ИССЛЕДОВАНИЕ И РАЗРАБОТКА ПРОГРАММЫ ТЕРМОДИНАМИЧЕСКОГО РАСЧЕТА ВОССТАНОВЛЕНИЯ ХРОМА В РУДНОТЕРМИЧЕСКИХ ПЕЧАХ

К.К. Каскин

RESEARCH AND DEVELOPMENT OF A PROGRAM FOR THERMODYNAMIC CALCULATION OF CHROMIUM REDUCTION IN ORE-THERMAL FURNACE

K.K. Kaskin

Разработана программа для термодинамического расчета восстановления хрома в руднотермических печах.

Ключевые слова: термодинамический расчет, хромовая руда.

A program for thermodynamic calculation of chromium reduction in ore-thermal furnace is developed.

Keywords: thermodynamic calculation, chromium ore.

В работах [1, 2] приведены результаты выплавки хромоникелевого полупродукта, содержащего до 20 % Cr и около 10 % Ni, в полупромышленной рудовосстановительной печи мощностью 1,2 MB·A с использованием в шихте металлизованных железорудных окатышей, хромовой руды, кокса и закиси никеля. По ходу опытных кампаний концентрация углерода в полупродукте, постепенно увеличиваясь, достигла 3,5-3,91 %, то есть превышала оптимальные его содержания в металле, в дальнейшем подвергаемом аргоно-кислородному рафинированию. В связи с этим возникла необходимость теоретически проанализировать полученные результаты и установить возможность выплавки в рудовосстановительных печах полупродукта с более низким содержанием углерода.

Рассматриваемая технология выплавки хромистого полупродукта в принципе отличается от технологии производства углеродистого феррохрома только содержанием хрома в шихте и готовом расплаве. Однако в теории ферросплавного производства восстановление хрома твердым углеродом, в частности на заключительной стадии, описывается только общей схемой ее уточнения термодинамическим анализом и количественными расчетами, поэтому целью настоящей работы является разработка компьютерной программы по восстановлению хрома.

В монографии [3] рассмотрены первые стадии твердофазного восстановления хромита FeO·Cr₂O₃, как основного минерала хромистых руд. Первоначально до металла восстанавливается только железо, а оксид хрома преобразуется в стойкие при высоких температурах карбиды $Cr_{23}C_6$, Cr_7C_3 и Cr_3C_3 .

Стандартная свободная энергия образования этих карбидов примерно одинаковая и в интервале

1403–1430 К парциальное давление равно 100 кПа (1 атм). Это позволяет принять для термодинамических расчетов любой карбид хрома. Авторы работы [3] отдают предпочтение карбиду Cr_7C_3 , образующемуся в широком интервале концентраций хрома в сплаве. По их мнению, карбид Cr_7C_3 взаимодействует с невосстановленным оксидом хрома Cr_2O_3 как при непосредственном контакте в нижней части колошника, так и в рудном слое, образующемся на границе шлака с металлом при наличии в шихте кусковой хромистой руды по реакции

$$1/3 Cr_2 O_{3_{TB}} + 1/3 Cr_7 C_{3_{TB}} = 3[Cr] + CO.$$
 (1)

Естественно, что образующийся здесь металлический хром растворяется в жидком металле.

Присутствие тугоплавких металлов в рудном слое легко объяснимо. На первой стадии твердофазного восстановления хромита образуется металлическое железо. Однако сам процесс его образования в связи с необходимостью перестройки кристаллических решеток растягивается во времени [4] и по высоте колошника. Науглероженное и плавящееся железо стекает с кусков руды в горн печи, по пути только частично растворяя образовавшиеся карбиды хрома. При отсутствии рудного слоя процесс растворения карбидов в жидком металле, по-видимому, завершается в горне печи.

На границе рудного слоя с металлом в том же температурном интервале наряду с реакцией (1) не исключено и развитие реакции взаимодействия оксида хрома с растворенным в металлической фазе углеродом, контролируемой, как и в первом случае, парциальным давлением оксида углерода:

$$1/3 \operatorname{Cr}_2 \operatorname{O}_{3_{\mathrm{TB}}} + [C]_{1\%} = 2/3 [Cr]_{1\%} + CO,$$
 (2)

т. е. протекание этих реакций взаимно увязано. Стандартная свободная энергия реакции (1) ΔG_T°

Проба	Xv	имический сост	гав	Taurana I/	[% C]	$[C_p] - [C_{\phi}], \%$			
	% Cr	% Ni	% C	температура, к	по расчету				
1-я кампания (пылеватая руда)									
1	5,65	5,5	3,10	1753	8,13	5,03			
2	9,45	8,5	3,42	1763	5,93	2,52			
3	14,75	11,35	3,91	1773	4,42	0,51			
2-я кампания (кусковая руда)									
4	12,7	10,8	3,15	1723	4,45	1,30			
5	14,3	9,55	3,42	1768	4,56	1,14			
6	19,3	8,60	3,50	1823	4,28	0,78			

(2)

Использованные экспериментальные данные

Таблица 1

при растворении хрома в металле, подсчитанная по исходным уравнениям [5], выражается уравнением:

$$\Delta G_T^{\circ}(1) = 87\,136 - 70,83T,$$

$$\lg K_{p(1)} = 3 \lg a_{\rm Cr} + \lg P_{\rm CO} = -\frac{19\,046}{T} + 15,482.$$
 (3)

Для реакции (2) по тем же данным

$$\Delta G_T^{\circ}(2) = 58\ 770 - 35,57T,$$

$$\lg K_{p(2)} = 2/3 \lg a_{\rm Cr} + \lg a_{\rm C} - \lg P_{\rm CO} =$$
(4)

$$= -\frac{12\ 846}{T} + 8,212,$$

где $a_{\rm Cr}$ и $a_{\rm C}$ – активность хрома и углерода в расплаве.

Приравнивая выражение $\lg P_{\rm CO}$ по уравнениям (3) и (4), получим

$$\lg a_{\rm C} = [\lg K_{p(1)} - \lg K_{p(2)}] - 2,33 \lg a_{\rm Cr}.$$
 (5)

Параметр взаимодействия $e_{\rm Cr}^{\rm Cr}$, судя по данным последних исследований [6], равен $3\cdot 10^{-4}$, т. е. находится в пределах точности определения. Поэтому активность хрома $a_{\rm Cr}$ можно приравнять к его концентрации в сплаве. В области концентрации хрома до 20 %, наоборот, коэффициент активности углерода $f_{\rm C}$ установлен достаточно точно и для сплавов Fe–Cr–Ni–C может быть представлен выражением

$$lg f_{\rm C} = e_{\rm C}^{\rm C} [\% \,{\rm C}] + e_{\rm C}^{\rm Cr} [\% \,{\rm Cr}] + e_{\rm C}^{\rm Ni} [\% \,{\rm Ni}] = = 0,14 [\% \,{\rm C}] - 0,024 [\% \,{\rm Cr}] + 0,012 [\% \,{\rm Ni}].$$
(6)

Приравнивая правые части уравнения (5) и выражения $\lg a_C = \lg [\% C] + \lg f_C$ после подстановки в него значения f_C из уравнения (6), получим уравнение для расчета равновесной концентрации углерода в металле

$$lg[\%C] + e_{C}^{C}[\%C] + e_{C}^{Cr}[\%Cr] + e_{C}^{Ni}[\%Ni] = = [lg K_{p(1)} - lg K_{p(2)}] - 2,33 lg a_{Cr}.$$
 (7)

Всего на шихте с повышенным содержанием хрома (18 % по расчету) было проведено две полупромышленные кампании, отличавшиеся только использованием пылеватой (1-я кампания) или кусковой хромитовой руды (2-я кампания). Через каждые 3–4 часа выпускали из печи шлак и ме-

Серия «Металлургия», выпуск 18

талл, на желобе измеряли его температуру и загружали следующую порцию шихты. Высота слоя шихты на колошнике постепенно возрастала. Состав металла, его температура и расчетное содержание углерода в сплаве, подсчитанное на ЭВМ по уравнению (7) (табл. 1).

Приведенные результаты свидетельствуют о том, что по мере приближения к непрерывному процессу увеличивалась степень восстановления хрома и расчетные значения концентраций углерода в металле приближалась к фактическим. Относительное отклонение фактических и расчетных концентраций углерода в расплаве в этом случае 11,5 и 18,2 %, что подтверждает наш термодинамический расчет. При работе на пылевидных рудах в неустановившемся режиме работе печи нет и такого совпадения.

Таким образом, предложенный нами метод расчета применим только для тех условий, когда на границе металла и шлака, т. е. в рудном слое (рис. 1), присутствует непрореагировавший оксид хрома.

Рис. 1. Структура металла при выплавке хромистых сплавов: 1 – слой шихтовых материалов; 2 – полурасплавленная масса; 3 – слой легкоплавкого шлака; 4 – слой плотного шлака; 5 – рудный слой; 6 – металл; 7 – «королек» металла; 8 – газовая полость

При использовании пылевидных руд типичный рудный слой отсутствует. Однако баланс хрома в шихте, в металле и в шлаке перед первым и вторым выпусками первой кампании обнаружил постепенное накопление в печи значительных количеств оксида хрома, не успевшего в наших условиях перейти на колошнике в карбид. Накопившийся к третьему выпуску в печи твердый оксид вступил в активное взаимодействие с углеродом металла, чем и объясняется совпадение в этом случае расчетных и экспериментальных данных.

Таким образом, высказанное предположение об одновременном развитии в рудном слое непрерывно действующих руднотермических печей процессов восстановления оксида Cr_2O_3 до металла как за счет растворенного в нем углерода, так и в результате твердофазного взаимодействия оксида и карбидов хрома, достаточно обоснованно и позволяет количественно оценить активность и концентрацию углерода в металле.

Составляем таблицу для нахождения для реакции (1) изменения энтальпии, энтропии и температурных коэффициентов (табл. 2), затем производим термодинамический анализ.

В связи с этим предлагается программа, разработанная в среде Delphi 7 «Термодинамический расчет металлургических процессов» (рис. 2), которая позволяет: провести аналитический расчет в интервалах температур 400–3000 К с шагом в 50° с графическим изображением системы по данным расчета, что позволяет автоматизировать процесс расчета уравнений любых химических реакций, рассчитывая выход реакции.

На рис. 2, 3 представлена компьютерная программа термодинамического расчета.

Из анализа аналитических данных следует, что в температурном интервале 400–2400 К энергия Гиббса до 2100 К больше нуля, а константа равновесия меньше единицы. Следовательно, в температурном интервале 400–2100 К реакция твердофазного восстановления хрома находится в устойчивом равновесии.

На основе аналитического расчета определяем среднее ΔH графическим методом.

В верхней части окна (рис. 4) расположен график зависимости $\ln K_p = f(1/T)$, в нижней части среднее ΔH аналитического и графического методов расчета для сравнения. Для того чтобы на графике увидеть температурную точку твердофазного восстановления хрома, выбираем режим **«Анализ графика»**.

В нижней части окна (табл. 3) показываются средние значения ΔH и ΔS .

Таким образом, на основании аналитического и графического расчетов получаем уравнение свободной энергии

 $\Delta G = 1 \ 025 \ 301,5 - 493,1429 \ T$, Дж.

Из анализа (рис. 4, 5) следует, что реакция твердофазного восстановления хрома начинается при 1560 К, при расчете реакции (1) производим полный термодинамический анализ реакции (2).

Таблица 2

Decreary	ΔH_{298}° ,	ΔS°_{298} ,	$\Delta C_p = f(T),$ кДж/моль·К			
Pearent	кДж/моль	Дж/моль K	Δa_0	$\Delta a_1 \cdot 10^3$	$\Delta a_{-2} \cdot 10^{-5}$	
9Cr	0	212,76	219,87	88,83	-33,12	
3CO	-331,59	592,65	85,23	12,3	-1,38	
∑прод. реак	-331,59	805,41	305,1	101,13	-34,5	
Cr ₂ O ₃	-1140,56	81,177	119,37	9,2	-15,65	
Cr_7C_3	-228,35	201,12	238,66	60,92	-42,4	
∑исх. реаг	-1368,91	282,29	358,03	70,12	-58,05	
$\sum_{\text{прод}} - \sum_{\text{исх}}$	1037,32	523,12	-52,93	31,01	23,55	

Рис. 2. Главное окно программы

Рис. 3. Окно ввода данных

1	1/T·10 ⁻³	ΔC_{p}	ΔH	ΔS	ΔG	InKp	Kp
400	2,5000	-25,8073	1035040,2200	516,6021	828399,3690	-249,0977	6,5802E-109
150	2,2222	-27,3459	1033706,8500	513,4629	802648,5310	-214,5373	6,7239E-094
500	2,0000	-28,0050	1032320,1700	510,5415	777049,4140	-186,9255	6,5959E-082
50	1,8182	-28,0894	1030915,8600	507,8647	751590,2890	-164,3647	4,1432E-072
00	1,6667	-27,7823	1029517,7200	505,4314	726258,8810	-145,5895	5,9056E-064
50	1,5385	-27,1995	1028142,2000	503,2291	701043,2980	-129,7243	4,586E-057
'00	1,4286	-26,4169	1026801,0800	501,2410	675932,4020	-116,1436	3,6265E-051
50	1,3333	-25,4858	1025502,9800	499,4494	650915,9250	-104,3887	4,619E-046
00	1,2500	-24,4423	1024254,3700	497,8374	625984,4700	-94,1160	1,3364E-041
50	1,1765	-23,3120	1023060,1900	496,3891	601129,4590	-85,0627	1,1422E-037
00	1,1111	-22,1136	1021924,3000	495,0903	576343,0700	-77,0244	3,5376E-034
50	1,0526	-20,8611	1020849,7300	493,9280	551618,1580	-69,8401	4,6647E-031
000	1,0000	-19,5650	1019838,9200	492,8907	526948,1890	-63,3808	2,9789E-028
050	0,9524	-18,2334	1018893,8200	491,9682	502327,1730	-57,5423	1,0226E-025
100	0,9091	-16,8727	1018016,0600	491,1513	477749,6060	-52,2393	2,0547E-023
150	0,8696	-15,4878	1017206,9500	490,4318	453210,4190	-47,4015	2,5929E-021
200	0,8333	-14,0826	1016467,6200	489,8022	428704,9300	-42,9702	2,1791E-019
250	0,8000	-12,6603	1015798,9800	489,2561	404228,8050	-38,8962	1,2811E-017
200	0.7000	11 0005	1015001 0000	400 707E	270770 0240	DE 1000	E 400CE 01C

Рис. 4. Аналитический расчет термодинамических величин

Таблица 3

Т	$1/T \cdot 10^{-3}$	ΔC_p	ΔH	ΔS	ΔG	$\ln K_p$	K_p
400	2,5	-25,8073	1035040	516,6021	828397,8024	-249,217	$6,8394E^{-109}$
450	2,222222	-27,3459	1033707	513,4629	802679,2423	-214,649	$6,01457E^{-94}$
500	2	-28,005	1032320	510,5415	777048,841	-187,015	6,02919E ⁻⁸²
550	1,818182	-28,0894	1030916	507,8647	751599,8741	-164,446	$3,82E^{-72}$
600	1,666667	-27,7823	1029518	505,4314	726256,0252	-145,659	$5,50907E^{-64}$
650	1,538462	-27,1995	1028142	503,2291	701039,0602	-129,786	4,31179E ⁻⁵⁷
700	1,428571	-26,4169	1026801	501,241	675930,5618	-116,199	$3,43038E^{-51}$
750	1,333333	-25,4858	1025503	499,4494	650903,3898	-104,437	$4,40151E^{-46}$
800	1,25	-24,4423	1024254	497,8374	625981,0656	-94,1608	$1,27785E^{-41}$
850	1,176471	-23,312	1023060	496,3891	601105,4987	-85,1002	$1,10012E^{-37}$
900	1,111111	-22,1136	1021924	495,0903	576327,9454	-77,0595	3,41576E ⁻³⁴
950	1,052632	-20,8611	1020850	493,93	551587,6895	-69,8699	$4,52794E^{-31}$
1000	1	-19,565	1019839	492,8907	526939,056	-63,4102	$2,89258E^{-28}$
1050	0,952381	-18,2334	1018894	491,9682	502300,553	-57,567	9,97665E ⁻²⁶
1100	0,909091	-16,8727	1018016	491,1513	477745,9113	-52,2641	$2,00447E^{-23}$
1150	0,869565	-15,4878	1017207	490,4318	453186,4953	-47,4218	$2,5408E^{-21}$
1200	0,833333	-14,0826	1016468	489,8022	428703,2332	-42,9907	$2,1349E^{-19}$
1250	0,8	-12,6603	1015799	489,2561	404204,605	-38,9126	$1,2603E^{-17}$
1300	0,769231	-11,2235	1015202	488,7875	379774,8091	-35,1546	$5,40213E^{-16}$
1350	0,740741	-9,77432	1014677	488,3911	355317,2706	-31,6724	$1,75725E^{-14}$
1400	0,714286	-8,31447	1014225	488,062	330921,4106	-28,4443	$4,43386E^{-13}$
1450	0,689655	-6,8454	1013846	487,7958	306498,3428	-25,4366	8,97478E ⁻¹²
1500	0,666667	-5,36833	1013540	487,5886	282130,8235	-22,6338	$1,47995E^{-10}$
1550	0,645161	-3,88427	1013309	487,4368	257742,7206	-20,0103	$2,04002E^{-09}$
1600	0,625	-2,39408	1013152	487,337	233405,2544	-17,5545	$2,3777E^{-08}$
1650	0,606061	-0,89849	1013070	487,2862	209018,7213	-15,244	$2,3966E^{-07}$

Окончание табл. 3

Т	$1/T \cdot 10^{-3}$	ΔC_p	ΔH	ΔS	ΔG	$\ln K_p$	K_p
1700	0,588235	0,601879	1013062	487,2816	184676,7822	-13,0726	$2,10202E^{-06}$
1750	0,571429	2,10648	1013130	487,3208	160286,1771	-11,0219	$1,63397E^{-05}$
1800	0,555556	3,614852	1013273	487,4013	135934,837	-9,08777	0,00011304
1850	0,540541	5,126593	1013491	487,5209	111546,3235	-7,88312	0,000377056
1900	0,526316	6,641355	1013785	487,6777	87192,9432	-5,52239	0,003996304
1950	0,512821	8,158829	1014155	487,8699	62789,12418	-3,8748	0,020758582
2000	0,5	9,67875	1014601	488,0956	38416,05	-2,31144	0,099118912
2050	0,487805	11,20088	1015123	488,3533	13973,34038	-0,82025	0,440322297
2100	0,47619	12,72501	1015722	488,6415	-10443,521	-2,28612	0,101660536
2150	0,465116	14,25096	1016396	488,9588	-34907,22563	1,953781	7,055312321
2200	0,454545	15,77857	1017147	489,3039	-59348,463	3,246278	25,69453878
2250	0,444444	17,30769	1017974	489,6756	-83814,37175	4,482651	88,46891525
2300	0,434783	18,83818	1018877	490,0728	-108259,9083	5,664203	288,3580132
2350	0,425532	20,36994	1019858	490,4943	-132804,8005	6,800563	898,3531936
2400	0,416667	21,90285	1020914	490,9392	-157334,4152	7,888809	2667,266453

Графический расчет термодинамических величин

Из анализа аналитических данных следует, что в температурном интервале 400–2400 К энергия Гиббса до 1550 К больше нуля, а константа равновесия меньше единицы. Следовательно, в температурном интервале 400–1550 К реакция восстановления хрома находится в устойчивом равновесии.

Процесс восстановления хрома идет самопроизвольно только после 1550 К. Таким образом на основании аналитического и графического расчетов, получаем уравнение свободной энергии:

 $\Delta G = 800 340,266 - 513,0249 T$, Дж.

Из анализа (рис. 6) следует, что реакция твердофазного восстановления хрома начинается при 1560 К.

Таким образом, в настоящей работе в результате анализа технологических параметров выплавки хромоникелевого полупродукта с помощью разработанной компьютерной программы термо-

Рис. 6. Графический расчет

динамического расчета восстановления хрома установлено следующее.

1. Твердофазное восстановление хрома начинается при 1560°К согласно графического (рис. 5, 6) и термодинамического расчетов (см. рис. 2–4) компьютерной программы.

2. Высказанное предположение об одновременном развитии в рудном слое непрерывнодействующих процессов восстановления оксида до металла как за счет растворенного в нем углерода, так и в результате взаимодействия оксида и карбидов хрома достаточно обосновано.

3. Предложенные расчетные уравнения позволяют количественно оценить активность и концентрацию углерода в металле.

4. Установлено, что по мере приближения к непрерывному процессу увеличилась степень восстановления хрома, а расчетные значения концентрации углерода в металле на разработанной компьютерной программе приближались к фактическим.

5. Результаты, полученные с использованием данной программы, позволяют провести аналитический расчет в интервале температур 400–2000 К с шагом 50°, с графическим изображением системы по данным расчета, что позволяет автоматизировать процесс расчета уравнений любых химических реакций и произвести расчет выхода реакций.

Литература

1. Кадарметов, А.Х. Выплавка хромоникелевого продукта непрерывным процессом / А.Х. Кадарметов, К.К. Каскин, А.Н. Учаев // Повышение качества и эффективности производства электростали: науч. тр. НИИМ. – Челябинск: Металлургия. Челябинское отделение, 1989.

2. Каскин, К.К. Разработка программы термодинамического расчета восстановления хрома в руднотермических печах / К.К. Каскин, Ч.А. Ахметов // Научно-технический прогресс в металлургии: тр. V Междунар. науч.-практ. конф. МОН РК. – Темиртау, 2009.

3. Гасик, М.И. Теория и технология производства ферросплавов / М.И. Гасик, Н.П. Лякишев, Б.И. Емлин. – М.: Металлургия, 1988. – 784 с.

4. Гельд, П.В. Процессы высокотемпературного восстановления / П.В. Гельд, О.А. Есин. – Свердловск: Металлургиздат, 1957. – 646 с.

5. Туркдоган, Е.Т. Физическая химия высокотемпературных процессов / Е.Т. Туркдоган. – М.: Металлургия, 1985. – 344 с,

6. Григорян, В.А. Теоретические основы электросталеплавильных процессов / В.А. Григорян, Л.Н. Белянчиков, А.Я. Стомахин. – М.: Металлургия, 1979. – 256 с.

Поступила в редакцию 13 марта 2012 г.