ИССЛЕДОВАНИЕ ДЕФОРМАЦИОННОГО ПОВЕДЕНИЯ СТАЛИ 20X13 В УСЛОВИЯХ ГОРЯЧЕЙ ОСАДКИ

А.М. Ахмедьянов, С.М. Антонов, С.В. Рущиц

INVESTIGATION OF HOT DEFORMATION BEHAVIOR OF 20Kh13 STEEL THROUGH COMPRESSION TESTS

A.M. Akhmedyanov, S.M. Antonov, S.V. Rushchits

Исследовано деформационное поведение стали 20X13 в условиях одноосного сжатия на термомеханическом симуляторе Gleeble-3800 в диапазоне температур 900–1150 °C и скоростей деформации 0,01–40 с⁻¹. Получено выражение для максимальных напряжений течения в виде функции от параметра Зинера – Холломона (Z), соответствующего температурно-скоростному режиму деформации. Определено критическое значение параметра Z, ниже которого горячая деформация сопровождается динамической рекристаллизацией.

Ключевые слова: горячая деформация, динамическая рекристаллизация, параметр 3инера — Xолломона.

The hot deformation behavior of a 20Kh13 (0.2 C-13 Cr) steel was investigated through compression test using Gleeble-3800 thermal-mechanical simulator within the temperature range of 900–1150 °C and the strain rate range of 0.01–10 s $^{-1}$. The equation of flow stress as a function of Zener–Hollomon parameter Z was obtained. The critical Z value was determined below which dynamic recrystallization may occur during hot deformation.

Keywords: hot deformation, dynamic recrystallization, Zener – Hollomon parameter.

Хромистые коррозионно-стойкие стали мартенситного класса благодаря высокой прочности используются для изготовления лопаток паровых турбин, цельнокатаных колец различного назначения; различных деталей авиастроения, а также обсадных труб для нефтяных скважин. В процессе производства указанных изделий эти стали подвергаются горячей прокатке, ковке или штамповке. Поэтому важно знать и уметь предсказывать их деформационное поведение в различных температурно-скоростных режимах обработки. Цель настоящей работы - исследовать в лабораторных условиях процессы горячей деформации стали 20X13 и получить аналитические выражения для максимальных напряжений течения, необходимые для инженерных расчетов.

Материалом исследования служили цилиндрические образцы стали 20X13 промышленной плавки следующего химического состава: 0,2 % С, 12,6 % Сг, 0,55 % Мп, 0,68 % Si, 0,016 % Р. Одноосное сжатие образцов диаметром 10 мм и высотой 15 мм производилось на модуле Hydrawedge (пластометр) физического симулятора Gleeble-3800 в интервале температур 900–1150 °С (в аустенитной области) и скоростей деформации 0,01–40 с⁻¹. Образцы нагревались до температуры испытания со скоростью 5 °С/с прямым пропусканием электрического тока, выдерживались при этой температуре 15 мин, подвергались деформации и затем ус-

коренно охлаждались струей воды. Усилие деформации измерялось тензометрическим датчиком. Деформация фиксировалась датчиком продольной деформации по уменьшению высоты образца. Температура образцов контролировалась термопарой, приваренной к образцу. Отсутствие температурного градиента обеспечивалось использованием специальных бойков с высоким электрическим сопротивлением. Для уменьшения трения между бойками и образцом использовались графитовые вставки.

Экспериментальные кривые течения исследуемой стали в координатах истинные деформации (ε) – истинные напряжения (σ) приведены на рис. 1. В условиях постоянных скоростей деформации є (рис. 1, а, б) напряжения течения падают с ростом температуры деформации. Увеличение скорости деформации при постоянной температуре испытаний сопровождается ростом напряжений течения (рис. 1, в, г). Вид кривых течения, типичный для горячей деформации, также зависит от температуры и скорости деформации. Схематически два наблюдаемых типа кривых течения в пластической области представлены на рис. 2. При относительно низких температурах и высоких скоростях деформации процессы деформационного упрочнения сопровождаются термически активируемыми процессами динамического возврата, заключающимися в перераспределении и

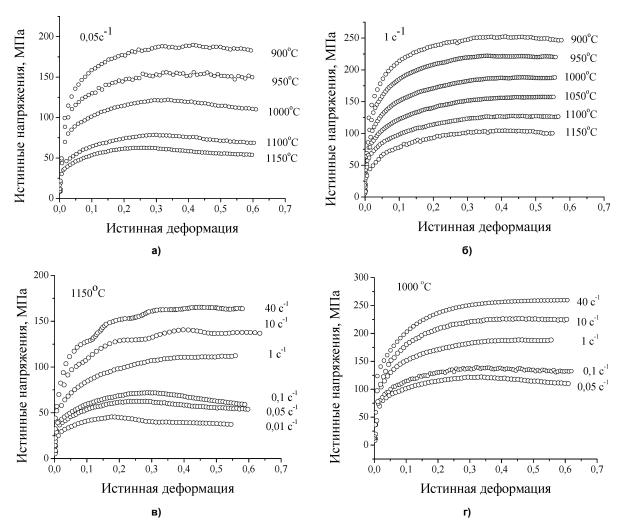


Рис. 1. Экспериментальные кривые течения стали 20Х13 при разных температурно-скоростных режимах деформации

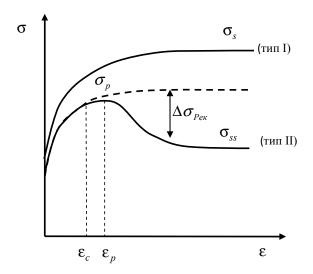


Рис. 2. Типичные кривые течения металлов в условиях динамического возврата (тип I) и динамической рекристаллизации (тип II)

аннигиляции дислокаций. В результате напряжения течения достигают максимума σ_s и при дальнейшем росте степени деформации остаются практически постоянными (выходят на плато) в силу установившегося равенства скоростей размножения и аннигиляции дислокаций (рис. 2, тип I).

При высоких температурах (1000-1150 °C) и малых скоростях деформации (0,01-0,1 с $^{-1}$) форма кривых течения приобретает иной вид: наблюдается падение напряжений течения после достижения ими пиковых значений σ_p с последующим выходом на постоянное установившееся значение

 σ_{ss} (рис. 2, тип II). Такое интенсивное разупрочнение свидетельствует о протекании динамической рекристаллизации, начинающейся при некоторой критической степени деформации ε_c (чуть ниже деформации ε_p , соответствующей пиковому напряжению σ_p) и приводящей к установлению нового баланса между процессами упрочнения и разупрочнения.

Для анализа и предсказания деформационного поведения материалов разработаны модели пластического течения, учитывающие реальный механизм деформационного упрочнения, динамического возврата и динамической рекристаллизации [1–3]. В этих моделях совместное влияние температуры и скорости деформации на деформационное поведение металлических материалов описывается параметром Зинера – Холломона:

$$Z = \dot{\varepsilon} \exp\left(\frac{Q}{RT}\right),\tag{1}$$

где $\dot{\epsilon}$ и T — соответственно скорость и абсолютная температура деформации, R — газовая постоянная, а Q — энергия активации процесса, контролирующего горячую деформацию. При относи-

тельно высоких значениях параметра Z (высокие скорости деформации и низкие температуры) единственным механизмом разупрочнения является динамический возврат (рис. 2, тип I), тогда как в случае малых значений параметра Z следует ожидать развитие процессов динамической рекристаллизации (рис. 2, тип II).

Первым шагом в построении модели пластического течения является нахождение энергии активации Q, входящей в параметр Зинера — Холломона, и установление связи между параметром Z и максимальными напряжениями течения σ_m (σ_s — тип I или σ_p — тип II на рис. 2). В условиях установившегося баланса между процессами упрочнения и разупрочнения параметр Z выражается через гиперболический синус напряжений σ_m [4]:

$$Z = \dot{\varepsilon} \exp\left(\frac{Q}{RT}\right) = A \left[\sinh\left(\alpha\sigma_m\right)\right]^n. \tag{2}$$

Соответственно, сами напряжения σ_m определяются выражением

$$\sigma_m = \frac{1}{\alpha} \left(\operatorname{arcsinh} \left(\frac{Z}{A} \right)^{1/n} \right).$$
 (3)

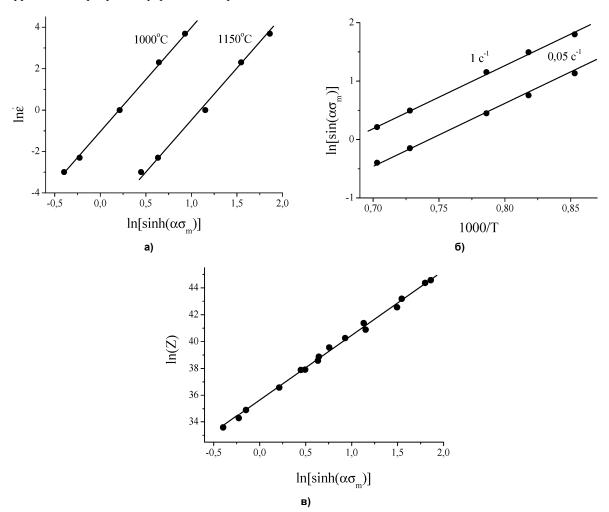
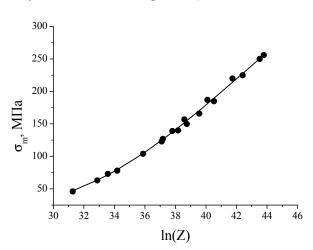



Рис. 3. Графическое нахождение констант α , n, A и энергии активации Q

В (2) и (3) A, α , n – константы исследуемого материала, подлежащие определению из данных экспериментов. Логарифмируя (2), получаем выражение, удобное для графического нахождения всех неизвестных параметров:

$$\ln Z = \ln \dot{\varepsilon} + \frac{Q}{RT} = \ln A + n \ln \left[\sinh(\alpha \sigma_m) \right]. \tag{4}$$

Согласно (4) зависимости $\ln \dot{\epsilon}$ от $\ln \left[\sinh(\alpha \sigma_m) \right]$ в условиях постоянной температуры деформации должны иметь вид прямых линий с равным наклоном, определяющим константу n. Используя экспериментальные значения σ_m , взятые из кривых течения при температурах деформации $1000~^{\circ}$ С и $1150~^{\circ}$ С (рис. 1, в, г), находим значение $\alpha = 0.01~{\rm M\Pi a}^{-1}$, обеспечивающее параллельность прямых, и величину наклона n = 4,967 (рис. 3, a).

Зависимости $\ln[\sinh(\alpha\sigma_m)]$ от величины 1/T в условиях постоянства скорости деформации также должные иметь вид прямых, наклон которых определяет энергию активации Q. Определив экспериментальные значения σ_m по кривым течения при скоростях деформации 0.05 c^{-1} и 1 c^{-1} (рис. 1, a, b), строим соответствующие графики (рис. a, b) и находим значение a0 = 432,5 кДж/моль.

Используя полученное значение энергии активации, рассчитываем параметры Зинера – Холломона Z для всех экспериментальных режимов и строим зависимость $\ln(Z)$ от $\ln[\sinh(\alpha\sigma_m)]$ (рис. 3, в). В полном соответствии с выражением (4) экспериментальные точки ложатся на прямую линию, что свидетельствует о применимости модели [4] для описания деформационного поведения исследуемой

Рис. 4. Экспериментальные (точки) и расчетные (сплошная линия) значения максимальных напряжений течения в зависимости от величины параметра Зинера – Холломона

Экспериментальные и расчетные напряжения σ_m в зависимости от температурно-скоростных условий горячей деформации

№	Скорость деформации, c^{-1}	Температура деформации, °С	Параметр Z	$\sigma_m^{_{^{9KC}}}$, МПа	$σ_m^{\text{pac}_{\text{q}}}$, ΜΠα	Отклонение, %
1	0,01	1150	$4,5\cdot10^{13}$	46	47	-1,8
2	0,05	1150	$2,2\cdot10^{14}$	63	63	0,2
3	0,1	1150	$4,5\cdot10^{14}$	73	71	2,6
4	0,05	1100	$8,3\cdot10^{14}$	78	79	-1,3
5	1	1150	$4,5 \cdot 10^{15}$	108	104	0,3
6	0,05	1000	1,6·10 ¹⁶	123	125	-1,3
7	1	1100	$1,7\cdot10^{16}$	127	126	1
8	0,1	1000	$3,1\cdot10^{16}$	139	137	1,5
9	10	1150	$4,5\cdot10^{16}$	140	144	-2,5
10	1	1050	$6.8 \cdot 10^{16}$	157	151	3,6
11	0,05	950	$8,1\cdot10^{16}$	150	155	-3,1
12	40	1150	$1,8 \cdot 10^{17}$	166	170	-2,4
13	1	1000	$3,1\cdot10^{17}$	187	181	3,3
14	0,05	900	$4,9 \cdot 10^{17}$	185	190	-2,5
15	1	950	1,6.10 ¹⁸	220	214	2,7
16	10	1000	$3,1\cdot10^{18}$	225	227	-1,1
17	1	900	$9,7\cdot10^{18}$	250	251	-0,3
18	40	1000	1,3.1019	256	256	-0

стали в условиях горячей деформации. Пересечение прямой с осью ординат определяет значение последней искомой константы $A = 2,1 \cdot 10^{15}$ с⁻¹ в выражении (2).

Оценки параметров, полученные из графического анализа, не претендуют на высокую точность, так как для определения констант материала α , n и энергии активации Q использовались ограниченные наборы экспериментальных данных. Поэтому полученные оценки были приняты в качестве начальных значений для регрессионного анализа полного набора экспериментальных данных путем минимизации невязки

$$S(A, n, \alpha, Q) = \sum_{n} \left[\left(\sigma_{m}^{\text{SKC}} \right)_{n} - \left(\sigma_{m}(A, n, \alpha, Q) \right)_{n} \right]^{2}, \quad (5)$$

где $\left(\sigma_m^{\text{экс}}\right)_n$ — экспериментальное значение напряжений σ_m для данного температурно-скоростного режима деформации, $\left(\sigma_m(A,n,\alpha,Q)\right)_n$ — соответствующее значение регрессионной функции, определяемой выражением (3). Используя встроенные функции регрессии пакета Mathcad, получены следующие уточненные значения искомых параметров: $\alpha = 0,0094~\text{M}\Pi\text{a}^{-1}$; n = 5,018; $A = 2,31\cdot10^{15}~\text{c}^{-1}$; Q = 426,4~кДж/моль. Подставляя уточненные значения параметров в (3), получаем:

$$\sigma_m = 106,05 \arcsin \left(8,766 \cdot 10^{-4} Z^{0,199} \right),$$

$$Z = \dot{\varepsilon} \exp\left(\frac{51280}{T} \right). \tag{6}$$

Результаты расчета напряжений σ_m по выражению (4) (сплошная линия) вместе с их экспериментальными значениями (точки) для разных значений параметра Z представлены на рис. 4 и в таблице. Отклонения рассчитанных значений максимальных напряжений течения от экспериментальных значений не превышает 3,5 %. При напряжениях σ_m , превышающих 100 МПа, зависимость σ_m от $\ln(Z)$ с высокой точностью носит линейных характер и может быть аппроксимирована следующим выражением, удобным для инженерных расчетов:

$$\sigma_m = -602, 2 + 19, 47 \ln(Z) =$$

$$= -602, 2 + 19, 47 \ln(\dot{\varepsilon}) + \frac{998700}{T}.$$
(7)

Как указывалось выше, параметр Зинера – Холломона определяет не только уровень напряжений течения, но и возможность протекания процессов динамической рекристаллизации. В таблице температурно-скоростные режимы деформации расположены в порядке возрастания параметра Z. Сравнение данных таблицы с экспериментальными кривыми течения (рис. 1) показывает, что признаки динамической рекристаллизации, заключающиеся в падении напряжений течения после достижения пиковых значений, наблюдаются в первых шести режимах деформации, соответствующих значениям $Z \le 1,6 \cdot 10^{16}$ параметра Зинера – Холломона. Однако отметим, что на кривой течения, соответствующей режиму № 6 ($\dot{\epsilon} = 0.05$, $t = 1000 \,^{\circ}\text{C}$, $Z = 1.6 \cdot 10^{16}$), признаки динамической рекристаллизации выражены более отчетливо, чем на кривой течения режима № 5 ($\dot{\epsilon} = 1$, t = 1150 °C, $Z = 4,5 \cdot 10^{15}$) с меньшим значением параметра Зинера - Холломона. Вероятно, это обстоятельство объясняется тем, что в образцах, нагретых от

 $Z = 4,5 \cdot 10^{13}$) с меньшим значением параметра Зинера — Холломона. Вероятно, это обстоятельство объясняется тем, что в образцах, нагретых от комнатной температуры до более низкой температуры испытания (режим № 6), формируются более мелкие зерна аустенита, что способствует протеканию процессов динамической рекристаллизации в ходе последующей горячей деформации.

Полученные в работе результаты — первый шаг в построении полной модели деформационного поведения исследуемой стали, которая позволит предсказывать вид кривых течения при заданных температурно-скоростных режимах горячей деформации.

Литература

- 1. Laasraoui, A. Prediction of steel flow stresses at high temperature and strain rates / A. Laasraoui, J.J. Jonas // Metall. Trans. A. 1991. No. 22. P. 1545–1558.
- 2. Moreira, A. Prediction of Steel Flow Stresses under Hot Working Conditions / A. Moreira, J. Junior, O. Balancin // Materials Research. 2005. Vol. 8, No. 3. P. 309—315.
- 3. Study on hot deformation behavior of 12%Cr ultra-super-critical rotor steel / B. Wang, W. Fua, Z. Lva, P. Jiang // Materials Science and Engineering A. 2008. No. 487. P. 108–113.
- 4. Sellars, C.M. La relation entre la résistance et la structure dans la deformation à chaud / C.M. Sellars, W.J.McG. Tegart // Mémories Scientifiques Rev. Métallurg. 1966. No. 63. P. 731–746.

Поступила в редакцию 17 сентября 2012 г.