Металловедение и термическая обработка

УДК 54.057 + 544.032

DOI: 10.14529/met200205

ИЗУЧЕНИЕ ВЛИЯНИЯ ЗАМЕЩЕНИЯ КОБАЛЬТОМ НА СТРУКТУРУ НИКЕЛЬ-ЦИНКОВОГО ФЕРРИТА

Д.П. Шерстюк¹, А.Ю. Стариков¹, В.Е. Живулин^{1,2}, Д.А. Жеребцов¹, Г.Г. Михайлов¹, Д.А. Винник¹

¹Южно-Уральский государственный университет, г. Челябинск, Россия, ²Южно-Уральский государственный гуманитарно-педагогический университет, г. Челябинск, Россия

> В работе представлены результаты получения и исследования структуры и свойств никель-цинковых ферритов, легированных кобальтом, с общей формулой Ni_{0,3}Zn_{0,7-x}Co_xFe₂O₄ (при замещении х равном 0; 0,2; 0,4; 0,6). Образцы были получены методом твердофазного синтеза в трубчатой печи с карбидкремниевыми нагревателями при температуре 1150 °C.

> Проведено исследование морфологии и химического состава на сканирующем электронном микроскопе JEOL JSM 7001F с энергодисперсионным анализатором Oxford Instruments (Inca X-max 80). Исследование фазового состава проведено на порошковом дифрактометре Rigaku Ultima IV. Полученные данные позволяют утверждать, что все составы из подготовленной линейки образцов монофазны и имеют структуру шпинели. Также исследовано влияние кобальта на параметры кристаллической решетки образцов, которые имеют величину от 8,3743 Å до 8,4085 Å.

> На гелиевых пикнометрах AccuPyc 1340, Micromeritics проведено исследование плотности образцов. Используя данные о плотности образцов на пикнометре и рассчитанную рентгеновскую плотность, была вычислена пористость материала. Установлено, что по мере увеличения степени замещения кобальта х от 0 до 0,6 наблюдается увеличение кажущейся плотности образцов и уменьшение пористости.

Ключевые слова: Ni-Zn-Co ферриты, свойства, магнитные материалы, пористость.

В настоящее время электромагнитные волны являются жизненно необходимыми носителями информации. Они оказывают значительное влияние на повседневную жизнь человечества. Широкое применение электромагнитных волн неизбежно генерирует электромагнитное излучение, которое нарушает работу электронных устройств и коммуникационного оборудования, а также наносит вред здоровью человека. Таким образом, актуальной является задача создания материалов, которые могут быть использованы для повышения электромагнитной помехоустойчивости аппаратных систем от внешних полей, а также для защиты биологических объектов [1, 2]. В качестве такого магнитного материала выбран Ni–Zn феррит со структурой шпинели, с общей формулой $Ni_xZn_{1-x}Fe_2O_4$.

Никель-цинковые ферриты получили значительное внимание исследователей благодаря своим магнитным свойствам, низким значенииям коэрцитивной силы, незначительным потерям на вихревые токи, высокой механической твердости, большой магнитной проницаемости, высокой рабочей частоте и чрезвычайно высокому удельному электрическому сопротивлению [3]. Ni–Zn ферриты имеют множество потенциальных применений, такие как устройства повышенной плотности информации, устройства хранения, СВЧ-приборы, трансформаторы, магнитные жидкости и др. [4].

Известно, что физические свойства ферритов напрямую зависят от метода получения материала, а также входящих в состав легирующих элементов. От выбора подходящего процесса синтеза зависит результат получения ферритов с необходимыми свойствами. На сегодняшний день известны различные способы получения ферритов. К ним относятся методы: золь-гель, твердофазный синтез, гидротермальный, соосаждение, сонохимических реакций и т. д. [5–9]. В случаях, когда необходимо улучшить какие-либо свойства никельцинковых ферритов, вводят малые добавки некоторых оксидов, наиболее часто применяют оксид кобальта CoO. В работе представлены результаты замещения части ионов цинка ионами кобальта, при постоянном содержании цинка. Анализируя литературные данные, установили, что кобальт значительно влияет на свойства Ni–Zn ферритов. В данной работе представлены результаты замещения части ионов цинка ионами кобальта при заданном содержании цинка.

Экспериментальная часть

Для подготовки образцов исходные компоненты шихты: оксид никеля (NiO), оксид цинка (ZnO), оксид кобальта (CoO) и оксид железа (Fe₂O₃) были смешаны в стехиометрическом соотношении. Данные об исходном составе представлены в табл. 1. После стадии гомогенизации (тщательное перемешивание составов в шаровой мельнице) и компактирования на гидравлическом прессе, были получены образцы в виде таблеток, которые в дальнейшем спекали в трубчатой печи с карбидкремниевыми нагревателями в течение 5 часов при температуре 1150 °C. На основе литературных данных был выявлен интервал температуры спекания Ni-Zn-Co феррита [10-14], и посредством эмпирического подхода была выбрана температура спекания, для исследуемой серии образцов. В качестве базового состава был выбран Ni_{0,3}Zn_{0,7}Fe₂O₄, такое исходное соотношение Ni и Zn перспективно с точки зрения магнитных свойств.

Исследование микроструктуры и количественного анализа образцов выполнили на сканирующем электронном микроскопе JEOL JSM 7001F с энергодисперсионным анализатором (Oxford Instruments). Исследование морфологии показало, что все образцы имеют кубическую структуру. При изучении химического состава были получены данные, представленные в табл. 2.

Фазовый состав был исследован на порошковом дифрактометре Rigaku Ultima IV. Съемка была проведена в диапазоне углов 20 от 15° до 65° со скоростью съемки 2°/мин. В исследовании применяли излучение медной трубки СиКа ($\lambda = 1,541$ Å) при ускоряющем напряжении 40 кВ. Дифрактограммы исследуемых образцов представлены на рис. 1, на котором видно, что в состав каждого из образцов входит только одна фаза. Фазовому составу исследуемых образцов соответствует дифрактограмма CoFe₂O₄ [15].

Рентгенофазовый анализ позволяет определить величину параметров кристаллической решетки, которые представлены в табл. 3.

Соответствующие зависимости параметра и объема кристаллической решетки от степени замещения Со представлены на рис. 2.

В целом наблюдается тенденция, в которой по мере увеличения содержания кобальта параметры решетки уменьшаются. Это связано с различием ионного радиуса цинка и кобальта, $r(\text{Zn}^{2+}) = 0,74$ Å и $r(\text{Co}^{2+}) = 0,58$ Å [16].

Таблица 1

N⁰	Брутто формула	Macc. %			
		NiO	ZnO	CoO	Fe_2O_3
1	Ni _{0,3} Zn _{0,7} Fe ₂ O ₄	0,0937	0,2383	0	0,6680
2	Ni _{0,3} Zn _{0,5} Co _{0,2} Fe ₂ O ₄	0,0942	0,1711	0,0630	0,6716
3	Ni _{0,3} Zn _{0,3} Co _{0,4} Fe ₂ O ₄	0,0948	0,1032	0,1267	0,6753
4	$Ni_{0.3}Zn_{0.1}Co_{0.6}Fe_{2}O_{4}$	0,0953	0,0346	0,1912	0,6790

Исходный состав образцов

Таблица 2

Усредненный химический состав образцов Ni-Zn-Co феррита

Номер	Химический состав, ат. %					Bacowww.ag. homawa	
образца	0	Fe	Co	Ni	Zn	Рассчитанная формула	
1	47,36	36,56	0	4,79	11,29	$Ni_{0,30}Zn_{0,70}Fe_2O_4$	
2	45,01	38,40	3,98	4,77	7,84	Ni _{0,29} Zn _{0,58} Co _{0,24} Fe ₂ O ₄	
3	44,90	37,81	7,75	4,92	4,64	Ni _{0,28} Zn _{0,27} Co _{0,45} Fe ₂ O ₄	
4	43,99	37,89	11,67	4,89	1,56	Ni _{0,27} Zn _{0,09} Co _{0,64} Fe ₂ O ₄	

Таблица 3

Номер образца	Брутто формула	a, Å	V, Å ³
1	$Ni_{0,30}Zn_{0,70}Fe_2O_4$	8,4085(6)	594,51(7)
2	Ni _{0,29} Zn _{0,58} Co _{0,24} Fe ₂ O ₄	8,3994(9)	592,57(11)
3	Ni _{0,28} Zn _{0,27} Co _{0,45} Fe ₂ O ₄	8,3876(3)	590,07(4)
4	$Ni_{0.27}Zn_{0.09}Co_{0.64}Fe_2O_4$	8,3743(7)	587,27(9)

Параметры решетки образов Ni–Zn–Co феррита

Рис. 1. Дифрактограммы образцов: где 1 – Ni_{0,3}Zn_{0,7}Fe₂O₄, 2 – Ni_{0,29}Zn_{0,58}Co_{0,24}Fe₂O₄, 3 – Ni_{0,28}Zn_{0,27}Co_{0,45}Fe₂O₄, 4 – Ni0,27Zn0,09Co0,64Fe₂O₄

Рис. 2. Зависимость параметра а и объема V кристаллической кубической решетки от степени замещения кобальта х(Со)

Металловедение и термическая обработка

Ферриты, полученные методом твердофазного синтеза, по своей структуре можно отнести к дисперсным системам, состоящим как минимум из двух фаз: ферритовой фазы, образующей сплошную среду, и раздробленной газообразной или дисперсной фазы, представленной порами. На основе анализа ранее проведенных исследований выяснилось, что механические и электромагнитные свойства зависят от плотности (пористости) и параметров микроструктуры. В табл. 4 представлены результаты исследования плотности образцов. Кажущаяся плотность р была исследована на гелиевом пикнометре AccuPyc 1340, Micromeritics. Рентгеновская плотность была рассчитана по формуле:

 $ho_X = 8M/Na^3$, (1) где М — молекулярная масса, N — постоянная Авогадро, а — параметр решетки. Величина пористости представляет собой соотношение:

$$P = (1 - (\rho/\rho_X)) \cdot 100\%.$$
 (2)

Видно, что по мере увеличения степени замещения кобальтом плотность образцов увеличивается, а пористость соответственно уменьшается (рис. 3).

Заключение

Методом твердофазного синтеза были монофазные образцы получены никельцинкового феррита, частично замещенные кобальтом. Стадия ферритизации прошла при температуре спекания T = 1150 °C в трубчатой печи. Исследована морфология, химический и фазовый составы. Проведено исследование плотности (пористости) образцов. Плотность была определена на гелиевом пикнометре АссиРус 1340, вследствие была рассчитана пористость образцов. Удалось синтезировать материал с низким уровнем пористости (не более 2 %). Зависимость показала, что по мере увеличения содержания кобальта в образцах, пористость уменьшается.

Таблица 4

Плотность и пористость образцов

Образец Свойства	1	2	3	4
ρ, г/см ³	5,232	5,230	5,231	5,254
ρ _X , г/см ³	5,342	5,326	5,320	5,319
P, %	2,063	1,801	1,677	1,222

Рис. 3. Зависимость пористости от степени замещения кобальтом

Литература / References

1. Celozzi S., Araneo R., Lovat G. Electromagnetic Shielding, New Jersey, 2008, pp. 21–38.

2. Neues S.F., van den Berg M.W.E., Grunert W., Khodeir L. *Journal of the American Chemical Society*, 2005, v. 127, pp. 12028–12034.

3. Sharma S., Verma K., Chaubey U. et al. Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. *Mat. Sci. Eng. B-Adv.*,2010, v. 167, pp. 187–192.

4. Virden A.E., O'Grady K. Structure and Magnetic Properties of Ni-Zn Ferrite Nanoparticles. *J. Magn. Magn. Mater*, 2005, 290, pp. 868– 870. OI: 10.1016/j.jmmm.2004.11.398

5. Sugimoto T., Shimotsuma Y., Itoh H. Synthesis of uniform cobalt ferrite particles from a highly condensed suspension of b-FeOOH and b-Co(OH)₂ particles *Powder Technol*, 1998, v. 96, pp. 85–89.

6. Pannaparayil T., Marande R., Komarneni S. Magnetic properties of high-density Mn-Zn ferrites. *J. Appl. Phys*, 1991, 69, p. 5349. DOI: 10.1063/1.351405

7. Perez J.A.L., Quintela M.A.L., J. Mira et al. Advances in the preparation of magnetic nanoparticles by the microemulsion method. *Phys. Chem. B*, 1997, 101, p. 8045. DOI: 10.1021/jp972046t

8. Shafi K.V.P.M., Gedanken A., Prozorov R. et al. Sonochemical preparation and size-dependent properties of nanostructured CoFe₂O₄ particles. *Chem. Mater*, 1998, v. 10, p. 3445. DOI: 10.1021/cm980182k 9. Fatemi, D.J., Harris V.G., Browning V.M. et al. Processing and cation redistribution of MnZn ferrites via high-energy ball milling. *J. Appl. Phys*, 1998, v. 83, p. 6867. DOI: 10.1063/1.367766.

10. Ghodakea J.S., Kambaleb R.C., Salvic S.V. et al. Electric properties of Co substituted Ni–Zn ferrites. *J. Alloy Compd*, 2009, v. 486, pp. 830–834. DOI: 10.1016/j.jallcom.2009.07.075

11. Ghodakea J.S., Shinde T.J., Patil R.P. et al. Initial permeability of Zn–Ni–Co ferrite. *J. Magn. Magn. Mater*, 2015, v. 378, pp. 436–439. OI: 10.1016/j.jmmm.2014.11.041

12. Ramesh S., Dhanalakshmi B., Chandra Sekha B. et al. Effect of Mn. Co substitutions on the resistivity and dielectric properties of nickel–zinc ferrites. *Ceram. Int*, 2016, v. 42, pp. 9591– 9598. DOI: 10.1016/j.ceramint.2016.03.043

13. Ghodake J.S., Kambale C., Shinde T.J. et al. Magnetic and microwave absorbing properties of Co²⁺ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. *J. Magn. Magn. Mater*, 2016, v. 401, pp. 938– 942. OI: 10.1016/j.jmmm.2015.11.009

14. Knyazev A.V., Zakharchuk I., Lähderanta E. et al. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites. *J. Magn. Magn. Mater*, 2017, v. 435, pp. 9–14. DOI: 10.1016/j.jmmm.2017.03.074

15. Shin H.S., Lee J.H., Kwon S.-J. *Yoop Hakhoechi*, 1994, v. 31, p. 62.

16. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Scta Cryst*, 1976, pp. 751–767.

Шерстюк Дарья Петровна, инженер-исследователь, студент кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, г. Челябинск; darya-sherstyuk77@gmail.ru.

Стариков Андрей Юрьевич, инженер-исследователь, аспирант кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, г. Челябинск; starikov-andrey@mail.ru.

Живулин Владимир Евгеньевич, канд. физ.-мат. наук, старший научный сотрудник лаборатории роста кристаллов НОЦ «Нанотехнологии», Южно-Уральский государственный университет, г. Челябинск; старший преподаватель кафедры физики и методики обучения физике, Южно-Уральский государственный гуманитарно-педагогический университет, г. Челябинск; zhivulinve@mail.ru.

Жеребцов Дмитрий Анатольевич, канд. хим. наук, старший научный сотрудник, инженер НОЦ «Нанотехнологии», Южно-Уральский государственный университет, г. Челябинск; zhereb-tsov_da@yahoo.com.

Михайлов Геннадий Георгиевич, д-р техн. наук, профессор, заведующий кафедрой материаловедения и физико-химии материалов, Южно-Уральский государственный университет, г. Челябинск; mikhailovgg@susu.ru.

Металловедение и термическая обработка

Винник Денис Александрович, д-р хим. наук, доцент, заведующий лабораторией роста кристаллов НОЦ «Нанотехнологии», Южно-Уральский государственный университет, г. Челябинск; vinnikda@susu.ru.

Поступила в редакцию 20 ноября 2019 г.

DOI: 10.14529/met200205

STUDY OF THE INFLUENCE OF COBALT SUBSTITUTION ON THE NICKEL-ZINC FERRITE

D.P. Sherstyuk¹, daryasherstyuk77@gmail.com, A.Yu. Starikov¹, starikov-andrey@mail.ru, V.E. Zhivulin^{1,2}, zhivulinve@mail.ru, D.A. Zherebtsov¹, zherebtsov_da@yahoo.com, G.G. Mikhailov¹, mikhailovgg@susu.ru, D.A. Vinnik¹, vinnikda@susu.ru,

¹South Ural State University, Chelyabinsk, Russian Federation

²South Ural State Humanitarian Pedagogical University, Chelyabinsk, Russian Federation

Ferrous The paper presents the results of obtaining and studying the structure and properties of cobalt doped nickel-zinc ferrites with the general formula $Ni_{0.3}Zn_{0.7-x}Co_xFe_2O_4$ (when x is 0, 0.2; 0.4; 0.6). Samples were obtained by solid-phase method in a tubular furnace with silicon carbide heaters at a temperature of 1150 °C.

The morphology and chemical composition were studied on a JEOL JSM 7001F scanning electron microscope with an Oxford Instruments energy dispersive analyzer (Inca X – max 80). The phase composition was studied using a Rigaku Ultima IV powder diffractometer. The data obtained suggest that all compositions from the prepared line of samples are monophasic and have a spinel structure. The effect of cobalt on the crystal lattice parameters of samples, which have a value from 8.3743 Å to 8.4085 Å, was also studied.

A helium pycnometer – AccuPyc 1340 Micromeritics was used to study sample density. Comparing the obtained data on the density of the samples on the pycnometer and the calculated X-ray density, the porosity of the material was calculated. It was found that as the degree of substitution of cobalt x increases from 0 to 0.6, an increase in the apparent density of the samples and a decrease in porosity are observed.

Keywords: Ni–Zn–Co ferrites, properties, magnetic materials, porosity.

Received 20 November 2019

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Изучение влияния замещения кобальтом на структуру никель-цинкового феррита / Д.П. Шерстюк, А.Ю. Стариков, В.Е. Живулин и др. // Вестник ЮУр-ГУ. Серия «Металлургия». – 2020. – Т. 20, № 2. – С. 51–56. DOI: 10.14529/met200205

FOR CITATION

Sherstyuk D.P., Syarikov A.Y., Zhivulin V.E., Zherebtsov D.A., Mikhailov G.G., Vinnik D.A. Study of the Influence of Cobalt Substitution on the Nickel-Zinc Ferrite. *Bulletin of the South Ural State University. Ser. Metallurgy*, 2020, vol. 20, no. 2, pp. 51–56. (in Russ.) DOI: 10.14529/met200205