ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ РЕАКЦИИ ВОДЯНОГО ГАЗА

Ю.С. Кузнецов, Г.Г. Михайлов, О.И. Качурина

Возможные равновесные концентрации водяного газа и концентрации газа, полученного нагреванием смесей $\rm H_2-CO_2$ и $\rm H_2O-CO$ разных составов, представлены номограммами. Номограммы позволяют определить кислородный потенциал газовой фазы и условия восстановления оксидов металлов.

Ключевые слова: водяной газ, условия получения, кислородный потенциал, восстановление оксидов.

Водяной газ — четырехкомпонентная смесь $H_2-H_2O-CO-CO_2$ — является основой газовых атмосфер во многих металлургических технологиях. Параметры равновесия реакции водяного газа

$$H_2 + CO_2 = H_2O + CO$$

достаточно просто рассчитываются с использованием константы равновесия:

$$K_p(1) = K_c(1) = \frac{p_{\text{H}_2\text{O}}p_{\text{CO}}}{p_{\text{H}_2}p_{\text{CO}_2}} = \frac{(\% \text{ H}_2\text{O})(\% \text{ CO})}{(\% \text{ H}_2)(\% \text{ CO}_2)} =$$

$$= \frac{x_{\text{H}_2\text{O}}x_{\text{CO}}}{x_{\text{H}_2}x_{\text{CO}_2}} = e^{-\frac{\Delta_r G_T^\circ(1)}{RT}}.$$
 (1)

Стандартное изменение энергии Гиббса (Дж) для реакции водяного газа с учетом температурных зависимостей тепловых эффектов реакций, изменения энтропии и теплоемкостей газов [1, 2]

$$\Delta_r G_T^{\circ}(1) = 47584 - 1,263 \cdot 10^{-3} T^2 - \frac{3,963 \cdot 10^5}{T} - 132,956T + 13,011T \ln T. \tag{2}$$

Довольно часто в практических расчетах используют приближенные уравнения. Например, для реакции водяного газа в справочниках и научной литературе рекомендуется пользоваться приближенным линейным уравнением [2]

$$\Delta_r G_T^{\circ}(1) = 36580 - 33,465T.$$
 (3)

Результаты расчетов по уравнениям (2) и (3) хорошо совпадают при температурах ниже 1200 К. Поэтому при расчетах процессов твердофазного восстановления, например оксидов железа (особенно в присутствии углерода), допустимо использование приближенного уравнения (3).

Если переписать константу равновесия реакции водяного газа в таком виде:

$$K_1 = \frac{x_{\text{CO}}/x_{\text{CO}_2}}{x_{\text{H}_2}/x_{\text{H}_2\text{O}}}, \qquad \frac{x_{\text{CO}}}{x_{\text{CO}_2}} = K_1 \frac{x_{\text{H}_2}}{x_{\text{H}_2\text{O}}},$$
 (4)

то количественную информацию о равновесии реакции при разных температурах можно представить номограммой, на которой изотермы — прямые линии, угловой коэффициент которых равен константе равновесия (рис. 1). График на рис. 1 иллюстрирует важную особенность равновесия реакции водяного газа — для любой температуры возможно множество концентраций ком-

понентов водяного газа, удовлетворяющих соотношениям (4). Получить водяной газ нужного состава можно нагреванием до заданной температуры смеси « ${\rm H_2}$, a_0 моль — ${\rm CO_2}$, d_0 моль» при исходных концентрациях $x_{\rm CO}=x_{\rm H_2O}=0$; или смеси « ${\rm H_2O}$, b_0 моль — ${\rm CO}$, c_0 моль» при исходных концентрациях $x_{\rm H_2}=x_{\rm CO_2}=0$. Подтвердим это численными расчетами.

Пусть смесь водорода и углекислого газа нагревается до заданной температуры в реакторе любого объема при любом давлении:

$$m H_2 + CO_2 = H_2O + CO$$
 Исходный состав $a_0 d_0 - - P$ Равновесный состав $a_0 - x d_0 - x x x$

Здесь a_0 и d_0 — числа молей H_2 и CO_2 в исходной смеси. Если для простоты расчетов положить $a_0+d_0=1$ моль, тогда a_0-x , d_0-x , x и x — молярные доли компонентов равновесного водяного газа. Получаем для константы равновесия

$$K_1 = \frac{x^2}{(a_0 - x)(d_0 - x)}. (5)$$

Решение этого квадратного уравнения (при $K_1 \neq 1$) представляется уравнением

$$x_{\text{CO}} = x_{\text{H}_2\text{O}} = -\frac{0.5K_1}{1 - K_1} \pm \sqrt{\frac{K_1 a_0 d_0}{1 - K_1} + \left(\frac{0.5K_1}{1 - K_1}\right)^2}.$$
 (6)

Из результатов вычислений по этому уравнению следует, что физический смысл имеет один из двух корней, причем для $K_1 < 1$ перед квадратным корнем следует ставить знак «+», а для $K_1 > 1$ – знак «-». При $K_1 = 1$ (1093 K) из уравнения (5) получается

$$x = \frac{a_0 d_0}{a_0 + d_0}.$$

Результаты расчетов составов равновесного водяного газа для трех температур представлены в табл. 1—3 и точками для разных соотношений a_0/d_0 на соответствующих изотермах номограммы на рис. 1. Для примера на рис. 2 представлены результаты расчетов для температуры 1093 К. Рис. 3 отмечает еще одну важную особенность — сумма концентраций газов-восстановителей и сумма концентраций газов-окислителей зависят только от состава нагреваемой смеси, но не зависят от температуры.

2014, том 14, № 1

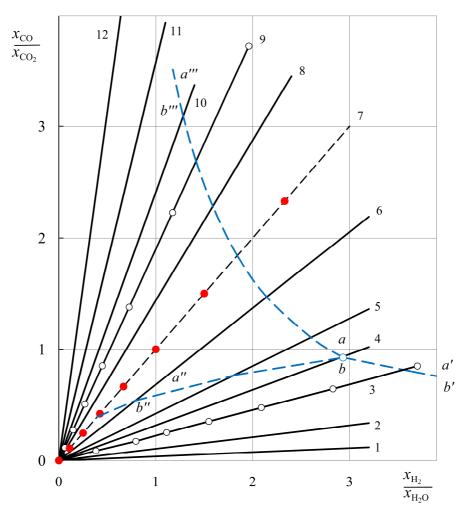


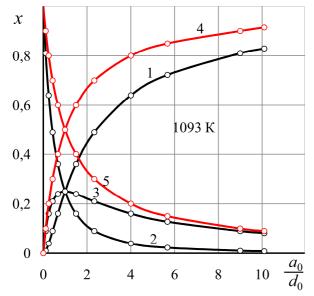
Рис. 1. Соотношения между $x_{\rm CO}/x_{\rm CO_2}$ и $x_{\rm H_2}/x_{\rm H_2O}$ равновесного водяного газа: 1 – 600, 2 – 700, 3 – 800, 4 – 850, 5 – 900, 6 – 1000, 7 – 1093, 8 – 1200, 9 – 1300, 10 – 1400, 11 – 1600, 12 – 2000 К; линии aa' (bb'), aa'' (bb''), aa''' (bb''') – равновесия водяного газа со смесями ${\rm Fe_3O_4-Fe}$, ${\rm Fe_3O_4-FeO}$, ${\rm FeO-Fe}$; точка a (b) – нонвариантное равновесие ${\rm Fe_3O_4-FeO-Fe-H_2-H_2O-CO-CO_2}$

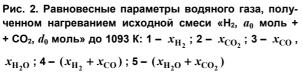
Возможные параметры равновесия реакции водяного газа при 800 К

0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 20,1 0 $d_{\rm o}$ 0 0,10, 20,30,40,5 0,6 0,7 0,8 0,9 1 $x_{\rm CO} = x_{\rm H_2O}$ 0 0,0724 0,1420 0,0724 0 0,1153 0,1570 0,1618 0,1570 0,1420 0,1153 1 0,8276 0,6848 0,5580 0,4430 0,3382 0,2430 0,1580 0,0848 0,0276 0 $x_{\rm H_2}$ x_{CO_2} 0 0,0276 0,0848 0,1580 0,2430 0,3382 0,4430 0,5580 0,6848 0,8276 1 0 0,382 0,7354 1,5483 5,9414 $x_{\rm H_2}/x_{\rm H_2O}$ 1,1122 2,09 2,8224 3,928 11,438 $x_{\rm CO}/x_{\rm CO_2}$ 0,08074 0,1683 0,2545 0,3543 0,4784 0,6459 0,8991 1,3599 2,618 $\lg(p_{\mathrm{O}_2}, \mathrm{атм})$ -28,03-27,38-25,64-28,60-27,67-27,12-26,86-26,58-26,22

Таблица 1

Возможные параметры равновесия реакции водяного газа при 1093 К


Таблица 2


$\frac{a_{\rm o}}{d_{\rm o}}$	$\frac{1}{0}$	$\frac{0,9}{0,1}$	$\frac{0,8}{0,2}$	$\frac{0,7}{0,3}$	$\frac{0,6}{0,4}$	$\frac{0.5}{0.5}$	$\frac{0,4}{0,6}$	$\frac{0,3}{0,7}$	$\frac{0,2}{0,8}$	$\frac{0,1}{0,9}$	$\frac{0}{1}$
$x_{\rm CO} = x_{\rm H_2O}$	0	0,09	0,16	0,21	0,24	0,25	0,24	0,21	0,16	0,09	0
x_{H_2}	1	0,81	0,64	0,49	0,36	0,25	0,16	0,09	0,04	0,01	0
$x_{\rm CO_2}$	0	0,01	0,04	0,09	0,16	0,25	0,36	0,49	0,64	0,81	1
$x_{\rm H_2}/x_{\rm H_2O}$	0	0,111	0,25	0,429	0,667	1	1,5	2,33	5,674	9	_
$x_{\rm CO}/x_{\rm CO_2}$	0	0,111	0,25	0,429	0,667	1	1,5	2,33	5,674	9	_
$\lg(p_{\mathrm{O}_2}, \mathrm{атм})$	-	-19,78	-19,07	-18,60	-18,22	-17,87	-17,52	-17,13	-16,66	-15,96	_

Возможные параметры равновесия реакции водяного газа при 1300 К

Таблица 3

$\underline{a_{0}}$	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0
$d_{\rm o}$	$\overline{0}$	0,1	0,2	0,3	$\overline{0,4}$	0,5	0,6	$\overline{0,7}$	0,8	0,9	1
$x_{\rm CO} = x_{\rm H_2O}$	0	0,0942	0,1744	0,2365	0,2761	0,2897	0,2761	0,2365	0,1744	0,0942	0
$x_{\rm H_2}$	1	0,8058	0,6256	0,4636	0,3240	0,2103	0,1240	0,0636	0,0256	0,0058	0
$x_{\rm CO_2}$	0	0,0058	0,0256	0,0636	0,1240	0,2103	0,3240	0,4636	0,6256	0,8058	1
$x_{\rm H_2}/x_{\rm H_2O}$	0	0,1169	0,2788	0,5101	0,8521	1,3776	2,2271	3,7207	6,808	_	-
$x_{\rm CO}/x_{{\rm CO}_2}$	0	0,0616	0,1469	0,2688	0,4490	0,7259	1,1735	1,9605	3,5926	_	_
$\lg(p_{\mathrm{O}_2}, \mathrm{атм})$	_	-15,99	-15,23	-14,71	-14,26	-13,84	-13,43	-12,98	-12,46	-11,70	_



Рис. 3. Суммы концентраций восстановителей и окислителей в равновесном водяном газе, нагревание до 800 (Δ), 1093 (\circ) и 1500 К (\Box)

2014, том 14, № 1

Пунктирными линиями aa' (bb'), aa'' (bb''), aa''' (bb''') на номограмме (см. рис. 1) показаны хорошо известные «вилки», определяющие параметры равновесия газовых смесей $CO-CO_2$ и H_2-H_2O со смесями твердых фаз Fe_3O_4-Fe , Fe_3O_4-FeO и FeO-Fe. Точка пересечения линий a (b) характеризует параметры нонвариантных равновесий $Fe_3O_4-FeO-Fe-H_2-H_2O$ и $Fe_3O_4-FeO-Fe-CO-CO_2$.

В металлургической литературе принято количественно оценивать окислительно-восстановительные свойства газовой фазы величиной *кислородного потенциала* $\pi_0 = RT \ln p_{\rm O_2}$. Для любой сколь угодно сложной газовой смеси, если в ней присутствуют ${\rm CO_2}$ и ${\rm CO}$ (или ${\rm H_2O}$ и ${\rm H_2}$) и известны их концентрации, кислородный потенциал может быть вычислен при общем давлении 1 атм по уравнениям:

$$\pi_{O} = -565 \, 390 +$$

$$+ \left[175,17 + 16,628 \ln \frac{x_{CO_2}}{x_{CO}} \right] T , Дж$$

$$\pi_{O} = -492 \, 230 +$$

$$+ \left[108,24 + 16,628 \ln \frac{x_{H_2O}}{x_{H_2}} \right] T , Дж$$
(8)

Эти уравнения основываются на термодинамических характеристиках реакций диссоциации диоксида углерода или паров воды при давлении 1 атм. Результаты расчетов величин $\lg(p_{\mathrm{O}_2}, \mathrm{атм})$ водяного газа, получающегося нагреванием смесей $H_2 + CO_2$, приведены в табл. 1–3. Для приблизительной оценки величины парциального давления кислорода можно воспользоваться номограммами [3], рис. 4 и 5. На номограммах представлены изобары кислорода и, для примера, равновесные параметры реакций восстановления оксидов Fe₃O₄ и FeO водородом и монооксидом углерода. На рис. 4 линия та характеризует равновесие реакции $C + CO_2 = 2CO$. Параметры ниже этой линии характеризуют метастабильные состояния – выделения сажистого углерода.

Результаты расчетов (см. табл. 1–3) кроме обычных графиков (см. рис. 2 и 3) можно представить трехмерной диаграммой (рис. 6). Политермическая поверхность на этой диаграмме определяет возможные сочетания концентраций H_2 и CO в водяном газе, полученном нагреванием смесей « H_2 , a_0 моль + CO_2 , d_0 моль». Образующими поверхности являются изотермические линии, которые представляются проекциями 1, 2 и 3 на плоскость $x_{\rm H_2}$ – $x_{\rm CO}$ (рис. 7). Эти проекции определяют

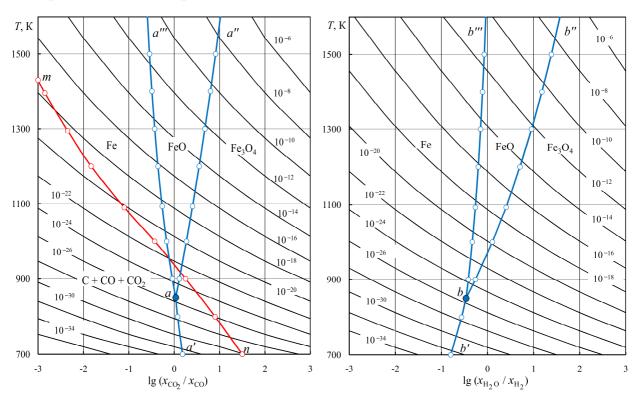


Рис. 4. Номограмма « $\lg(x_{\mathrm{CO}_2}/x_{\mathrm{CO}}) - p_{\mathrm{O}_2} - T$ » для водяного газа при 1 атм: область ниже линии mn – термодинамическая неустойчивость CO (метастабильные состояния); линии aa', aa'' и aa''' – равновесие газовой смеси CO – CO $_2$ с твердыми Fe $_3$ O $_4$ – Fe $_3$ O $_4$ – FeO и FeO – Fe; точка a – нонвариантная система Fe $_3$ O $_4$ – FeO – Fe – CO – CO $_2$

Рис. 5. Номограмма « $\lg(x_{\rm H_2O}/x_{\rm H_2}) - p_{\rm O_2} - T$ » для водяного газа при 1 атм: линии bb', bb'' и bb''' – равновесие газовой смеси $\rm H_2 - \rm H_2O$ с твердыми $\rm Fe_3O_4 - Fe$, $\rm Fe_3O_4 - FeO$ и $\rm FeO - Fe$; точка b – нонвариантная система $\rm Fe_3O_4 - FeO - Fe - H_2 - H_2O$

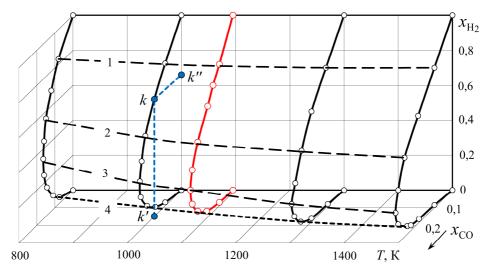


Рис. 6. Пространственная диаграмма, определяющая возможные соотношения между концентрациями H_2 и CO в равновесном водяном газе: изотермы 800, 1000, 1093, 1300

и 1500 К; исходные смеси (H₂,
$$a_0$$
 моль + CO₂, d_0 моль): линия 1 - $\frac{a_0}{d_0} = \frac{0.9}{0.1}$, 2 - $\frac{0.7}{0.3}$,

$$3-rac{0.5}{0.5}$$
 ; точка k : x_{CO} = 0,1498 (k '), x_{H_2} = 0,6502 (k '') – частный случай 1000 K, $\frac{a_0}{d_0}=rac{0.8}{0.2}$

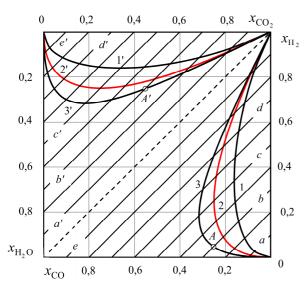


Рис. 7. Номограмма равновесных параметров водяного газа, полученного нагреванием смеси « ${\rm H_2}$, a_0 моль + + ${\rm CO_2}$, d_0 моль»: 1, 2 и 3 – концентрации ${\rm H_2}$ и CO при 800, 1093 и 1500 К, 1′, 2′ и 3′ – концентрации ${\rm H_2O}$ и ${\rm CO_2}$ при 800, 1093 и 1500 К; линии a, b, c, d и e: $\frac{a_0}{d_0} = \frac{0.1}{0.9}$, $\frac{0.3}{0.7}$, $\frac{0.5}{0.5}$, $\frac{0.7}{0.3}$ и $\frac{0.9}{0.1}$

равновесные концентрации только H_2 и CO. Равновесные концентрации H_2O и CO_2 определяются на рис. 7 линиями 1', 2' и 3'. Соотношения равновесных концентрации H_2O и CO_2 тоже могут быть представлены политермической поверхностью на пространственной диаграмме (чтобы не загромождать рисунок, эта поверхность на рис. 6 не показана, но ее положение можно представить по виду рис. 7).

Как следует из рис. 7, равновесный водяной газ кроме многообразия возможных концентраций компонентов характеризуется еще одной особенностью - зеркальной симметрией соотношений концентраций газов-восстановителей и концентраций газов-окислителей. Кроме того, политермические линии, соединяющие точки равновесных концентраций Н2 (или СО) и Н2О (или СО2) газа, полученного нагреванием до разных температур исходных смесей Н2-СО2 разных составов, оказываются прямыми. Например, в нижнем правом концентрационном треугольнике (см. рис. 7) точки пересечения с изотермами 1, 2 и 3 политермических линий b и d (концентрация водорода в исходной смеси 0,3 и 0,7, соответственно) определяют равновесные концентрации $x_{\rm H_2}$ и $x_{\rm CO}$. В верхнем левом концентрационном треугольнике (см. рис. 7) проведены политермические прямые линии b' и d'. Точки пересечения этих линий с изотермическими кривыми 1', 2' и 3' определяют другие две равновесные концентрации: $x_{\rm H_2O}$ и $x_{\rm CO_2}$. Каждая из линий а...е и а'...е' параллельна гипотенузе и пересекает оси координат в точках, характеризующих состав исходной смеси. Таким образом, равновесные параметры газа определяются номограммой, на которой можно провести диагональные линии для любых соотношений величин a_0 и d_0 в нагреваемых смесях $H_2 + CO_2$.

Водяной газ можно получить нагреванием смесей « H_2O , b_0-CO , c_0 ». Результаты расчетов равновесия реакции $H_2O + CO = H_2 + CO_2$ представлены на рис. 8. И в этом случае получаются зеркально симметричные кривые, определяющие составы равновесного водяного газа. Разные поло-

жения изотерм 800, 1093 и 1500 К на рис. 7 и 8 объясняются разными знаками тепловых эффектов:

- реакция $H_2 + CO_2 = H_2O + CO$ эндотермическая (рис. 7).

- реакция $H_2O + CO = H_2 + CO_2$ экзотермическая (рис. 8).

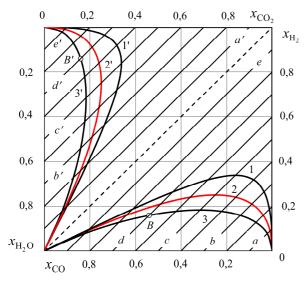


Рис. 8. Номограмма равновесных параметров водяного газа, полученного нагреванием смеси «H₂O, b_0 моль – CO, c_0 моль»: линии 1, 2 и 3 – концентрации H₂ и CO при 800, 1093 и 1500 К, линии 1′, 2′ и 3′ – концентрации H₂O и CO₂ при 800, 1093 и 1500 К; линии a, b, c, d и e: $\frac{c_0}{b_0} = \frac{0,1}{0,9}, \frac{0,3}{0,7}, \frac{0,5}{0,5}, \frac{0,7}{0,3}$ и $\frac{0,9}{0,1}$

Приведем примеры использования номограмм для определения составов равновесного водяного газа при разных способах его получения.

- 1. Состав равновесного водяного газа, получающегося при нагревании смеси ($\rm H_2$, 0,3 моль + $\rm +CO_2$, 0,7 моль) до 1500 К определяется координатами точек пересечения линий b и b' с изотермами 3 и 3′. Получаем $x_{\rm H_2}=0.0477$, $x_{\rm CO}=0.2523$ (точка A, рис. 7); $x_{\rm H_2O}=0.2523$, $x_{\rm CO_2}=0.4477$ (точка A', рис. 7).
- 2. Состав равновесного водяного газа, получающегося при нагревании смеси «H₂O, 0,3 моль –

СО, 0,7 моль» до 1500 К определяется координатами точек пересечения линий d и d' с изотермами 3 и 3′. Получаем $x_{\rm H_2} = 0,1596$, $x_{\rm CO} = 0,5404$ (точка B, рис. 8); $x_{\rm H_2O} = 0,1404$, $x_{\rm CO_2} = 0,1596$ (точка B', рис. 8).

Выводы

1. Равновесие водяного газа реализуется при бесконечном множестве возможных концентраций компонентов. Это согласуется с правилом фаз Гиббса: число степеней свободы системы $H_2 - H_2O - CO - CO_2$

$$c = \kappa + 2 - \phi = 3 + 2 - 1 = 4$$
.

В случае P и T = const число степеней свободы

$$c = \kappa - \phi = 3 - 1 = 2$$
,

то есть равновесные характеристики системы можно определить, если задать какие-либо два параметра исходной системы.

- 2. Частные значения концентраций реализуются нагреванием до заданной температуры различных по составу смесей $H_2 CO_2$ или $H_2O CO$.
- 3. Равновесные параметры водяного газа можно с достаточной точностью определять по номограммам. По этим же номограммам можно оценивать параметры исходных систем «оксид $-H_2-CO_2$ » или «оксид $-H_2O-CO$ ». При нагревании этих систем до заданной температуры будет происходить восстановление оксида. Номограммы могут использовать студенты для самоконтроля правильности расчетов, или преподаватели для контроля результатов работы студента.

Литература

- 1. Михайлов, Γ . Γ . Термодинамика металлургических процессов и систем / Γ . Γ . Михайлов, Б.И. Леонович, Ю.С. Кузнецов. М.: Издат. Дом МИСиС, 2009. 520 с.
- 2. Краткий справочник физико-химических величин / под ред. А.А. Равделя и А.М. Пономаревой. Изд. 10-е, испр. и доп. СПб.: Иван Федоров, 2003. 240 с.
- 3. Muan, A. Phase eqilibria among oxides in steelmaking / A. Muan, E.F. Osborn. New York: Pergamon Press Limited, 1965.

Кузнецов Юрий Серафимович, канд. техн. наук, профессор кафедры физической химии, Южно-Уральский государственный университет (г. Челябинск); kuznetcovys@susu.ac.ru.

Михайлов Геннадий Георгиевич, д-р техн. наук, профессор, заведующий кафедрой физической химии, Южно-Уральский государственный университет (г. Челябинск); mikhailov-gg@mail.ru.

Качурина Ольга Ивановна, канд. хим. наук, доцент кафедры неорганической химии, Южно-Уральский государственный университет (г. Челябинск); oivk2013@mail.ru.

Поступила в редакцию 1 апреля 2014 г.

Bulletin of the South Ural State University Series "Metallurgy" 2014, vol. 14, no. 1, pp. 5–11

THERMODYNAMIC ANALYSIS OF THE WATER GAS REACTION

- **Yu.S. Kuznetsov**, South Ural State University, Chelyabinsk, Russian Federation, kuznetcovys@susu.ac.ru,
- **G.G. Mikhailov**, South Ural State University, Chelyabinsk, Russian Federation, mikhailov-gg@mail.ru,
- **O.I. Kachurina**, South Ural State University, Chelyabinsk, Russian Federation, oivk2013@mail.ru

Possible equilibrium concentrations of the water gas and concentrations of the gas obtained by heating H_2 – CO_2 and H_2 0–CO mixtures of various composition are presented as nomograms. The nomograms enable to determine the oxygen potential of the gas phase and conditions for the reduction of metal oxides.

Keywords: water gas, obtaining conditions, oxygen potential, oxide reduction.

References

- 1. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. *Termodinamika metallurgicheskikh protsessov i sistem* [Thermodynamics of Metallurgical Processes and Systems]. Moscow, MISiS Publ., 2009. 520 p.
- 2. Kratkiy spravochnik fiziko-khimicheskikh velichin [Brief Handbook of Physico-Chemical Data]. 10th ed. Ravdel' A.A. and Ponomareva A.M. (Eds.). St. Petersburg, Ivan Fedorov Publ., 2003. 240 p.
- 3. Muan A., Osborn E.F. *Phase Eqilibria Among Oxides in Steelmaking*. New York, Pergamon Press Ltd., 1965.

Received 1 April 2014

2014, том 14, № 1