Металлургия техногенных и вторичных ресурсов Metallurgy of recycled and secondary resources

Научная статья УДК 661.849:661.691.9:66.048.1-982 DOI: 10.14529/met220106

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Hg-Se ПРИ ВАКУУМНОЙ ДИСТИЛЛЯЦИИ

А.А. Королев¹, A.Korolev@elem.ru, https://orcid.org/0000-0002-0338-9774 **В.А. Шунин**¹, V.Shunin@elem.ru, https://orcid.org/0000-0001-5265-1006 **К.Л. Тимофеев**^{1, 2}, K.Timofeev@elem.ru, https://orcid.org/0000-0002-9525-6476 **Г.И. Мальцев**¹, mgi@elem.ru, https://orcid.org/0000-0002-0750-0070 **Р.С. Воинков**¹, R.Voinkov@elem.ru, https://orcid.org/0000-0001-6697-1596 ¹ Уралэлектромедь, Верхняя Пышма, Россия

² Технический университет УГМК, Верхняя Пышма, Россия

Аннотация. Одним из возможных способов рекуперации компонентов из Hg-Se сплава, образующегося при переработке медеэлектролитного шлама, является вакуумная перегонка. Объект исследования: Hg-Se сплавы состава, моль %: 0,01-99,99 Hg; 99,99-0,01 Se, образование которых возможно в процессе переработки медеэлектролитного шлама при получении товарного концентрата селена. Цель работы: расчет равновесных состояний «газ – жидкость» VLE (vapor liquid equilibrium), включая зависимости состава фаз от температуры (T - x) и давления (P - x) для Hg–Se сплава при вакуумной перегонке. Используемые методы и подходы. Расчет коэффициентов активности компонентов Hg-Se сплава выполнен с помощью упрощенной версии объемной модели молекулярного взаимодействия simple molecular interaction volume model (SMIVM). Для предварительного выбора температуры и давления системы, оценки эффективности разделения компонентов при вакуумной перегонке используют фазовые диаграммы температуры (T - x) и давления (P - x). Новизна: расчет коэффициентов активности с использованием упрощенной версии модели SMIVM. Основные результаты. В интервале температур 823-1073 К рассчитаны давления насыщенного пара для Нg $(p_{\text{Hg}}^* = 1,418 \cdot 10^6 - 1,046 \cdot 10^7 \text{ Па})$ и Se $(p_{\text{Se}}^* = 1,42 \cdot 10^4 - 3,66 \cdot 10^5 \text{ Па})$. Высокие значения соотношения $p_{\text{Hg}}/p_{\text{Se}}^* = 100,2-28,6$ и коэффициента разделения $\lg\beta_{\text{Hg}} = 2,73-1,01$ создают теоретические предпосылки для селективного выделения этих металлов вакуумной дистилляцией, когда ртуть обогащается в газовой фазе ($\beta_{Hg} > 1$), а селен – в жидкой. Мольная доля селена в газовой фазе $y_{\text{Se}} = 0,553 - 1,43 \cdot 10^{-12}$ уменьшается со снижением температуры 1073-823 К и мольной доли элемента в сплаве x_{Se} = 0,99–0,01. Для границы раздела фаз «жидкость – газ» Hg–Se сплава определены значения изменения избыточных энергии Гиббса, энтальпии и энтропии – $\Delta G_m^E = 0,8-3,0$ кДж/моль; $-\Delta H_m^E = 1,86-5,39$ кДж/моль; $-\Delta S_m^E = 0,99-2,94$ Дж/моль К. Практическая значимость: сокращение количества трудоемких и дорогостоящих установочных опытов при переработке Hg-Se композиций для оптимизации значений температуры и давления процесса вакуумной дистилляции с целью получении Se-содержащих продуктов заданного состава.

Ключевые слова: равновесная фазовая диаграмма, вакуумная дистилляция, молекулярная объемная модель взаимодействия, ртуть, селен, газовая фаза, жидкая фаза, коэффициент активности

Для цитирования: Фазовые равновесия в системе Hg–Se при вакуумной дистилляции / А.А. Королев, В.А. Шунин, К.Л. Тимофеев и др. // Вестник ЮУрГУ. Серия «Металлургия». 2022. Т. 22, № 1. С. 53–66. DOI: 10.14529/met220106

[©] Королев А.А., Шунин В.А., Тимофеев К.Л., Мальцев Г.И., Воинков Р.С., 2022

Original article DOI: 10.14529/met220106

PHASE EQUILIBRIA IN THE Hg–Se SYSTEM DURING VACUUM DISTILLATION

A.A. Korolev¹, A.Korolev@elem.ru, https://orcid.org/0000-0002-0338-9774 **V.A. Shunin**¹, V.Shunin@elem.ru, https://orcid.org/0000-0001-5265-1006 **K.L. Timofeev**^{1, 2}, K.Timofeev@elem.ru, https://orcid.org/0000-0002-9525-6476 **G.I. Maltsev**¹, mgi@elem.ru, https://orcid.org/0000-0002-0750-0070 **R.S. Voinkov**¹, R.Voinkov@elem.ru, https://orcid.org/0000-0001-6697-1596

¹ Uralelektromed, Verkhnyaya Pyshma, Russia

² Technical University of UMMC, Verkhnyaya Pyshma, Russia

Abstract. One of the possible ways to recover components from the Hg-Se alloy formed during the processing of copper-electrolyte sludge is vacuum distillation. Object of research: Hg-Se alloys of composition, mol %: 0.01-99.99 Hg; 99.99-0.01 Se, the formation of which is possible during the processing of copper-electrolyte sludge in the production of commercial selenium concentrate. The purpose of the work: calculation of the "gas - liquid" VLE (vapor liquid equilibrium) equilibrium states, including the dependence of the phase composition on temperature (T - x) and pressure (P - x) for the Hg–Se alloy during vacuum distillation. Methods and approaches used. The activity coefficients of the Hg-Se alloy components were calculated using a simplified version of the simple molecular interaction volume model (SMIVM). Phase diagrams of temperature (T - x) and pressure (P - x) are used to pre-select the system temperature and pressure, and to evaluate the efficiency of component separation during vacuum distillation. Novelty: calculation of activity coefficients using a simplified version of the SMIVM model. Main results. In the temperature range of 823–1073 K, saturated vapor pressures were calculated for Hg $(p_{\text{Hg}}^* = 1.418 \cdot 10^6 - 1.046 \cdot 10^7 \text{ Pa})$ and Se $(p_{\text{Se}}^* = 1.42 \cdot 10^4 - 3.66 \cdot 10^5 \text{ Pa})$. High values of the ratio $p_{\text{Hg}}/p_{\text{Se}}^* = 100.2 - 28.6$ and the separation coefficient $\lg\beta_{\text{Hg}} = 2.73 - 1.01$ create theoretical prerequisites for the selective separation of these metals by vacuum distillation, when mercury is enriched in the gas phase ($\beta_{Hg} > 1$), and selenium – in the liquid phase. The molar fraction of selenium in the gas phase $x_{Se} = 0.553 - 1.43 \cdot 10^{-12}$ decreases with a decrease in the temperature of 1073–823 K and the molar fraction of the element in the alloy $x_{\text{Se}} = 0.99-0.01$. For the "liquid – gas" interface of the Hg–Se alloy, the values of changes in the excess Gibbs energy, enthalpy, and entropy are determined $-\Delta G_m^E = 0.8-3.0$ kJ/mol; $-\Delta H_m^E = 1.86-5.39$ KJ/mol; $-\Delta S_m^E = 0.99-2.94$ J/mol K. Practical significance: reducing the number of time-consuming and expensive installation experiments during the processing of Hg-Se compositions to optimize the temperature and pressure values of the vacuum treatment process distillation in order to obtain Se-containing products of a given composition.

Keywords: equilibrium phase diagram, vacuum distillation, molecular volume interaction model, mercury, selenium, gas phase, liquid phase, activity coefficient

For citation: Korolev A.A., Shunin V.A., Timofeev K.L., Maltsev G.I., Voinkov R.S. Phase equilibria in the Hg–Se system during vacuum distillation. *Bulletin of the South Ural State University. Ser. Metallurgy*. 2022;22(1):53–66. (In Russ.) DOI: 10.14529/met220106

Введение

Для разделения компонентов металлических сплавов используют вакуумную перегонку – экологически безопасную и высокопроизводительную пирометаллургическую технологию, основанную на различии в давлении насыщенных паров чистых металлов (P^*) при одинаковой температуре, характеризующихся коэффициентами разделения (β) при распределении металлов между газовой и жидкой фазами [1–4]. Состав продуктов возгонки и степень разделения компонентов сплава при заданных значениях температуры и давления осуществляют при помощи рассчитанных равновесных фазовых диаграмм *VLE (vapor liquid equilibrium)*, в частности, температура – состав «T - x» и давление – состав «P - x» [5–8]. Для определения β необходимо рассчитать коэффициенты активности компонентов (γ_i , γ_i), зависящие от температуры и состава сплава, с использованием объемной модели молекулярного взаимодействия MIVM (molecular interaction volume model). При расчете используют значения координационных чисел (Z), молярных объемов (V_m) и потенциальных энергий парного взаимодействия (B) компонентов сплава. Диаграммы VLE помогают выявить вероятностные диапазоны температуры и давления процесса дистилляции, соответствующие заданной степени разделения компонентов исходного сплава и составу образующихся конденсата и огарка. Поскольку процесс расчета MIVM является относительно сложным, особенно расчет первых координационных чисел Z_i и молекулярного объема V_{mi} компонентов сплавов, использовали метод прогнозирования, включающий меньшее число параметров системы, так называемый упрощенный MIVM или SMIVM (simple molecular interaction volume model). Поэтому активность компонентов Hg–Se сплавов и фазовые диаграммы VLE были рассчитаны с использованием модели SMIVM. Оптимальные параметры процесса разделения компонентов сплавов можно оперативно получить из VLE фазовых диаграмм [9–12].

Теоретический анализ

Летучесть (фугитивность) каждого компонента в газовой и жидкой фазах равны, когда система достигает равновесия. Соотношение общего равновесия для *VLE* может быть выражено следующим образом:

$$\Phi_i^{\wedge}(y_i p) = \Phi_i^{sat}(x_i \gamma_i) \exp\left[\frac{V_i^L(P - p_i^{sat})}{RT}\right],\tag{1}$$

где Φ_i^{\wedge} и Φ_i^{sat} – коэффициенты летучести (фугитивности) *i*-компонента в газовой фазе и при давлении насыщенного пара; x_i и y_i – молярные доли жидкой и газовой фазы *i*-компонента; P и T – общее давление и температура в равновесной системе; γ_i – коэффициент активности в жидкой фазе; p_i^{sat} – давление насыщенного пара чистого *i*-компонента при температуре T; V_i^L – молярный объем жидкости; R – универсальная газовая постоянная.

При низком давлении ($P \le 133$ Па), используемом в данном исследовании, коэффициент Пойнтинга $\exp\left[\frac{V_{l}^{L}(P-p_{l}^{sat})}{RT}\right] \approx 1$. В добавлении, газовая фаза может рассматриваться как идеальный газ и зависимостью фугитивности жидкой фазы от давления можно пренебречь. Уравнение (1) может быть выражено следующим образом:

$$y_i p = x_i \gamma_i p_i^{sat} \ (i = 1, 2, ..., N).$$
 (2)

Если жидкая смесь идеальна, то по закону Рауля
$$\gamma_i = 1$$
. Для бинарного сплава:

$$x_{i} + x_{j} = 1, \quad y_{i} + y_{j} = 1, \quad (3)$$

$$p = p_{i}^{sat} \gamma_{i} x_{i} + p_{j}^{sat} \gamma_{j} x_{j} = p_{i}^{sat} \gamma_{i} x_{i} + p_{j}^{sat} \gamma_{j} (1 - x_{i}). \quad (4)$$

Из уравнений (2) и (4) можно выразить x_i и y_i как:

$$x_i = \frac{P - p_j^{sat} \gamma_j}{p_i^{sat} \gamma_i - p_j^{sat} \gamma_j}, \quad y_i = \frac{p_i^{sat} \gamma_i x_i}{P}.$$
(5)

Модель *MIVM* считается одной из наиболее удобных и надежных. Однако до сих пор её практическое применение было затруднено из-за сложного процесса расчета координационных чисел (*Z*) и отсутствия молярных объемов в жидком состоянии (V_i^L) некоторых компонентов (например, C, Ta, V₂O₅, Cu₂S, CaSiO₃). Упрощение *MIVM* достигнуто путем придания обоим *Z_i* и *Z_j* значений, равных 10, и заменой молярного объема *i*-компонента в жидком состоянии на его молярный объем в твердом состоянии (V_i) [13–16].

При расчете *VLE* коэффициент активности компонента в жидкой фазе является существенным параметром. Согласно *MIVM*, молярный избыток энергии Гиббса G_m^E жидкой смеси *i*–*j* можно представить как:

$$\frac{G_m^E}{RT} = x_i \ln\left(\frac{V_{mi}}{x_i V_{mi} + x_j V_{mj} B_{ji}}\right) + x_j \ln\left(\frac{V_{mj}}{x_j V_{mj} + x_i V_{mi} B_{ij}}\right) - \frac{x_i x_j}{2} \left(\frac{Z_i B_{ji} \ln B_{ji}}{x_i + x_j B_{ji}} + \frac{Z_j B_{ij} \ln B_{ij}}{x_j + x_i B_{ij}}\right),\tag{6}$$

где x_i и x_j – молярные доли *i*- и *j*-компонентов; Z_i и Z_j – первые координационные числа; V_{mi} и V_{mj} – молярные объемы *i*- и *j*-компонентов в жидкой фазе; B_{ij} и B_{ji} – параметры потенциальной энергии парного взаимодействия (уравнение (7)); R – универсальная газовая постоянная.

Значения *B_{ij}* и *B_{ji}* из уравнения (6) определяются выражениями:

$$B_{ij} = \exp\left[-\left(\frac{\varepsilon_{ij} - \varepsilon_{jj}}{kT}\right)\right], \quad B_{ji} = \exp\left[-\left(\frac{\varepsilon_{ji} - \varepsilon_{ii}}{kT}\right)\right], \tag{7}$$

Вестник ЮУрГУ. Серия «Металлургия». 2022. Т. 22, № 1. С. 53–66 где k – константа Больцмана; ε_{ij} , ε_{ii} и ε_{jj} – потенциальные энергии парного взаимодействия i-j, i-i, j-j систем, где $\varepsilon_{ij} = \varepsilon_{ji}$ [17–20].

Координационное число определяли следующим образом:

$$Z_i = \frac{4\sqrt{2\pi}}{3} \left(\frac{r_{mi}^3 - r_{oi}^3}{r_{mi} - r_{oi}} \right) \rho_i r_{mi} \exp\left(\frac{\Delta H_{mi}(T_{mi} - T)}{Z_c R T T_{mi}} \right),\tag{8}$$

где $\rho_i = N_i / V_i = 0,6022$ – молекулярная плотность; V_i – мольный объем и N_i – число молекул; ΔH_{mi} – энтальпия плавления; T_{mi} – температура плавления; $Z_c = 12$ – координационное число плотной упаковки; T – температура жидкого металла, К; R – газовая постоянная; $r_{oi} = 0,918 d_{covi}$ – доля атомного ковалентного диаметра (d_{covi}); $r_{mi} = \sigma_i$, где σ_i – атомный диаметр.

Для бинарной смеси *i*–*j* с помощью термодинамического соотношения ($\partial G_m^E / \partial x_i$) *T*, *p*, $x_{j\neq i}$, коэффициенты активности *i*- и *j*-компонентов могут быть получены из уравнения (6) соответственно как:

$$\ln\gamma_{i} = \ln\left(\frac{V_{m,i}}{x_{i}V_{m,i}+x_{j}V_{m,j}B_{ji}}\right) + x_{j}\left(\frac{V_{m,j}B_{ji}}{x_{i}V_{m,i}+x_{j}V_{m,j}B_{ji}} - \frac{V_{m,i}B_{ij}}{x_{j}V_{m,j}+x_{i}V_{m,i}B_{ij}}\right) - \frac{x_{j}^{2}\left[\frac{Z_{i}B_{ji}^{2}\ln B_{ji}}{(x_{i}+x_{j}B_{ji})^{2}} + \frac{Z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j}+x_{i}B_{ij})^{2}}\right], \quad (9)$$

$$\ln\gamma_{i} = \ln\left(\frac{V_{m,j}}{(x_{j}+x_{j})}\right) + x_{i}\left(\frac{V_{m,i}B_{ij}}{(x_{j}+x_{j})} - \frac{V_{m,j}B_{ji}}{(x_{j}+x_{j})}\right) - \frac{x_{i}^{2}\left[\frac{Z_{j}B_{ij}^{2}\ln B_{ji}}{(x_{j}+x_{j})} + \frac{Z_{i}B_{ij}^{2}\ln B_{ji}}{(x_{j}+x_{j})}\right], \quad (10)$$

 $m_{j} = m \left(\frac{1}{x_{j} V_{m,j} + x_{i} V_{m,i} B_{ij}} \right) + x_{i} \left(\frac{1}{x_{j} V_{m,j} + x_{i} V_{m,i} B_{ij}} - \frac{1}{x_{i} V_{m,i} + x_{j} V_{m,j} B_{ji}} \right) = \frac{1}{2} \left[\frac{1}{(x_{j} + x_{i} B_{ij})^{2}} + \frac{1}{(x_{i} + x_{j} B_{ji})^{2}} \right].$ (10) Необходимые двоичные параметры B_{ij} и B_{ji} могут быть рассчитаны из уравнений (10) и (11) с помощью метода Ньютона – Рафсона, если коэффициенты активности бесконечного разбавле-

ния, а именно: γ_i^{∞} и γ_j^{∞} , бинарных жидких сплавов и соответствующие параметры их компонентов $(V_{mi} \ u \ Z_i)$, доступны.

Значения B_{ij} и B_{ji} при любой температуре могут быть рассчитаны из уравнения (11) предполагая, что $-\left(\frac{\varepsilon_{ij}-\varepsilon_{jj}}{k}\right)$ и $-\left(\frac{\varepsilon_{ji}-\varepsilon_{ii}}{k}\right)$ в уравнении (7) не зависимы от температуры: $B_{ij(2)} = B_{ij(1)}^{T(1)/T(2)}; B_{ji(2)} = B_{ji(1)}^{T(1)/T(2)}.$ (11)

Координационное число Z_i жидких металлов может быть рассчитано из уравнения (8), однако это несколько сложнее, поскольку ряд параметров, включая молекулярные объемы для некоторых компонентов, отсутствует в литературе. Следовательно, упрощение *MIVM* необходимо для расширения области его применения, поскольку метод прогнозирования, включающий только некоторые параметры, является необходимым.

Фактически в решеточной теории растворов Z имеет одно и то же постоянное значение между 6 и 12. Кроме того, $Z \approx 10$ для типичных жидкостей в обычных условиях. Установлено, что разница между координационными числами компонентов незначительно влияет на точность прогнозирования *MIVM*. Однако лучшие результаты получены, когда Z близко к 10. Таким образом, в целях упрощения *MIVM* значения Z_i и Z_j могут быть равны 10. Кроме того, молярный объем *i*-компонента в жидком состоянии V_{mi} может быть заменен его молярным объемом в твердом состоянии V_i , поскольку разность плотностей для вещества между жидким и твердым состояниями небольшая, то уравнение (7) можно упростить:

$$\frac{G_m^E}{RT} = x_i \ln\left(\frac{V_i}{x_i V_i + x_j V_j B_{ji}}\right) + x_j \ln\left(\frac{V_j}{x_j V_j + x_i V_i B_{ij}}\right) - 5x_i x_j \left(\frac{B_{ji} \ln B_{ji}}{x_i + x_j B_{ji}} + \frac{B_{ij} \ln B_{ij}}{x_j + x_i B_{ij}}\right).$$
(12)

Уравнения (9) и (10) также можно упростить до следующего вида:

$$\ln\gamma_{i} = 1 + \ln\left(\frac{V_{i}}{x_{i}V_{i} + x_{j}V_{j}B_{ji}}\right) - \left(\frac{x_{i}V_{i}}{x_{i}V_{i} + x_{j}V_{j}B_{ji}} + \frac{x_{j}V_{i}B_{ij}}{x_{j}V_{j} + x_{i}V_{i}B_{ij}}\right) - 5x_{j}^{2}\left(\frac{B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}} + \frac{B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}}\right), \quad (13)$$

$$\ln\gamma_{j} = 1 + \ln\left(\frac{V_{j}}{x_{j}V_{j} + x_{i}V_{i}B_{ij}}\right) - \left(\frac{x_{j}V_{j}}{x_{j}V_{j} + x_{i}V_{i}B_{ij}} + \frac{x_{i}V_{j}B_{ji}}{x_{i}V_{i} + x_{j}V_{j}B_{ji}}\right) - 5x_{i}^{2}\left(\frac{B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}} + \frac{B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}}\right).$$
 (14)

Уравнения (13), (14), относящиеся к *SMIVM*, не содержат координационного числа чистого компонента, что делает эту модель более удобной, по сравнению с *MIVM* [21–26].

Давление насыщенных паров чистых компонентов, необходимое для расчета *VLE*, может быть получено следующим образом:

$$\lg p^{sat} = AT^{-1} + B\lg T + CT + D,$$
(15)

где *p*^{sat} – давление насыщенных паров чистого компонента, Па; *T* – абсолютное значение температуры, К; коэффициенты *A*–*D* являются константами испарения.

Для проверки адекватности расчетных значений содержания компонентов сплавов в жидкой и газовой фазах сравнили их с экспериментальными данными. Для этого были вычислены показания среднего относительного отклонения (S_i , %) и среднего квадратичного отклонения (S_i^* , мольные доли):

$$S_{i} = \pm \frac{100}{n} \sum_{i=1}^{n} \left| \frac{x(y)_{i,exp} - x(y)_{i,cal}}{x(y)_{i,exp}} \right| \cdot 100 \%, \quad (16)$$

$$S_i^* = \pm \left[\frac{1}{n} \sum_{i=1}^n \left[x(y)_{i,exp} - x(y)_{i,cal}\right]^2\right]^{0,5}, \quad (17)$$

где $x(y)_{i,exp}$ и $x(y)_{i,cal}$ – экспериментальные и расчетные значения содержания мольных долей компонента *i* в жидкой (*x*) и газовой (*y*) фазах соответственно; *n* – количество экспериментальных данных.

Методика исследований

Образцы сплавов Hg–Se для эксперимента массой 50–100 г каждый были подготовлены с использованием чистых ртути и селена (99,99 мас. %). Навески исходных металлов были проплавлены в индукционной печи в атмосфере аргона высокой чистоты для получения Hg–Se сплавов состава Hg/Se, мол. %: 20/80; 30/70; 40/60; 50/50; 60/40; 70/30; 80/20.

Лабораторные эксперименты по дистилляции компонентов сплавов проводились в вертикальной вакуумной печи. Давление в печи во время эксперимента составляло P = 1,33-133 Па, температура T = 823-1073 К. Состав образцов возгонов и остатков определяли из предварительно полученных растворов атомно-абсорбционным методом на установке GBC 933AB Plus. В экспериментах использовали образцы сплавов цилиндрической формы. Сначала образец помещали в цилиндрический тигель (h = 40 мм, d = 40 мм) из тонкодисперсных зерен графита высокой плотности. Затем тигель переносили в вакуумную печи и нагревали, контролируя температуру. Для предотвращения испарения металлов на стадии плавления образца процесс осуществляли в атмосфере аргона при нормальном давлении. Разряжение в рабочей камере производили паромасляным диффузионным насосом при достижении необходимой температуры – этот момент считали началом вакуумной перегонки (t = 0). Затем поддерживали в камере давление и температуру в течение заданного времени эксперимента. По окончании опыта выключали обогреватель, аргон заполнял камеру, давление в которой нормализовалось. Компоненты сплавов, перешедшие в возгоны, конденсировались на холодной пластине, подключенной к циркуляционной водной системе. При температуре 40 °С возгоны и остаток вынимали из печи и взвешивали.

Результаты и их обсуждение

Исходные характеристики Hg–Se сплава приведены в табл. 1.

Ртуть более легко возгоняется ($p_{Hg}^* = 1,4\cdot 10^4 - 3,7\cdot 10^5$ Па) по сравнению с селеном ($p_{Se}^* = 1,3\cdot 10^{-8} - 3,5\cdot 10^{-4}$ Па), который преимущественно концентрируется в жидкой фазе, что позволяет их разделить вакуумной дистиляцией до определенной степени (табл. 2). Возможность отделения Hg от Se из их сплава вакуумной дистилляцией характеризуется коэффициентом разделения (β), для расчета которого используют коэффициенты активности (табл. 3, 4).

Значения $\beta_{Hg} > 1$, поскольку содержание Нд в газовой фазе больше, чем в жидкой ($y_{Hg} >> x_{Hg}$). Ртуть концентрируется в газовой фазе, селен – в кубовом остатке ($x_{Se} >> y_{Se}$), что разделяет исходный сплав Hg–Se на ртуть и селен. Коэффициент разделения ртути и селена возрастает ($lg\beta_{Hg} = 1,0-2,73$) по мере снижения температуры процесса (1073–823 К) и доли селена ($x_{Se} = 0,9-0,1$) в составе бинарного сплава (рис. 1).

Таблица 1

Значения параметров $\gamma_i^{\infty}, \gamma_j^{\infty}, B_{ij}, B_{ji}, Z_i, Z_j, p_i^*, p_j^*, V_{m(i,j)}$ сплава Hg–Se

Table 1

		$\alpha^{\infty} / \alpha^{\infty}$		Ì	8	, 	Ζ		
<i>і–ј</i> сплав	1, К	γ _{Hg}	/ ^y Se	B _{Hg-Se}	B _{Se-Hg}	Hg	Se		
Hg/Se	705	0,398	/0,482	1,0762	1,0762 1,2714		10		
Металл	-A	-B	С	D	$V_m = f(T)$, см ³ /моль		ЛЬ		
Hg	3066	_	_	9,877	$15,3[1+1,9\cdot10^{-4}(T-752,9)]$		752,9)]		
Se	4990	_	_	10,214	16,2[1	$+2,1\cdot10^{-4}(T-$	773,4)]		

Parameter values γ_i^{∞} , γ_j^{∞} , B_{ij} , B_{ji} , Z_i , Z_j , p_i^* , p_j^* , $V_{m(i,j)}$ alloy Hg–Se

Вестник ЮУрГУ. Серия «Металлургия». 2022. Т. 22, № 1. С. 53–66

Таблица 2

Рассчитанные давления паров Hg и Se

Table 2

Calculated vapor pressures Hg and Se

Т, К	$p_{ m Hg}^{*},$ Па	p _{Se} , Па	$p_{ m Hg}^{*}/p_{ m Se}^{*}$
823	$1,418 \cdot 10^{6}$	$1,415 \cdot 10^4$	100,21
923	$3,591 \cdot 10^{6}$	$6,423 \cdot 10^4$	55,91
1023	$7,585 \cdot 10^7$	$2,169 \cdot 10^5$	34,97
1073	1,046.107	$3,66 \cdot 10^5$	28,58

Таблица 3

Table 3

Рассчитанные значения коэффициентов активности Hg и Se в расплаве

Calculated values of the activity coefficients Hg and Se in the melt

				$x_{ m Hg}$		
1, К	Ŷ	0,1	0,3	0,5	0,7	0,9
823		0,253/0,984	0,415/0,855	0,621/0,629	0,833/0,380	0,978/0,181
923	~ /~	0,295/0,985	0,460/0,870	0,658/0,666	0,853/0,430	0,981/0,227
1023	YHg/YSe	0,334/0,987	0,499/0,883	0,689/0,696	0,868/0,473	0,984/0,270
1073		0,352/0,988	0,516/0,888	0,702/0,709	0,875/0,492	0,984/0,291

Таблица 4

Рассчитанные значения коэффициента разделения Hg и Se $(lg\beta_{\rm Hg})$

Table 4

Calculated values of the se	paration coefficient	Hg and Se	(lgβ _{Hg})
-----------------------------	----------------------	-----------	----------------------

<i>Т</i> , К	$x_{ m Hg}$	0,1	0,3	0,5	0,7	0,9
072	$lg\beta_{Hg}$	1,411	1,687	1,995	2,342	2,733
823	$\lg y_{\mathrm{Se}}$	-0,587	-1,339	-2,0	-2,71	-3,688
022	$lg\beta_{Hg}$	1,224	1,471	1,742	2,045	2,383
925	lgy _{Se}	-0,456	-1,136	-1,750	-2,415	-3,338
1022	$lg\beta_{Hg}$	1,073	1,296	1,539	1,807	2,105
1025	lgy _{Se}	-0,365	-0,976	-1,552	-2,178	-3,060
1072	$lg\beta_{Hg}$	1,008	1,22	1,452	1,706	1,985
1075	lgvse	-0.329	-0.909	-1.467	-2.078	-2.940

Рис. 1. Коэффициент разделения селена при вакуумной дистилляции Hg–Se сплава при температуре, К: 823 (1); 923 (2); 1023 (3); 1073 (4)

Fig. 1. Selenium separation coefficient during vacuum distillation of Hg–Se alloy at temperature, K: 823 (1); 923 (2); 1023 (3); 1073 (4)

Таблица 5	
-----------	--

	Calculated values of Igy_{Se} Se of Hg–Se alloy									
Т, К	$x_{ m Hg}$	0,01	0,03	0,05	0,07	0,09				
822	$\gamma_{\rm Hg}/\gamma_{\rm Se}$	0,197/1,0	0,208/0,999	0,220/0,996	0,233/0,992	0,246/0,987				
023	lgy _{Se}	-0,079	-0,216	-0,335	-0,443	-0,540				
022	$\gamma_{\rm Hg}/\gamma_{\rm Se}$	0,236/1,0	0,248/0,999	0,261/0,996	0,274/0,993	0,288/0,988				
923	lgy _{Se}	-0,054	-0,155	-0,248	-0,335	-0,417				
1022	$\gamma_{\rm Hg}/\gamma_{\rm Se}$	0,272/1,0	0,285/0,999	0,298/0,997	0,312/0,994	0,326/0,989				
1025	lgy_{Se}	-0,040	-0,117	-0,190	-0,262	-0,330				
1072	$\gamma_{\rm Hg}/\gamma_{\rm Se}$	0,289/1,0	0,303/0,999	0,316/0,997	0,330/0,994	0,345/0,990				
10/5	lgy _{Se}	-0,035	-0,103	-0,169	-0,234	-0,298				

Рассчитанные значения Igy_{Se} сплава Hg–Se

Table 5

Данные по количественному составу продуктов дистилляции представлены на рис. 2 и в табл. 4, 5. Ртуть можно отделить от селена возгонкой при температуре ≤ 550 °C. Исходя из состава сплава (x_{Se}) можно прогнозировать температуру, при которой количество возгоняемой примеси селена в конденсированной ртути не будет превышать заданную величину: для x_{Se} (ат. %/мас. %), равного10/4,2, при 550 °C значение y_{Se} (ат. %/мас. %) составляет 2,15 · 10⁻⁴/0,9 · 10⁻⁴, а для 800 °C – y_{Se} (ат. %/мас. %) достигает $11,48 \cdot 10^{-4}/4,82 \cdot 10^{-4}$. В этом случае при увеличении температуры возгонки на 250 °С содержание селена в Нд-конденсате возрастает в ~ 5 раз.

Активности Hg и Se (a_{Hg}, a_{Se}) в расплаве определены с использованием рассчитанных значений коэффициентов активности этих компонентов (унд, узе) (рис. 3, табл. 3).

При построении «T – x» диаграммы бинарной системы Hg-Se для каждой фиксированной температуры подбирали состав сплава (x_{Hg}) , при котором сумма парциальных давлений ртути и селена уравнивала внешнее давление (табл. 6, рис. 4а).

Установлено, что при увеличении глубины вакуума переход из жидкой в газовую фазу происходит в более узком диапазоне температур и способствует разделению Нд и Se, а именно: для получения конденсата ртути с возгонкой 90-99 % элемента при давлении 133/13,3/1,33 Па и температуре 527-598/460-524/408-464 К содержание примеси селена составит не более 0,553/0,369/0,224 мольных долей, что свидетельствует о благоприятном воздействии низкого остаточного давления в системе и, соответственно, температуры процесса на селективность при задан-

компонентов Hg-Se сплава при 823 К Fig. 3. Activity (a) and activity coefficients (γ) of Hg–Se alloy components at 823 K

Таблица 6

Table 6

<i>P</i> , Па	$x_{ m Hg}$	0,01	0,03	0,05	0,10	0,90	0,95	0,99
122	T_{liq}, K	598,1	572,7	555,3	527,5	399,1	396,9	395,7
155	y_{Se}	0,553	0,231	0,120	0,0374	$341,56 \cdot 10^{-10}$	$66,24 \cdot 10^{-10}$	$5,956 \cdot 10^{-10}$
12.2	T_{liq}, K	524,2	499,1	484	460,8	353,4	351,6	350,45
15,5	y_{Se}	0,369	0,120	0,057	0,0159	$300,35 \cdot 10^{-11}$	$41,93 \cdot 10^{-11}$	$3,26 \cdot 10^{-11}$
1 2 2	T_{liq}, K	464,8	441,3	428	408,4	317,1	315,4	314,5
1,55	$y_{\rm Se}$	0,224	0,059	0,025	0,0065	$239,38 \cdot 10^{-12}$	$25,21 \cdot 10^{-12}$	$1,43 \cdot 10^{-12}$

Рассчитанные значения T_{liq} , y_{Se} Hg–Se сплава для «T - x» диаграмм Calculated values of T_{liq} , y_{Se} Hg–Se alloy for "T - x" diagrams

Рис. 4. Фазовые диаграммы «*T* – *x*» (*a*) и «*P* – *x*» (*b*) Нд–Sе сплава при *P*, Па: 1,33 (*1*); 13,33 (*2*); 133,3 (*3*) и *T*, K: 823 (*4*); 923 (5); 1023 (*6*) Fig. 4. Phase diagrams of "*T* – *x*" (*a*) and "*P* – *x*" (*b*) Hg–Se alloy at *P*, Pa: 1,33 (*1*); 13,33 (*2*); 133,3 (*3*) and *T*, K: 823 (*4*); 923 (5); 1023 (*6*)

ной степени возгонки ртути. Одновременно в кубовом остатке в указанных интервалах давления и температуры содержание селена возрастает на те же 90–99 % металла.

Определены значения относительного $(S_i = 1,34 \%)$ и квадратичного $(S_i^* = 6,82 \text{ K})$ отклонений между вычисленными и опытными значениями температур T = 823-1023 K и давлений P = 1,33-133,3 Па (рис. 4). Было получено порядка 20 экспериментальных значе-

ний температур плавления при различных давлениях в системе (рис. 4a) и столько же опытных значений давления при различных температурах (рис. 4b). Относительно невысокие абсолютные значения вычисленных средних отклонений свидетельствуют об адекватности модели процесса вакуумной дистилляции бинарного сплава в исследованных интервалах изменения давления (P) и температуры (T).

Таблица 7

Рассчитанные значения $P_{lig} \cdot 10^5$ (Па) Нg–Se сплава

Table 7

Calculated values $P_{liq} \cdot 10^5$ (Pa) Hg–Se Alloy

	$x_{ m Hg}$								
1, К	0,1	0,3	0,5	0,7	0,9				
823	0,484	2,729	4,446	8,279	12,47				
923	1,629	5,346	12,02	21,53	31,70				
1023	4,457	12,71	26,85	46,34	67,30				

Таблица 8

Table 8

Значения $y_{ m Hg}, P_{gas}$ (Па), $\gamma_{ m Hg}, \gamma_{ m Se} = 1,0$ для «P-x» диаграмм Hg–Se сплава

			, ing, ise	•	0	
Т, К	$\mathcal{Y}_{\mathrm{Hg}}$	0,1	0,3	0,5	0,7	0,9
	$x_{\rm Hg} \cdot 10^{-3}$	5,661	20,86	45,33	92,97	244,33
823	$\gamma_{ m Hg}$	0,194	0,203	0,218	0,248	0,364
	$P_{gas} \cdot 10^4$	1,557	2,001	2,802	4,67	14,01
	$x_{\rm Hg} \cdot 10^{-3}$	8,372	30,60	65,35	130,3	327,2
923	$\gamma_{ m Hg}$	0,235	0,248	0,271	0,317	0,487
	$P_{gas} \cdot 10^4$	7,065	9,084	12,72	21,19	63,58
	$x_{\rm Hg} \cdot 10^{-3}$	11,52	41,55	87,37	170,68	419,02
1023	$\gamma_{\rm Hg}$	0,273	0,292	0,324	0,387	0,608
	$P_{gas} \cdot 10^4$	23,86	30,67	42,94	71,57	214,7

Values of y_{Hg} , P_{gas} (Pa), γ_{Hg} , $\gamma_{Se} = 1,0$ for "P - x" diagrams of Hg–Se alloy

Для фазовых диаграмм *VLE* может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Hg в сырье сплава $x_o = 0,5$, соответствующая температура перегонки 480 К и давление 133 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T* – *x*» диаграмме (рис. 4*a*), где кривые жидкости и пара пересекаются в точке *A* и *B* соответственно. Когда система достигает равновесия, составы *A* и *B* равняются x_{liq} и y_{gas} соответственно. По правилу рычага можно получить:

$$\frac{n_{liq}}{n_{qas}} = \frac{x_o - y_{gas}}{x_{liq} - x_o} = \frac{|OB|}{|OA|} = \frac{0.5 - 0.999}{0.25 - 0.5} = \frac{0.499}{0.25}$$

где $n_{liq} = 0,499$ и $n_{gas} = 0,25$ – количество вещества в остатках и возгонах; |OB| и |OA| – длина соответствующих отрезков на линии *AB*. Общее количество молей вещества исходного сплава *n*. то $n = n_{lig} + n_{gas}$:

$$n_{liq} = \frac{x_o - y_{gas}}{x_{liq} - y_{gas}} n = \frac{|OB|}{|AB|} n = \frac{0.499}{0.749} n = 0.666n,$$

$$n_{gas} = \frac{x_{liq} - x_o}{x_{liq} - y_{gas}} n = \frac{|OA|}{|AB|} n = \frac{0.25}{0.749} n = 0.334n.$$

Результаты расчета диаграмм «P - x» представлены на рис. 4*b*, табл. 7, 8.

Диаграмма «*P* – *x*» позволяет прогнозировать процесс дистилляции Hg–Se сплава посредством изменения величины остаточного давления в системе при фиксированной температуре. Например, при температуре 823 К и давлении $P_{gas} = 1,4\cdot10^5$ Па равновесное содержание селена в Hg-возгонах/Se-остатке равняется 0,1/0,756 мольной доли. При повышении температуры до 1023 К аналогичный состав газовой фазы (Hg/Se = 0,9/0,1) сохраняется при более высоком давлении ($P_{gas} = 21,47\cdot10^5$ Па) и уменьшении содержания селена в кубовом остатке до ~ 0,58 мольных долей. В целом, данные «P - x» диаграмм дополняют сведения «T - x» диаграмм для бинарного сплава Hg–Se.

Изменение энергии Гиббса ΔG_m^E для бинарной смеси Hg–Se, определяется процессом удерживания вещества в пограничном слое фаз при переходе «жидкость – газ», обусловленном соотношением компонентов в сплаве и температурой системы (рис. 5, табл. 9).

Величина изменения энтальпии пограничного слоя (ΔH_m^E) определяется энергией Гиббса и теплотой образования поверхности ($T\Delta S_m^E$), где ΔS_m^E – изменение энтропии. Отрицательные значения изменения энтальпии $\Delta H_m^E < 0$ свидетельствуют об экзотермическом процессе дистилляции компонентов Hg–Se сплава. Небольшие абсолютные значения из-

Металлургия техногенных и вторичных ресурсов Metallurgy of recycled and secondary resources

Таблица 9

Значения изменения термодинамических параметров Hg-Se сплава

Table 9

values of changes in the thermouynamic parameters of the ng-se and	Values of changes	in the thermody	ynamic parameters	of the Hg-Se all
--	-------------------	-----------------	-------------------	------------------

		_	ΔG_m^E , кДж/мол	Ь	
<i>Т</i> , К			$x_{\rm Se}$		
	0,1	0,3	0,5	0,7	0,9
823	1,124	2,567	2,997	2,475	1,045
923	0,989	2,266	2,652	2,195	0,928
1023	0,883	2,028	2,379	1,973	0,836
1073	0,838	1.927	2.262	1.877	0,796
– ΔH_m^E , кДж/моль	2,057	4,655	5,395	4,426	1,856
$-\Delta S_m^E, \ Дж/моль K$	1,143	2,56	2,939	2,39	0,994

менения энергии Гиббса $\Delta G_m^E \leq 3,0$ кДж/моль отражают слабое взаимодействие между атомами ртути и селена в составе сплава, что на два порядка меньше энергии межатомного взаимодействия в твердой фазе.

Заключение

1. Для бинарного сплава Hg–Se установлено, что при увеличении глубины вакуума переход из жидкой в газовую фазу происходит в более узком диапазоне температур и способствует разделению Hg и Se, а именно: для получения конденсата ртути с возгонкой 90–99 % элемента при давлении 133/13,3/1,33 Па и температуре 527–598/460–524/408–464 К, содержание примеси селена составит не более 0,553/0,369/0,224 мольных долей, что свидетельствует о благоприятном воздействии низкого остаточного давления в системе и, соответственно, температуры процесса на селективность при заданной степени возгонки ртути. Одновременно в кубовом остатке в указанных интервалах давления и температуры содержание селена возрастает на те же 90–99 % металла.

2. Диаграмма «P - x» позволяет прогнозировать процесс дистилляции Hg–Se сплава посредством изменения величины остаточного давления в системе при фиксированной температуре, например: при температуре 823 К и давлении $P_{gas} = 1.4 \cdot 10^5$ Па равновесное содержание селена в Hg-возгонах/Se-остатке равняется 0,1/0,756 мольной доли. При повышении температуры до 1023 К аналогичный состав газовой фазы (Hg/Se = 0,9/0,1) сохраняется при более высоком давлении ($P_{gas} = 21.47 \cdot 10^5$ Па) и

уменьшении содержания селена в кубовом остатке до $\sim 0{,}58$ мольных долей.

3. Равновесные диаграммы (T - x) и (P - x) для систем Hg–Se можно использовать, в частности, на предварительных этапах проектирования опытно-промышленного обо-

рудования для вакуумной дистилляции, а также для обоснования выбора диапазонов температуры и давления в системе с целью получения продуктов возгонки необходимого состава, минимизируя количество трудоемких и дорогостоящих установочных опытов.

Список литературы

1. Distribution model of lowly volatile impurity in rare earth metal purified by vacuum distillation / L. Zhang, X.-w. Zhang, Z.-a. Li et al. // Separation and Purification Technology. 2021. Vol. 262, 118314. DOI: 10.1016/j.seppur.2021.118314

2. Experimental investigation and modeling of the Cu–Sn system in vacuum distillation / D. Wang, Y. Chen, Y. Li, B. Yang // Calphad. 2020, Vol. 70, 101991. DOI: 10.1016/j.calphad.2020.101991

3. Королев А.А., Краюхин С.А., Мальцев Г.И. Фазовые равновесия для Pb–Sb–Sn сплава при вакуумной дистилляции // Вестник СамГТУ. Серия «Технические науки». 2018. № 1 (57). С. 128–141. eLIBRARY ID: 35302304

4. Королев А.А., Краюхин С.А., Мальцев Г.И. Фазовые равновесия для сплава Pb–Sb–Ag при вакуумной дистилляции // Металлы. 2018. № 3. С. 57–67. eLIBRARY ID: 35110356

5. Xiong N., Tian Y., Yang B. Results of recent investigations of magnesia carbothermal reduction in vacuum // Vacuum. 2019. Vol. 160. P. 213. DOI: 10.1016/j.vacuum.2018.11.007

6. Liu T., Qiu K. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology // J Hazard Mater. 2018. Vol. 347. P. 334–340. DOI: 10.1016/j.jhazmat.2018.01.017

7. Переработка Zn–Pb–Ag сплавов вакуумной дистилляцией / А.А. Королев, Г.И. Мальцев, К.Л. Тимофеев и др. // Расплавы. 2018. № 2 (1). С. 235–246. eLIBRARY ID: 34978976

8. Равновесные фазовые диаграммы сплава Zn–Ag / А.А. Королев, Г.И. Мальцев, К.Л. Тимофеев, В.Г. Лобанов // Обработка металлов (технология, оборудование, инструменты). 2018. Т. 20, № 3. С. 72–84. DOI: 10.17212/1994-6309-2018-20.3-72-84

9. Xiao J., Li J., Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy // Journal of Hazardous Materials. 2017. Vol. 338. P. 124–131. DOI: 10.1016/j.jhazmat.2017.05.024

10. Zhang L., Xu Z. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash // Journal of Hazardous Materials. 2016. Vol. 312. P. 28–36. DOI: 10.1016/j.jhazmat.2016.03.025

11. Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb-Sn alloy with vacuum distillation // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, no. 6. P. 1822–1831. DOI: 10.1016/S1003-6326(13)62666-7

12. Process optimization for vacuum distillation of Sn-Sb alloy by response surface methodology / A. Wang, Y. Li, B. Yang et al. // Vacuum. 2014. Vol. 109. P. 127–134. DOI: 10.1039/C9NR00932A

13. Bolzoni L., Ruiz-Navas E.M., Gordo E. Quantifying the properties of low-cost powder metallurgy titanium alloys // Materials Science and Engineering: A. 2017. Vol. 687. P. 47–53. DOI: 10.1016/j.msea.2017.01.049

14. Metallurgical and mechanical examinations of molybdenum/graphite joints by vacuum arc pressure brazing using Ti-Zr filler materials / L. Dong, W. Chen, L. Hou et al. // Journal of Materials Processing Technology. 2017. Vol. 249. P. 39–45. DOI: 10.1016/j.jmatprotec.2017.06.007

15. Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum / F. Martín, C. García, Y. Blanco, M.L. Rodriguez-Mendez // Materials Science and Engineering: A. 2015. Vol. 642. P. 360–365. DOI: 10.1002/jbm.b.34494

16. Experimental investigation and modelling of phase equilibria for the Ag–Cu–Pb system in vacuum distillation / W.L. Jiang, C. Zhang, N. Xu et al. // Fluid Phase Equilibria. 2016. Vol. 417. P. 19–24. DOI: 10.1016/j.fluid.2016.02.026

17. Application of MIVM for Pb-Sn System in Vacuum Distillation / L.X. Kong, Y.F. Li, B. Yang et al. // Journal of Vacuum Science and Technology. 2012. Vol. 32. P. 1129–1135. DOI: 10.1007/s11663-012-9726-3

18. Thermodynamics of removing impurities from crude lead by vacuum distillation refining / X.F. Kong, B. Yang, H. Xiong et al. // Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. P. 1946–1950. DOI: 10.1016/S1003-6326(14)63275-1

19. Calculation of phase equilibrium in vacuum distillation by molecular interaction volume model / H.W. Yang, B.Q. Xu, B. Yang et al. // Fluid Phase Equilibria. 2012. Vol. 341. P. 78–81. DOI: 10.2298/JMMB140508021L

20. Thirunavukarasu G., Chatterjee S., Kundu S. Scope for improved properties of dissimilar joints of ferrous and non-ferrous metals // Transactions of Nonferrous Metals Society of China. 2017. Vol. 27. iss. 7. P. 1517–1529. DOI: 10.1016/S1003-6326(17)60172-9

21. Klippenstein S.J. From theoretical reaction dynamics to chemical modeling of combustion // Proceedings of the Combustion Institute. 2017. Vol. 36, iss. 1. P. 77–111. DOI: 10.1016/j.proci.2016.07.100

22. Kenig E.Y., Blagov S. Chapter 10 – Modeling of Distillation Processes // Distillation. Fundamentals and Principles / Eds. A. Gorak, E. Sorensen. Academic Press, 2014. P. 383–436. DOI: book/2463094/bf9871

23. Separation of boron and phosphorus from Cu-alloyed metallurgical grade silicon by CaO–SiO₂– CaCl₂ slag treatment / L. Huang, H. Lai, C. Gan et al. // Separation and Purification Technology. 2016. Vol. 170. P. 408–416. DOI: 10.1007/s12613-018-1698-0

24. Jaeger W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries // Nuclear Engineering and Design. 2017. Vol. 319. P. 17–27. DOI: 10.1016/j.nucengdes.2014.11.001

25. Isobaric vapor-liquid equilibria of hexamethyl disiloxane + ethyl acetate system at normal pressure / W.L. Zhang, N. Meng, R.Y. Sun, C.L. Li // Advanced Materials Research. 2011. Vol. 396–398. P. 968–972. DOI: 10.4028/www.scientific.net/AMR.396-398.968

26. Wilson G.M. Vapor-Liquid Equilibrium. XI: A New Expression for the Excess Free Energy of Mixing // J. Am. Chem. Soc. 1964. Vol. 86. P. 127–130. DOI: 10.1021/je00030a018

References

1. Zhang L., Zhang X.-w., Z.-a. Li, Chen D.-h. Distribution model of lowly volatile impurity in rare earth metal purified by vacuum distillation. *Separation and Purification Technology*. 2021;262:118314. DOI: 10.1016/j.seppur.2021.118314

2. Wang D., Chen Y., Li Y., Yang B. Experimental investigation and modeling of the Cu–Sn system in vacuum distillation. *Calphad*. 2020;70:101991. DOI: 10.1016/j.calphad.2020.101991

3. Korolev A.A., Krayukhin S.A., Maltsev G.I. [Phase equilibria for Pb–Sb–Sn alloy during vacuum distillation]. *Vestnik SamGTU. Seriya "Tekhnicheskiye nauki"*. 2018;1(57):128–141 (In Russ). eLIBRARY ID: 35302304.

4. Korolev A.A., Krayukhin S.A., Maltsev G.I. [Phase equilibria for Pb–Sb–Ag alloy during vacuum distillation]. *Metally*. 2018;(3):57–67 (In Russ). eLIBRARY ID: 35110356.

5. Xiong N., Tian Y., Yang B. Results of recent investigations of magnesia carbothermal reduction in vacuum. *Vacuum*. 2019;160:213. DOI: 10.1016/j.vacuum.2018.11.007

6. Liu T., Qiu K. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology. *J Hazard Mater*. 2018;347:334–340. DOI: 10.1016/j.jhazmat.2018.01.017

7. Korolev A.A., Maltsev G.I., Timofeev K.L., Lobanov V.G., Filatov E.S., Ivenko V.M. [Processing of Zn-Pb-Ag alloys by vacuum distillation]. *Rasplavy*. 2018;2(1):235-246 (In Russ). eLIBRARY ID: 34978976.

8. Korolev A.A., Maltsev G.I., Timofeev K.L., Lobanov V.G. [Equilibrium phase diagrams of Zn–Ag alloy]. *Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty)*. 2018;20(3):72–84 (In Russ). DOI: 10.17212/1994-6309-2018-20.3-72-84

9. Xiao J., Li J., Xu Z. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. *Journal of Hazardous Materials*. 2017;338:124–131. DOI: 10.1016/j.jhazmat.2017.05.024

10. Zhang L., Xu Z. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash. Journal of Hazardous Materials. 2016;312:28–36. DOI: 10.1016/j.jhazmat.2016.03.025

11. Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb-Sn alloy with vacuum distillation. *Transactions of Nonferrous Metals Society of China*. 2013;23(6):1822–1831. DOI: 10.1016/S1003-6326(13)62666-7

12. Wang A., Li Y., Yang B., Xu B., Kong L., Liu D. Process optimization for vacuum distillation of Sn-Sb alloy by response surface methodology. *Vacuum*. 2014;109:127–134. DOI: 10.1039/C9NR00932A

13. Bolzoni L., Ruiz-Navas E.M., Gordo E. Quantifying the properties of low-cost powder metallurgy titanium alloys. *Materials Science and Engineering: A.* 2017;687:47–53. DOI: 10.1016/j.msea.2017.01.049

14. Dong L., Chen W., Hou L., Wang J., Song J. Metallurgical and mechanical examinations of molybdenum/graphite joints by vacuum arc pressure brazing using Ti-Zr filler materials. *Journal of Materials Processing Technology*. 2017;249:39–45. DOI: 10.1016/j.jmatprotec.2017. 06.007

15. Martín F., García C., Blanco Y., Rodriguez-Mendez M.L. Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum. *Materials Science and Engineering: A.* 2015;642:360–365. DOI: 10.1002/jbm.b.34494

16. Jiang W.L., Zhang C., Xu N., Yang B., Xu B.Q., Liu D.C., Yang H.W. Experimental investigation and modelling of phase equilibria for the Ag–Cu–Pb system in vacuum distillation. *Fluid Phase Equilibria*. 2016;417:19–24. DOI: 10.1016/j.fluid.2016.02.026

17. Kong L.X., Li Y.F., Yang B., Xu B.Q., Yang H.W., Jia G.B. Application of MIVM for Pb-Sn System in Vacuum Distillation. *Journal of Vacuum Science and Technology*. 2012;32:1129–1135. DOI: 10.1007/s11663-012-9726-3

18. Kong X.F., Yang B., Xiong H., Kong L.X., Liu D.C., Xu B.Q. Thermodynamics of removing impurities from crude lead by vacuum distillation refining. *Transactions of Nonferrous Metals Society of China*. 2014;24:1946–1950. DOI: 10.1016/S1003-6326(14)63275-1

19. Yang H.W., Xu B.Q., Yang B., Ma W.H., Tao D.P. Calculation of phase equilibrium in vacuum distillation by molecular interaction volume model. *Fluid Phase Equilibria*. 2012;341:78–81. DOI: 10.2298/JMMB140508021L

20. Thirunavukarasu G., Chatterjee S., Kundu S. Scope for improved properties of dissimilar joints of ferrous and non-ferrous metals. *Transactions of Nonferrous Metals Society of China*. 2017;27(7): 1517–1529. DOI: 10.1016/S1003-6326(17)60172-9

21. Klippenstein S.J. From theoretical reaction dynamics to chemical modeling of combustion. *Proceedings of the Combustion Institute*. 2017;36(1):77–111. DOI: 10.1016/j.proci.2016.07.100

22. Kenig E.Y., Blagov S. Chapter 10 – Modeling of Distillation Processes. In: Gorak A., Sorensen E., editors. *Distillation. Fundamentals and Principles*. Academic Press; 2014. P. 383–436. DOI: book/2463094/bf9871

23. Huang L., Lai H., Gan C., Xiong H., Luo X. Separation of boron and phosphorus from Cu-alloyed metallurgical grade silicon by CaO–SiO₂–CaCl₂ slag treatment. *Separation and Purification Technology*. 2016;170:408–416. DOI: 10.1007/s12613-018-1698-0

24. Jaeger W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries. *Nuclear Engineering and Design*. 2017;319:17–27. DOI: 10.1016/j.nucengdes.2014.11.001

25. Zhang W.L., Meng N., Sun R.Y., Li C.L. Isobaric vapor-liquid equilibria of hexamethyl disiloxane + ethyl acetate system at normal pressure. *Advanced Materials Research*. 2011;396–398: 968–972. DOI: 10.4028/www.scientific.net/AMR.396-398.968

26. Wilson G.M. Vapor-Liquid Equilibrium. XI: A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964;86:127–130. DOI: 10.1021/je00030a018

Информация об авторах

Королев Алексей Анатольевич, канд. техн. наук, главный инженер, Уралэлектромедь, Верхняя Пышма, Россия; A.Korolev@elem.ru.

Шунин Владимир Александрович, заместитель начальника Исследовательского центра, Уралэлектромедь, Верхняя Пышма, Россия; A.Shunin@elem.ru.

Тимофеев Константин Леонидович, д-р техн. наук, начальник технического отдела, Уралэлектромедь; доцент кафедры металлургии, Технический университет УГМК, Верхняя Пышма, Россия; К.Timofeev@elem.ru.

Мальцев Геннадий Иванович, д-р техн. наук, старший научный сотрудник, главный специалист Исследовательского центра, Уралэлектромедь, Верхняя Пышма, Россия; mgi@elem.ru.

Воинков Роман Сергеевич, канд. техн. наук, начальник Исследовательского центра, Уралэлектромедь, Верхняя Пышма, Россия; R.Voinkov@elem.ru.

Information about the authors

Aleksey A. Korolev, Cand. Sci. (Eng.), Chief engineer, Uralelektromed, Verkhnyaya Pyshma, Russia; A.Korolev@elem.ru.

Vladimir A. Shunin, Deputy Head of the Research Center, Uralelektromed, Verkhnyaya Pyshma, Russia; A.Shunin@elem.ru.

Konstantin L. Timofeev, Dr. Sci. (Eng.), Head of the Technical Department, Uralelektromed; Ass. Prof. of the Department of Metallurgy, Technical University of UMMC, Verkhnyaya Pyshma, Russia; K.Timofeev@elem.ru.

Gennadiy I. Maltsev, Dr. Sci. (Eng.), Senior researcher, Chief specialist of the Research center, Uralelektromed, Verkhnyaya Pyshma, Russia; mgi@elem.ru.

Roman S. Voinkov, Cand. Sci. (Eng.), Head of the Research Center, Uralelektromed, Verkhnyaya Pyshma, Russia; R.Voinkov@elem.ru.

Статья поступила в редакцию 09.11.2021 The article was submitted 09.11.2021