) k-ε model; c) SST model; d) RSM 

 

На рис. 7 приведены поля давлений при движении потока жидкости в прямом направлении, а 

на рис. 8 – в обратном. 

Для проверки адекватности результатов численного моделирования был поставлен физиче-

ский эксперимент. Испытательный стенд показан на рис. 9, его принципиальная схема  – на 

рис. 10. Центробежный насос Н (см. рис. 10) осуществлял подачу воды на испытываемый гид-

равлический диод ГД. Регулирование расхода воды осуществлялось регулируемым дросселем Д. 

Расход жидкости измерялся с помощью мерной емкости ЕМ. Перепады давлений на гидравличе-

ском диоде измерялись с помощью манометра МН1, малые перепады измерялись с помощью U-

образного дифференциального манометра МН2. 

В качестве контрольно-измерительного оборудования использовались: 

– манометр стрелочный (10 бар, класс точности 0,4); 

– манометр U-образный (длина 1,5 м); 

– мерная емкость и секундомер для измерения расхода. 
 

а) b) 

c) d) 
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Рис. 6. Поля скоростей в обратном направлении: а) ламинарная модель; b) модель k-ε;  
c) модель SST; d) модель RSM 

Fig. 6. Velocity fields in the opposite direction: a) laminar model; b) k-ε model; c) SST model; d) RSM 

 

 
 

Рис. 7. Поля давлений в прямом направлении: а) ламинарная модель; b) модель k-ε;  
c) модель SST; d) модель RSM 

Fig. 7. Pressure fields in the forward direction: a) laminar model; b) k-ε model; c) SST model; d) RSM 

 

а) 
b) 

c) d) 

а) b) 

c) 
d) 
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Рис. 8. Поля давлений в обратном направлении: а) ламинарная модель; b) модель k-ε;  

c) модель SST; d) модель RSM 

Fig. 8. Pressure fields in the opposite direction: a) laminar model; b) k-ε model; c) SST model; d) RSM 

 

 
 

Рис. 9. Стенд испытательный 

Fig. 9. The test bench 

 

Геометрические параметры испытываемого гидравлического диода были аналогичны пара-

метрам, которые использовались при численных экспериментах. Диод был изготовлен методом 

3D-печати с подготовкой внутренней поверхности проточной части для достижения минималь-

ной ее шероховатости. 

а) b) 

c) d

) 
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Рис. 10. Принципиальная схема испытательного стенда 

Fig. 10. Schematic diagram of the test bench 

 

Исследование проводилось в два этапа. На 

первом этапе испытываемый диод проливался 

в направлении, соответствующем наибольшему 

гидравлическому сопротивлению (обратном 

направлении). Напорная линия насоса была 

подключена к тангенциальному соплу гидрав-

лического диода, а осевое сопло соединено со 

сливной линией, которая сообщается с атмо-

сферой. Дроссель Д в начале эксперимента был 

полностью закрыт. Постепенно открывая про-

ходное сечение дросселя, задавался перепад 

давлений на гидродиоде. При этом давление на 

входе в гидравлический диод регистрировалось 

при помощи манометра МН1 или U-образного 

манометра МН2, давление на выходе диода 

принималось равным атмосферному. При каж-

дой настройке дросселя измерялся расход жид-

кости через гидродиод объемным способом. 

На втором этапе эксперимента напорная линия насоса была подключена к осевому соплу 

гидравлического диода, а тангенциальный выход подключен к сливной линии, сообщающейся с 

атмосферой (прямое направление). Методика испытаний аналогична первому этапу. 

Замеры для каждой из точек проводились не менее шести раз. 

Результаты и обсуждения 

В результате проведения численного моделирования и экспериментального исследования 

гидравлического диода были получены зависимости перепадов давлений на соплах гидравличе-

ского диода при прохождении потока жидкости в прямом и обратном направлениях от расхода 

жидкости. Графики зависимостей для численных и реального экспериментов приведены на 

рис. 11 и 12 в прямом и обратном направлениях соответственно. При этом для наглядного срав-

нения на данные физического эксперимента нанесены пределы погрешности 5 %. 
 

 

  

Рис. 11. Сравнение зависимостей, полученных в результате численного моделирования и физического  
эксперимента, для прямого направления диода: а) зависимость перепада давлений на диоде от расхода; 

b) зависимость коэффициента гидравлического сопротивления от числа Рейнольдса 

Fig. 11. Comparison of dependencies obtained as a result of numerical modeling and physical experiment  
for the forward direction of the diode: a) dependence of the pressure drop on the diode on the flow rate;  

b) dependence of the hydraulic resistance coefficient on the Reynolds number 
 

b) а) 
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Рис. 12. Сравнение зависимостей, полученных в результате численного моделирования и физического  
эксперимента, для обратного направления диода: а) зависимость перепада давлений на диоде от расхода;  

b) зависимость коэффициента гидравлического сопротивления от числа Рейнольдса 

Fig. 12. Comparison of dependencies obtained as a result of numerical modeling and physical experiment  
for the reverse direction of the diode: a) dependence of the pressure drop on the diode on the flow rate;  

b) dependence of the hydraulic resistance coefficient on the Reynolds number 
 

По результатам численного моделирования и физического эксперимента рассчитана зависи-

мость диодности исследуемого гидродиода от числа Рейнольдса, которая показана на рис. 13. 

При этом число Рейнольдса рассчитывалось по параметрам в поперечном сечении тангенциаль-

ного сопла с наибольшим диаметром (входное сечение тангенциального сопла).  

Как видно из рис. 11а и 11b, только модель турбулентности RSM описывает течение в пря-

мом направлении диода с удовлетворительной точностью во всем диапазоне исследованных ве-

личин расхода и числа Рейнольдса. При этом модель ламинарного течения дает наименее точные 

результаты расчета и, как видно из рис. 5а, не позволяет получить качественного описания гид-

родинамической картины течения в прямом направлении диода при высоких значениях расхода 

жидкости. Модели турбулентности SST и k-ε применимы для моделирования потока жидкости в 

прямом направлении вихревого диода в области больших чисел Рейнольдса и позволяют полу-

чить точность результатов расчетов выше, чем при использовании RSM модели в этой области. 

Однако с уменьшением расходов и чисел Рейнольдса точность расчетов с применением моделей 

SST и k-ε снижается. 

Данные на рис. 12а и 12b показывают, что модель турбулентности RSM также описывает те-

чение в обратном направлении вихревого диода с удовлетворительной точностью во всем диапа-

зоне исследованных величин расхода и числа Рейнольдса. При этом ламинарная модель и в об-

ратном направлении диода не дает качественного описания течения, что также подтверждается 

гидродинамической картиной потока, показанной на рис. 6а. Модель турбулентности SST с удов-

летворительной точностью позволяет моделировать течение жидкости в обратном направлении 

диода при больших расходах и числах Рейнольдса, а с их уменьшением точность моделирования 

снижается. Модель k-ε является наименее перспективной для использования в численном моде-

лирования обратного потока в вихревом диоде ввиду сравнительно низкой точности результатов 

моделирования во всем исследуемом диапазоне чисел Рейнольдса. 

Анализ кривых на рис. 13 показывает, что применение модели турбулентности RSM при мо-

делировании потоков в прямом и обратном направлениях вихревого диода позволяет рассчитать 

диодность по сопротивлению с наибольшей точностью по сравнению с другими моделями. При 

больших числах Рейнольдса модель SST показывает сопоставимые результаты расчета с резуль-

татами, полученными по модели RSM при моделировании потоков в обоих направлениях. 

b) а) 
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Рис. 13. Графики зависимости диодности от числа Рейнольдса 

Fig. 13. The dependence of diodicity on the Reynolds number 

 

Таким образом, использование модели турбулентности RSM позволяет моделировать тече-

ние жидкости в проточной части вихревого диода с высокой, по сравнению с другими рассмот-

ренными моделями, точностью. Однако ввиду ее относительно высокой ресурсоемкости для 

предварительных расчетов видится оптимальным применение модели SST. 
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