ИЗУЧЕНИЕ ВЛИЯНИЯ КОНЦЕНТРАЦИИ ДИСПЕРСНЫХ ЧАСТИЦ НА ВЕЛИЧИНУ ВРЕМЕННОГО СОПРОТИВЛЕНИЯ РАЗРУШЕНИЮ ЦЕНТРОБЕЖНО-ЛИТЫХ СТАЛЬНЫХ ЗАГОТОВОК

А.Н. Аникеев, В.И. Чуманов, И.В. Чуманов

Изложена методика исследования дисперсно-упрочненных центробежно-литых стальных заготовок для определения величины временного сопротивления разрушению в различных сечениях. Приводятся результаты исследования влияния концентрации дисперсных частиц на величину временного сопротивления разрушению.

Ключевые слова: дисперсные частицы, центробежное литье, концентрация дисперсных частиц, величина временного сопротивления разрушению.

Разработка новых видов материалов является важнейшей задачей современной промышленности, поскольку развивающиеся отрасли добычи минерально-сырьевых ресурсов, металлургии, машиностроения, предъявляют все более высокие требования к механическим свойствам металлов [1]. Альтернативой традиционно использующимся металлам могут служить композиционные дисперсно-упрочненные заготовки, полученные методом центробежного литья.

Целью данного исследования является определение влияния концентрации дисперсных частиц карбидов на величину временного сопротивления разрушению центробежно-литых заготовок.

Исследование концентрации дисперсных частиц было проведено на сканирующем электронном микроскопе фирмы «JEOL JSM — 6460 LV» путем прямого подсчёта количества частиц на определенную площадь исследуемого образца при одинаковом увеличении [2]. Результаты исследования представлены в табл. 1.

Для величины временного сопротивления разрушению из различных сечений каждой заготовки было получено по шесть образцов размерами кв. 10×65 мм ($10\times10\times65$ мм): 1, 1^* – с внешней стороны; 2, 2^* – ½ радиуса заготовки; 3, 3^* – внутренний край (рис. 1). Дублирование места вырезки образца с одного сечения производилось для опре-

деления изменения свойств по высоте заготовки. Образцы клеймятся следующим образом: первая цифра — номер заготовки; вторая цифра — вышеописанный номер места вырезки образца.

Для проведения испытаний на разрыв и определения величины сопротивления разрушению используется разрывная машина типа УТС 110M-5.

Испытания показали, что значимых отличий в величине сопротивления разрушению образцы, вырезанные с одного сечения одной заготовки, не показали. Результаты испытаний представлены в табл. 2.

На основании полученных данных была построена диаграмма, отражающая величину сопротивления разрушению полученного материала в различных сечениях (рис. 2).

Исследование показало, что введение дисперсных частиц карбидов существенно повлияло на предел прочности полученного материала, причем в различных сечениях полученных заготовок предел прочности различен. В результате анализа полученных данных выявлено, что даже в заготовках, не имеющих в своем составе дисперсных частиц карбидов, предел прочности по сечению различен. Так, для образцов № 11 и 51 характерно увеличение исследуемого параметра по сравнению с образцами № 12, 13 и 52, 53, что объясняется более мелкой кристаллической структурой, полу-

Таблица 1 Плотность распределения частиц карбида вольфрама по сечению полученных заготовок

Номер	Кол-во введенной	Плотность распределения дисперсных частиц			
заготовки	дисперсной фазы	Внешний слой	Середина	Внутренний слой	
	WC	заготовки, шт./мкм ²	заготовки, шт./мкм 2	заготовки, шт./мкм ²	
1	0	0	0	0	
2	40	0,4	0	0	
3	80	0,6	0	0	
4	120	2,5	0	0	
5	0	0	0	0	
6	120	2,8	0	0	
7	240	5,1	2,6	0,5	
8	360	5,1	3,5	3,4	

2013, том 13, № 1

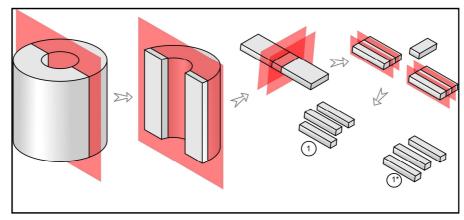


Рис. 1. Схема вырезки образцов из полученных заготовок

Результаты испытаний предела прочности образцов

Таблица 2

Шифр	Максимальное усилие	Врем. сопр.	Шифр	Максимальное усилие	Врем. сопр.
образца	$P_{\rm max}$, H	$\sigma_{\rm B},{\rm H/mm}^2$	образца	$P_{\rm max}$, H	$\sigma_{\rm B},{\rm H/mm}^2$
11	4606	366,71	51	4945	393,7
12	4238	337,4	52	4313	343,3
13	3241	258,04	53	4079	324,7
21	5524	439,8	61	6317	502,9
22	4322	344,1	62	4402	350,4
23	4172	332,1	63	4272	340,1
31	5883	468,9	71	8856	605,09
32	4441	353,5	72	5987	476,6
33	4289	341,48	73	5427	432,08
41	6983	555,9	81	8931	611,06
42	4711	375,07	82	8247	556,6
43	4197	333,41	83	7824	522,9

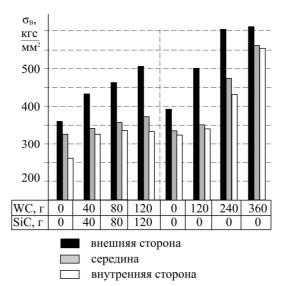


Рис. 2. Диаграмма предела прочности полученного материала

ченной вследствие быстрой кристаллизации в начальные моменты разливки [3].

Наибольшие значения предела прочности наблюдаются в заготовках № 7 и 8, имеющих максимальную концентрацию введенных карбидов. Причем для образцов № 71 и 81 характерны максимальные значения предела прочности: 605,09 и 611,06 кгс/мм² соответственно. В то же время, для образцов № 82 и 83 характерно незначительное уменьшение исследуемого параметра по сравнению с параметром образца № 81 (556,6, 522,9 и 611,06 кгс/мм² соответственно). Это объясняется

незначительным различием концентраций введенных карбидов по сечению заготовки №8.

Таким образом, можно сделать следующие выводы:

- 1. Определено, что концентрация введенных дисперсных частиц неодинакова в различных сечениях различных заготовок.
- 2. Получены данные, что образцы, вырезанные с разных мест одного сечения каждой заготовки, существенных отличий в величине сопротивления разрушению не имеют.
- 3. Выявлено, что в заготовках, не имеющих дисперсных карбидов, предел прочности различен по сечению заготовок, что объясняется более мелкой кристаллической структурой, полученной в результате быстрой кристаллизации во внешних поверхностных слоях по сравнению с внутренними.
- 4. Наибольшие значения предела прочности наблюдаются в заготовках, имеющих максимальную концентрацию введенных карбидов.

НИР проведена в рамках проекта РФФИ № 12-08-00896, а также поддержана ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы (регистрационный номер заявки на участие в конкурсе № 2012-1.1-12-000-2003-7624).

Литература

- 1. Филлипов, М.А. Износостойкие стали для отливок / М.А. Филлипов, А.А. Филиппенков, Γ .Н. Плотников. М.: Металлургия, 2009. 358 с.
- 3. О возможности введения твердых тугоплавких частиц при получении трубной заготовки методом центробежного литья / А.Н. Аникеев, И.В. Чуманов, В.И. Чуманов и др. // Вестник ЮУрГУ. Сер. «Металлургия». — 2009. — № 36 (169). — C. 24-27.

Аникеев Андрей Николаевич, аспирант кафедры общей металлургии, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, Челябинская обл., г. Златоуст, ул. Тургенева, 16. Тел.: (3513)665829. E-mail: anikeev-ml@mail.ru.

Чуманов Валерий Иванович, кандидат технических наук, профессор кафедры общей металлургии, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, Челябинская обл., г. Златоуст, ул. Тургенева, 16. Тел.: (3513)665829. E-mail: maria@zb-susu.ru.

Чуманов Илья Валерьевич, доктор технических наук, профессор, заведующий кафедрой общей металлургии, Южно-Уральский государственный университет, филиал в г. Златоусте. 456209, Челябинская обл., г. Златоуст, ул. Тургенева, 16. Тел.: (3513)665829. E-mail: chiv71@susu.ac.ru.

Bulletin of the South Ural State University Series "Metallurgy" 2013, vol. 13, no. 1, pp. 205–207

INVESTIGATION OF THE EFFECT OF CONCENTRATION OF DISPERSED CARBIDE PARTICLES ON TENSILE FRACTURE RESISTANCE OF CENTRIFUGALLY CAST BILLETS

A.N. Anikeev, V.I. Chumanov, I.V. Chumanov

The paper describes a technique to determine the tensile strength in the different sections of dispersion-strengthened centrifugally cast steel billets. Results of study of the effect of concentration of dispersed particles on the tensile fracture resistance value are presented.

Keywords: dispersed particles, centrifugal casting, concentration of dispersed particles, tensile fracture resistance value.

Anikeev Andrey Nikolaevich, post-graduate student of the General Metallurgy Department, Zlatoust Branch, South Ural State University. 16 Turgenev street, Zlatoust, Chelyabinsk region, Russia 456209. Tel.: 7(3513)665829. E-mail: anikeev-ml@mail.ru.

Chumanov Valeriy Ivanovich, candidate of engineering science, professor of the General Metallurgy Department, Zlatoust Branch, South Ural State University. 16 Turgenev street, Zlatoust, Chelyabinsk region, Russia 456209. Tel.: 7(3513)665829. E-mail: maria@zb-susu.ru.

Chumanov II'ya Valer'evich, doctor of engineering science, professor, head of the General Metallurgy Department, Zlatoust Branch, South Ural State University. 16 Turgenev street, Zlatoust, Chelyabinsk region, Russia 456209. Tel.: 7(3513)665829. E-mail: chiv71@susu.ac.ru.

Поступила в редакцию 19 марта 2013 г.

2013, том 13, № 1