АНАЛИЗ ФАЗОВЫХ РАВНОВЕСИЙ, РЕАЛИЗУЮЩИХСЯ В СИСТЕМАХ NI–SI–O И NI–SI–C–O В УСЛОВИЯХ СУЩЕСТВОВАНИЯ ЖИДКОГО МЕТАЛЛА

Е.А. Трофимов

ANALYSIS OF PHASE EQUILIBRIA IN THE NI–SI–O AND NI–SI–C–O SYSTEMS UNDER THE CONDITION OF EXISTENCE OF NICKEL MELT

E.A. Trofimov

Рассчитаны диаграмма состояния системы NiO–SiO₂ и поверхности растворимости компонентов в металле для систем Ni–Si–O и Ni–Si–C–O. Результаты работы могут быть использованы для анализа технологических процессов, связанных с взаимодействием кислорода, кремния и углерода в жидком никеле.

Ключевые слова: диаграммы состояния, никелевый расплав, кремний, углерод, кислород, термодинамические расчёты.

Phase diagram of the $NiO-SiO_2$ system, as well as the surfaces of components' solubility in metal melt for the Ni-Si-O and Ni-Si-C-O systems are calculated. Results can be used for analyzing technological processes related to interaction of oxygen, silicon and carbon in nickel melt.

Keywords: phase diagram, nickel melt, silicon, carbon, oxygen, thermodynamic calculations.

Системы Ni–Si–O и Ni–Si–C–O лежат в основе значительной части технологических процессов выплавки никеля и никелевых сплавов. Поэтому изучение взаимодействий, реализующихся в этих системах, и, в частности, термодинамических аспектов таких взаимодействий в металлическом расплаве, находящемся в равновесии с различными оксидными фазами, интересно как с практической, так и с теоретической точки зрения.

В настоящей работе поставлена задача проведения термодинамического анализа систем Ni–Si–O и Ni–Si–C–O в условиях существования металлического сплава на никелевой основе путём построения поверхностей растворимости компонентов в металле (ПРКМ) [1] для этих систем. Термодинамические параметры, использованные в ходе работы, сведены в табл. 1 и 2. Некоторая часть этих значений ранее была использована в работе [2], другие используются для такого расчёта впервые. Часть констант заимствована из работы [3], другая часть рассчитана с использованием данных, приводимых в этой же работе, а также работах [4, 5].

Таблица 1

№ п/п	Процесс	Константа равновесия, <i>K</i> ; <i>a</i> – активность, мас. %; <i>p</i> – давление, атм	Температурная зависимость lg K
1	(NiO) = [Ni] + [O]	$K = a_{\rm [O]} / a_{\rm (NiO)}$	-10 318 / <i>T</i> + 5,813
2	NiO = [Ni] + [O]	$K = a_{[O]}$	-12 966 / <i>T</i> + 7,000
3	$(SiO_2) = [Si] + 2[O]$	$K = a_{\rm [O]}^2 a_{\rm [Si]} / a_{\rm (SiO_2)}$	-33 467 / <i>T</i> + 12,338
4	$ \mathrm{SiO}_2 = [\mathrm{Si}] + 2[\mathrm{O}]$	$K = a_{\rm [O]}^2 a_{\rm [Si]}$	-33 870 / <i>T</i> + 12,540
5	Ni ₂ SiO ₄ =2[Ni]+[Si]+4[O]	$K = a_{\rm [O]}^4 a_{\rm [Si]}$	-60 610 / <i>T</i> + 26,984
6	$\{CO\} = [C] + [O]$	$K = a_{\rm [O]}a_{\rm [C]}/p_{\rm CO}$	-5093 / <i>T</i> - 1,878
7	(NiO) = [Ni] + [O]	$K = a_{\rm [O]} / a_{\rm (NiO)}$	-10 318 / <i>T</i> + 5,813

Температурные зависимости констант равновесия реакций взаимодействия компонентов никелевого расплава

 e_i^i e_{j}^{l} Температурная зависимость Температурная зависимость $e_{\rm Si}^{\rm Si}$ $e_{\rm C}^{\rm C}$ 273,5 / T 395 / T $e_{\rm Si}^{\rm O}$ $e_0^{\rm Si}$ -73.1 / T-127,8/T e_{0}^{C} $e_{\rm C}^{\rm O}$ -160 / T-120 / T e_0^0 -41,7 / T

Температурные зависимости параметров взаимодействия в жидком никеле

Помимо прямого использования литературных значений, часть использованных в работе параметров (значение константы равновесия реакции образования Ni_2SiO_4 , а также значения параметров взаимодействия первого порядка) были оптимизированы до достижения качественного непротиворечия результатов расчётов данным о картине фазовых равновесий в исследуемых системах.

Для расчёта активностей компонентов оксидного расплава в системе NiO–SiO₂ использовано приближение теории субрегулярных ионных расплавов [1]. Значения энергетических параметров теории, определённые по данным о диаграмме состояния этой системы, приведённым в справочнике [6]: Q_{1112} = 29500 Дж/моль, Q_{1122} = 20000 Дж/моль и Q_{1222} = 72000 Дж/моль.

Результаты проведённого расчёта диаграммы состояния этой системы представлены на рис. 1.

На рис. 2 представлена рассчитанная ПРКМ системы Ni-Si-O, а также изотермы растворимости кислорода и кремния в жидком никеле. В области I определены составы металла, равновесного с оксидом никеля. В области II – составы металла, находящегося в равновесии с твёрдым силикатом никеля. Область III демонстрирует составы металла, равновесные с кремнезёмом (кристобалитом). Области IV и V демонстрируют составы металла, находящиеся в равновесии с оксидными расплавами: область IV - с расплавом, в составе которого значительное количество оксида никеля (область, соответствующая оксидному расплаву 1 слева от купола расслаивания на диаграмме состояния системы NiO-SiO₂), а область V - с расплавом, в котором преобладает оксид кремния (расплав 2 правее купола расслаивания на рис. 1).

Таблица 2

На рис. 3 представлен увеличенный участок ПРКМ системы Ni–Si–O, на котором сосредоточе-

Вестник ЮУрГУ, № 15, 2012

Рис. 3. Увеличенный фрагмент ПРКМ системы Ni–Si–O с границами фазовых равновесий

на основная часть границ областей фазовых равновесий в этой системе.

Последовательность окисления примесей, оптимальный температурный режим плавки, раскисленность расплава в реальных металлургических системах во многом определяются соотношением между содержащимися в жидком металле углеродом и кремнием. Информацию о фазовых равновесиях в системе Ni–Si–C–O позволяет получить ПРКМ этой системы.

В процессе расчёта координат ПРКМ были совместно проанализированы все возможные реакции между кислородом, никелем, кремнием и углеродом. На рис. 4 представлено изотермическое сечение ПРКМ при 1460 °С и суммарном давлении оксидов углерода 1 атм. В этих условиях система характеризуется наличием четырёх областей фазовых равновесий. В области I при малых концентрациях углерода и кремния соответствующие составы металла находятся в равновесии с твёрдым раствором NiO. При более высоком содержании кремния металл, соответствующий составам области II, находится в равновесии с твёрдым силикатом никеля. В ходе дальнейшего повышения концентрации кремния равновесной с металлом оксидной фазой становится кристобалит (область III).

Рис. 4. Изотермический разрез ПРКМ системы Ni–Si–C–O при суммарном давлении оксидов углерода 0,1013 МПа и *T* = 1460 °C

при суммарном давлении оксидов углерода 0,1013 МПа и *T* = 1600 °C

И наконец, при достаточном количестве углерода в составе металлического расплава (область IV) равновесной с металлом фазой является газовая смесь оксидов углерода.

С ростом температуры в картине реализующихся фазовых равновесий происходят изменения: область равновесия металла с силикатом никеля вырождается. Примером того, как выглядит изотермический разрез диаграммы в этом случае, является представленный на рис. 5 разрез ПРКМ для температуры 1600 °С. Как меняются границы фазовых равновесий в исследуемой системе при изменении давления оксидов углерода, позволяет проследить сечение диаграммы, представленное на рис. 6. Сечение рассчитано исходя из суммарного давления оксидов углерода, равного 0,1 атм, и для температуры 1600 °С. Сопоставление диаграмм на рис. 5 и 6 позволяет сделать вывод, что понижение давления оксидов углерода смещает границы между металлом, равновесным с газом, и металлом, сопряжённым с конденсированными оксидными фазами, в сторону более низких концентраций углерода в жидком металле.

В ходе дальнейшего роста температуры в составе фаз, находящихся в равновесии с металлом, происходят изменения, соответствующие изменениям на диаграмме состояния оксидной системы NiO–SiO₂. При температуре 1649 °C появляется область равновесия металла с оксидным расплавом, в составе которого присутствует значительное количество оксида никеля (рис. 7), затем (при температуре 1684 °C) появляется область равновесия жидкого металла с оксидным расплавом справа от купола расслаивания на диаграмме состояния системы NiO–SiO₂ (рис. 8). И, наконец, при температуре 1720 °C исчезает область равновесия металла с твёрдым кремнезёмом (рис. 9).

Рис. 6. Изотермический разрез ПРКМ системы Ni–Si–C–O при суммарном давлении оксидов углерода 0,01013 МПа и *T* = 1600 °C

Рис. 8. Изотермический разрез ПРКМ системы Ni–Si–C–O при суммарном давлении оксидов углерода 0,1013 МПа и *T* = 1700 °C

при суммарном давлении оксидов углерода 0,1013 МПа и *T* = 1750 °C

Представленные на приведённых выше рисунках диаграммы могут быть использованы в ходе разработки никелевых сплавов с повышенными уровнями полезных свойств, поскольку на механические характеристики никелевых сплавов неметаллические включения, образующиеся в процессе их выплавки, оказывают большое влияние. Построенные ПРКМ позволяют объяснять состав неметаллических включений в никеле и сплавах на его основе, а также позволяют определять то, как влияют на состав этих включений изменения различных технологических параметров.

Выводы

Посредством термодинамических расчётов построена диаграмма состояния системы NiO–SiO₂, а также построены поверхности растворимости компонентов в металле (ПРКМ) для систем Ni–Si–O и Ni–Si–C–O. Разработанные диаграммы могут быть использованы для анализа технологических процессов, связанных с взаимодействием кислорода, углерода и кремния в жидком никеле.

Работа осуществлена при финансовой поддержке РФФИ, грант № 11-08-12046-офи-м-2011.

Литература

1. Михайлов, Г.Г. Термодинамика металлургических процессов и систем / Г.Г. Михайлов, Б.И. Леонович, Ю.С. Кузнецов. – М.: Изд. Дом МИСиС. – 2009. – 520 с. 2. Трофимов, Е.А. Анализ фазовых равновесий в системах Ni-C-O, Ni-Ca-O и Ni-Al-O в условиях существования жидкого металла / Е.А. Трофимов, Г.Г. Михайлов // Вестник ЮУрГУ. Серия «Металлургия». – 2010. – Вып. 14. – № 13 (189). – С. 4–7.

3. Куликов, И.С. Раскисление металлов / И.С. Куликов – М.: Металлургия, 1975. – 504 с.

4. Физико-химические свойства окислов: справ. / под ред. Г.В. Самсонова. – 2-е изд., перераб. и доп. – М.: Металлургия, 1978. – 472 с.

5. Туркдоган, Е.Т. Физическая химия высокотемпературных процессов: пер. с англ. / Е.Т. Туркдоган. – М.: Металлургия, 1985. – 344 с.

6. Диаграммы состояния силикатных систем: справ. Вып. 1: Двойные системы. / Н.А. Торопов, В.П. Барзаковский, В.В. Лапин, Н.Н. Курцева. – Л.: Наука, Ленингр. отд., 1969. – 822 с.

Поступила в редакцию 20 февраля 2012 г.