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Abstract. Humic acids (HAs) are vital organic compounds derived from the decomposition
of plant and animal matter, playing a crucial role in soil fertility, plant growth, and environmen-
tal remediation. This paper provides a detailed review of humic acid production technologies in
China, focusing on both natural extraction and artificial synthesis methods. Natural extraction
primarily involves the use of low-rank coals such as lignite and weathered coal, while artificial
synthesis includes biological composting, chemical oxidation, and hydrothermal humification.
Each method is analyzed in terms of raw material selection, reaction mechanisms, process pa-
rameters, and environmental impact. The review highlights the advantages and disadvantages of
each production method, including efficiency, cost, and environmental considerations. Emerging
trends such as the development of low-cost catalysts, bio-hydrothermal coupling, and the inte-
gration of different production techniques are also discussed. The paper concludes with recom-
mendations for optimizing humic acid production to enhance sustainability, reduce costs, and
improve product quality. This review aims to provide valuable insights for researchers and in-
dustry professionals involved in humic acid production and application.
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Annomayusn. U'ymunoBbie kucioTsl (I'K) — 3TO jXKM3HEHHO Ba)KHBIC OPraHMYCCKHE COCIAMHE-
HUSI, TOJTy4aeMbIe B Pe3yJIbTaTe Pa3I0KCHUS PACTUTEIBHOTO U )KUBOTHOTO MaTepHalia, HIPAIOIIHe
PELIAOIIYI0 POJIb B IUIOJOPOANH MOYBbI, POCTE PACTEHHI M BOCCTAHOBJICHHH OKpYKArOILIeH cpe-
Ibl. B craThe mpezctaBiieH moApoOHbIi 0030p TEXHOJIOTUil TPOU3BOICTBA T'YMHHOBOW KHCIIOTHI B
Kutae ¢ ymopom Ha METObI KaK €CTECTBEHHOM 3KCTPAKIMH, TAK U UCKYCCTBEHHOTo cuHTe3a. Ec-
TECTBEHHOE M3BJICYCHUE B MIEPBYIO OUYEPEb MPEANONAraeT UCIOIb30BaHUE HU3KOCOPTHBIX YIIICH,
TaKUX KaK JIMTHUT M BBIBETPEHHBIN yrojb, B TO BPEeMsl KaK MCKYCCTBEHHBIH CHHTE3 BKIHOYACT
OMOJIOTHYECKOEC KOMIIOCTHPOBAHUE, XUMHUCCKOE OKHCIICHHE U TUAPOTEPMATIbHYIO TYMHU(DUKAIIUIO.
Kaxaplit MeTo]] aHaM3UPYeTCsl C TOUKU 3pEHHUsT BEIOOPA ChIPbsI, MEXaHU3MOB PEaKIUH, TTapaMeT-
POB Mpoliecca U BO3ACHCTBHS Ha OKPYKaIoOIyto cpeay. B 0030pe noauepkuBaroTcsi IperMymiecT-
Ba U HEJOCTATKH Ka)XIOTO METO/Ia IIPOM3BOICTBA, BKIIIOYast 3()(HEKTUBHOCTh, CTOMMOCTh U KOJIO-
THYECKUe cooOpaxkeHus. Takke 00CyKIar0TCs HOBbIC TCHICHIINH, TaKUEe KaK pa3paboTka HeIopo-
THUX KaTaJin3aTopoOB, 6I/IOFI/I}1pOTepMa.HLHOG COMPAXKCHNUE U UHTErpalrsd pas3jIMndHbIX METOOOB IPO-
M3BOJICTBA. B 3aKiioueHue NpUBOIATCS PEKOMEHAIUK [0 ONTUMH3AIUK TIPOU3BOJICTBA T'YMHHO-
BOW KHCJIOTBI JIJIsl IOBBIICHHS YCTOWYUBOCTH, CHIKEHUSI 3aTPAT M YIIyUIICHUS KauecTBa MPOIyK-
. Lenbio 3Toro 0030pa sBISETCS MPEAOCTABICHHE IEHHBIX CBEJCHUI UCCIIEI0BATENSAM U CIie-

HUaJIrMcTaM OTpaciu, 3aHUMArOIMUMCs IPOU3BOACTBOM U IPUMCHCHHUEM FyMHHOBOﬁ KHCJIOTBI.
Knroueswvie cnosa: TYMHUHOBAsI KHUCJIOTA (FK), IPpOU3BOACTBO FyMPIHOBOﬁ KHUCJIOTBI, €CTECT-
BCHHAA SKCTPAKI U, I/ICKYCCTBCHHLIﬁ CHHTC3, BOSHGﬁCTBHe Ha OKPYXAroUIyro Cpeay
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nuk HOYpI'Y. Cepus «llumesbie u Ouorexnomorum». 2025. T.13, Nel.C.5-10. DOI:
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Introduction

Humic acids (HAs) are complex organic mol-
ecules resulting from the decomposition of plant
and animal matter. They are integral components
of soil humus and play a pivotal role in enhancing
soil fertility and structure. In agriculture, HAs im-
prove nutrient uptake, stimulate plant growth, and
increase crop yields by enhancing soil properties
such as texture, water retention, and cation ex-
change capacity, thereby creating a conducive en-
vironment for plant development [1].

Beyond agriculture, humic acids are signifi-
cant in environmental science. They contribute to
carbon sequestration, thus playing a role in miti-
gating climate change. Additionally, HAs influ-
ence the mobility and bioavailability of heavy

metals and organic pollutants in soils and water
bodies, affecting their transport and potential tox-
icity. This makes HAs crucial in soil and water
remediation efforts, where they aid in immobiliz-
ing contaminants and restoring ecological bal-
ance [2].

The production of humic acids can be cate-
gorized into two primary methods: extraction
from natural sources and artificial synthesis.

Natural Extraction: This involves isolating
HAs from naturally occurring materials rich in
organic content, such as peat, lignite (brown
coal), and compost. The extraction process typi-
cally employs alkaline solutions to solubilize the
humic substances, which are then precipitated
and purified [3].
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Artificial Synthesis: This method entails the
chemical or biological transformation of organic
materials into humic-like substances. Techniques
include the composting of organic waste, chemical
oxidation of biomass, and other innovative pro-
cesses designed to mimic natural humification.

Evaluating and comparing these production
methods is essential for several reasons:

Environmental Impact: Understanding the
ecological footprint of each method is crucial.
Natural extraction may lead to the depletion of
peatlands or other natural reserves, while artifi-
cial synthesis could involve energy-intensive
processes or the use of chemicals with potential
environmental risks.

Economic  Considerations:  The  cost-
effectiveness of each method varies. Factors such
as raw material availability, processing costs, and
scalability influence the economic viability of
producing humic acids.

Efficiency and Quality: The yield and quality
of humic acids can differ between methods. As-
sessing parameters like purity, functional group
composition, and consistency is vital to ensure
the end product meets desired standards for agri-
cultural or environmental applications.

A comprehensive review and comparison of
these production methods provide insights into
optimizing humic acid production. Such an anal-
ysis aids in selecting sustainable practices that
balance environmental responsibility with eco-
nomic feasibility, ultimately supporting the di-
verse applications of humic acids in enhancing
soil health and environmental remediation.

1. Production Processes of Humic Acid (HA)

The production of humic acid is mainly di-
vided into two categories: natural humic acid ex-
traction and artificial humic acid synthesis. This
paper elaborates on each method in detail from
the perspectives of raw material selection, reac-
tion mechanisms, and process parameters.

1.1. Natural Humic Acid Extraction
Process

1.1.1. Raw Material Selection and Pre-
treatment

Raw Material Type: Low-rank coals (such as
lignite and weathered coal) are the primary raw
materials due to their high humic acid content
(lignite contains 40-70 % total humic acid). For
example, lignite from Northeast China has a hu-
mic acid content of 67.25 %, while Xinjiang
weathered coal contains 46.70 % [4, 7].

Pretreatment: The raw material is crushed
and ground to below 40 mesh, followed by dry-

ing at 105-110 °C for 2—4 hours to remove mois-
ture [4, 7].

1.1.2. Acid Oxidation Treatment

Oxidant Selection: Nitric acid (HNOy) is the
most commonly used oxidant, typically at a con-
centration of 1.5-2.0 mol/L, with a coal-to-acid
mass ratio of 1:1.5-1:5.0 [7, 8].

Reaction Conditions: The temperature is
controlled at 60-90 °C, with a reaction time of
60-180 minutes. For example, when nitric acid
oxidizes Yunnan lignite at a coal-to-acid ratio of
1:1.5, the humic acid yield reaches 62.80 % [8].

Reaction Mechanism: Nitric acid oxidizes
non-humic acid substances in coal (such as lignin
and cellulose), forming nitro-humic acid (NHA)
and nitro-fulvic acid (NFA). The reaction equa-
tion is as follows:

R(COOH),; + HNO3; — R(NO,), + H,O + CO,.
1.1.3. Product Separation and Purification
Extraction: A 2 mol/L NaOH or Na,COj; so-

lution is used for extraction at 60 °C for 60
minutes, with a solid-to-liquid ratio of 1.5 (dry
coal powder: extractant).

Centrifugation and Drying: The extract is
centrifuged at 3500 r/min for 10 minutes, and the
supernatant is acidified to pH 1-2 to precipitate
humic acid, followed by drying at 85 °C.

Purity Analysis: The total humic acid content
is measured by sodium pyrophosphate titration,
while functional group structures are analyzed
using Fourier transform infrared spectroscopy
(FT-IR) [4, 8].

1.2. Artificial Humic Acid Synthesis Process

1.2.1. Biological Composting Method

Raw Materials: Organic solid waste (such as
straw, kitchen waste, and livestock manure), with
a carbon-to-nitrogen (C/N) ratio adjusted to 25—
30 to optimize microbial activity [9, 10].

Microbial Action: A composite microbial
agent (e.g., cellulose-degrading bacteria and
actinomycetes) is inoculated, maintaining the
compost temperature at 50-65 °C for 30-60 days.
For example, adding MnO, as a catalyst acceler-
ates humification, increasing humic acid yield by
15-20 %.

Humification Mechanism: Humic acid is
formed through sugar-amine condensation
(Maillard reaction) and lignin-protein aggrega-
tion, with aromatic functional groups accounting
for 40-60 % [11].

1.2.2. Chemical Oxidative Polymerization
Method

Oxidants and Catalysts: H,O, (5-10 %), O,,
and metal oxides (such as MnO, and Fe*"). For
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example, when H,O, oxidizes corn stalk waste
liquid, the electron transfer capacity of humic
acid increases twofold [12].

Reaction Conditions: Temperature ranges
from 25-70 °C, pH is controlled at 3—7, and the
reaction lasts 2-24 hours. In the catechol + gly-
cine system, MnO, catalysis increases the car-
boxyl content of humic acid to 3.325 mmol/g
[13].

Reaction Mechanism: Phenolic compounds
undergo oxidation to form semiquinone free radi-
cals, which then polymerize with amino acids to
generate macromolecular humic acid.

1.2.3. Hydrothermal Humification Method

Raw Materials and Conditions: Biomass
(such as glucose and sawdust) undergoes hydro-
thermal reaction at 200-240 °C and 2—4 MPa for
6-24 hours. For example, fructose reacts at
170 °C for 3 hours, yielding 64.6 % humic sub-
stances [14, 15].

Product Characteristics: The synthesized
humic acid contains carboxyl groups (1.2-3.4
mmol/g) and phenolic hydroxyl groups (0.8-2.1
mmol/g), with a molecular weight distribution
similar to natural humic acid.

Application Optimization: The addition of

KOH or HsPO, can regulate product aromaticity.
When used for heavy metal adsorption, the ad-
sorption capacity for Pb** reaches 300 mg/g [16].

1.3. Process Optimization and Challenges

Energy Efficiency and Cost: The nitric acid
oxidation method has high energy consumption
(reaction temperature > 80 °C), while the hydro-
thermal method requires significant equipment
investment. Future developments should focus on
low-temperature catalytic technologies (such as
electrochemical oxidation) to reduce costs [12].

Product Standardization: Different processes
result in variations in humic acid functional
group content (carboxyl content 1.5-4.0
mmol/g), necessitating the establishment of uni-
fied quality standards (e.g., ISO 19822).

Environmental  Friendliness: ~ Chemical
methods generate nitrogen-containing wastewater
(NOs~ concentration >500 mg/L), requiring
membrane separation or biodegradation technol-
ogies for wastewater recycling [17].

2. Discussion

2.1. Comparison of advantages and disad-
vantages

The advantages and disadvantages of differ-
ent methods are mentioned in Table.

Table

The different Comparison of advantages and disadvantages [5, 6]

Method

Pros

Cons

Natural Extrac-
tion

High Efficiency: Utilizes low-rank
coals rich in humic acids, achieving
yields up to 62.80 %.

Established Process: Widely adopted
with well-understood protocols

Environmental Concerns: Use of nitric
acid poses risks, including the genera-
tion of nitrogen-containing wastewater.
Safety Risks: Handling strong acids
requires stringent safety measures

Biological Com-
posting

Environmentally Friendly: Employs
organic waste, enhancing sustainabil-
ity.

Improves Soil Health: Enhances mi-
crobial activity and soil structure

Slow Process: Composting periods
range from 30 to 60 days.

Product Separation Challenges: Isolat-
ing pure humic acids from compost is
complex

Chemical Oxida-
tion

Controlled Reaction Conditions: Al-
lows for targeted synthesis of humic
substances.

Rich Functional Groups: Produces
humic acids with diverse functionali-
ties

High Oxidant Costs: Utilization of
agents like hydrogen peroxide increas-
es expenses.

— Environmental Concerns: Chemical
residues may pose disposal challenges

Hydrothermal Rapid Production: Processes biomass | Energy-Intensive: Requires high tem-
Humification quickly under controlled conditions. peratures (200-240 °C) and pressures
High Yields: Achieves significant (2-4 MPa).
conversion rates of biomass to humic | Significant Equipment Investment: Ne-
substances cessitates specialized reactors and in-
frastructure
8 Bulletin of the South Ural State University.
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2.2. Emerging Trends and Advancements

Development of Low-Cost Catalysts

Objective: Reduce production costs associat-
ed with chemical oxidants.

Approach: Research focuses on identifying
affordable and efficient catalysts to facilitate
oxidative polymerization and hydrothermal pro-
cesses.

Impact: Lowering catalyst costs can make
humic acid production more economically viable,
especially for large-scale operations.

Bio-Hydrothermal Coupling

Concept: Integrate biological and hydro-
thermal methods to leverage the benefits of both
processes.

Implementation: Utilize microbial pretreat-
ment to decompose biomass, followed by hydro-
thermal processing to synthesize humic sub-
stances.

Benefits: This hybrid approach can enhance
overall efficiency, reduce energy consumption,
and improve the sustainability of humic acid pro-
duction.

Integration of Methods

Strategy: Combine different
techniques to optimize outputs.

Examples: Employ chemical oxidation to ac-
celerate biological composting or use hydrother-
mal treatment to refine products from natural ex-
traction.

Advantages: Such integrations can lead to
higher yields, improved product quality, and
more sustainable processes by balancing efficien-
cy with environmental considerations.

In summary, while each humic acid produc-
tion method has its unique set of advantages and
limitations, ongoing research and technological
innovations are paving the way for more effi-
cient, cost-effective, and environmentally

production

friendly approaches. The future of humic acid
production lies in the strategic combination of
existing methods and the development of novel
catalysts and processes that address current chal-
lenges.

Conclusion

In conclusion, both natural extraction and
synthetic methods for humic acid production
offer distinct advantages and face specific chal-
lenges. Natural extraction methods, which of-
ten utilize low-rank coals like lignite, are effi-
cient due to the high humic acid content of the
raw materials. However, these methods are
heavily dependent on the quality of the raw
material and involve the use of chemicals such
as nitric acid, raising environmental and safety
concerns. On the other hand, synthetic meth-
ods, including biological composting, chemical
oxidation, and hydrothermal humification, pro-
vide controlled processes that can produce hu-
mic acids with diverse functional groups. Yet,
these methods may involve high costs, energy-
intensive operations, and complexities in prod-
uct separation.

Looking ahead, advancements in humic acid
production are focusing on optimizing existing
methods and exploring innovative approaches.
For instance, enhancing hydrothermal processes
by integrating acid pretreatment has been shown
to increase humic acid yields and reduce heavy
metal content, thereby improving the quality of
the final product. Additionally, the utilization of
biochar as a feedstock in hydrothermal treatments
not only aids in waste biomass management but
also contributes to the production of high-purity
humic acids. These strategies aim to address cur-
rent limitations by improving efficiency, reduc-
ing environmental impact, and promoting sus-
tainability in humic acid production.
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