Металлургия чёрных, цветных и редких металлов

УДК 669.15

DOI: 10.14529/met150407

ЖИДКОФАЗНОЕ РАЗДЕЛЕНИЕ МЕТАЛЛИЗОВАННОЙ МЕЛОЧИ ХРОМОВОЙ РУДЫ

К.Т. Ахметов, В.Е. Рощин

Южно-Уральский государственный университет, г. Челябинск

Экспериментально изучено влияние продолжительности твердофазной металлизации при 1400 °C офлюсованных кварцитом частиц кемпирсайской хромовой руды размером 1...2 мм в смеси с углем на состав и выход металла при последующем жидкофазном разделении продуктов металлизации на металл и шлак при 1850 °C. Установлено, что металлизация в течение 2 ч даже при использованной относительно низкой температуре 1400 °C позволяет восстановить и извлечь более 80 % хрома и более 90 % железа, а при металлизации в течение 3 ч степень извлечения обоих металлов достигает 95 %. Структура металла, полученного в результате разделения продуктов восстановления, соответствует структуре углеродистого феррохрома. В металле содержатся карбиды (Cr, Fe)₂₃C₆ и (Cr, Fe)₇C₃ и силициды FeSi₂ и Cr₃Si, причем с увеличением продолжительности восстановительной выдержки возрастает количество силицидов и содержание железа в них, а карбиды обогащаются хромом. Получаемый в результате разделения шлак при обжиге обедняется оксидами железа и хрома; их среднее содержание в случае после твердофазного обжига в течение 3 ч снижается до 0,5 и 2,5 % соответственно.

Ключевые слова: хромовая руда, предварительное восстановление, жидкофазное разделение.

Введение

При добыче и обогащении хромовых руд образуется много (50 % и более от всей добытой руды) рудной мелочи, не соответствующей требованиям классической технологии производства феррохрома. Часть этой мелочи используют в производстве хромитового агломерата [1], а наиболее мелкая фракция размером менее 0,3 мм направляется в отвал, причем эти хвосты обогащения содержат до 30...35 % Cr₂O₃ [2].

Вследствие высокой температуры плавления хромшпинелида и вмещающих пород кемпирсайской руды, представленных в основном серпентинитом ($3MgO \cdot 2SiO_2 \cdot nH_2O$), переходящим при обжиге в форстерит $2MgO \cdot 2SiO_2$ с температурой плавления ~ 1900 °C, для получения из мелочи прочного агломерата спекание необходимо проводить при температуры 1400...1500 °C и выше. Для снижения температуры спекания в шихту агломерата вводят флюсующие добавки. В качестве наиболее широко используемых флюсов служат материалы, содержащие кремний и алюминий.

Учитывая высокое содержание хрома в хвостах обогащения, их также целесообразно использовать для дальнейшей переработки с целью извлечения этого элемента. Это становится возможным после окомкования дисперсных частиц и их металлизации. В частности, предварительное восстановление металлов из хромовой руды с 1977 г. осуществляется на заводе ферросплавов Xstrata Alloys в Лиденбурге (Машишинге), ЮАР [3, 4]. По аналогии с предвосстановлением железа в железных рудах предварительную металлизацию проводят в рудоугольных окатышах или брикетах, используя в качестве восстановителя углерод кокса или угля. При этом в состав брикетов помимо связующих материалов, например бентонита, также вводят флюсующие добавки, в частности, боратовую руду или тонкоразмолотый базальт [1].

В начале 1980-х гг. фирмами Mintek и Middelburg Steel & Alloys (ЮАР) разработан процесс производства феррохрома в открытой (типа сталеплавильной) рудоплавильной печи постоянного тока с целью плавления неподготовленной хромитовой рудной мелочи. На начальном этапе рудную мелочь в виде частиц размером примерно 2 мм загружали на поверхность расплава через полый электрод. Однако в конце 1990-х гг., после специально проведенных сравнительных испытаний подачи шихты через полый электрод и отверстие в своде, фирма Mintek сделала заключение об отсутствии особых преимуществ использования полых электродов. Небольшое увеличение выноса пыли при загрузке через сводовое отверстие вполне компенсируется снижением стоимости изготовления сплошных электродов по сравнению с полыми и упрощением системы подачи шихты [5].

Успешный опыт переработки неподготовленной рудной мелочи на предприятиях фирмы Mintek предполагается использовать на Актюбин-

Металлургия чёрных, цветных и редких металлов

ском заводе ферросплавов. В 2014 г. на этом предприятии построен плавильный цех № 4 с четырьмя рудоплавильными печами постоянного тока мощностью по 80 MBA каждая для извлечения хрома и железа из неподготовленной мелкой руды, подаваемой через сводовое отверстие [6]. Учитывая, что предварительная металлизация с применением коксовой мелочи позволяет достигать степени восстановления железа до 90 % и хрома до 50 %, снижения расхода электроэнергии с 3,9 до 2,4 MBT ч/т, то есть примерно на 40 % [7], целесообразно оценить возможность металлизации рудной мелочи с целью извлечения металла плавлением в рудоплавильных печах.

Целью работы является экспериментальное исследование влияния параметров восстановительного обжига офлюсованных кварцитом мелких частиц хромовой руды на выход углеродистого феррохрома при жидкофазном разделении продуктов восстановления неокомкованной рудной мелочи.

1. Методика проведения экспериментов

Эксперименты проводили в два этапа. На первом этапе осуществляли твердофазное восстановление металлов из неокомкованной мелочи хромовой руды, на втором - жидкофазное разделение продуктов восстановительного обжига. Эксперименты проводили в печи сопротивления с графитовым нагревателем. Исходную порошкообразную кемпирсайскую руду в зернах размером 1...2 мм смачивали раствором жидкого стекла в воде и обкатывали в тонкомолотом (0...0,063 мм) кварците. Полученный офлюсованный порошок сушили естественной сушкой и смешивали с молотым (0,16...0,32 мм) коркинским углем. Материалы перемешивали, засыпали в графитовый тигель и помещали в рабочую зону печи Таммана. Восстановительный обжиг проводили при температуре 1400 °С и выдержке 60, 120 или 180 мин. Температуру внутри реакционной смеси контролировали вольфрам-рениевой термопарой ВР5/20 (рис. 1). С целью повышения надежности результатов эксперимент повторяли трижды при каждой продол-

Рис. 1. Экспериментальная установка: 1 – корпус печи; 2 – нагреватель; 3 – графитовый тигель; 4 – реакционная смесь; 5 – термопара; 6 – мультиметр; 7 – уголь; 8 – офлюсованные частицы руды

жительности восстановительной выдержки; всего проведено 12 экспериментов.

После изотермической выдержки тигли с реакционной смесью охлаждали до комнатной температуры вместе с печью. Полученные продукты восстановительного обжига разделяли рассевом, отсеянные рудные частицы подвергали плавлению с целью разделения металлической и шлаковой фаз. Эксперименты по жидкофазному разделению проводили в одинаковых условиях - при температуре 1850 °С и выдержке 4 мин. Для соблюдения этих условий в печи разогревали пустой корундовый тигель и, не вынимая тигель из печи, засыпали порошок прошедшей восстановительный обжиг руды. Расплавленную металлошлаковую смесь перемешивали, и тигель извлекали из печи. Исходные материалы и полученные образцы шлака и металла тщательно взвешивали для составления материального баланса. Вид исходных частиц руды и полученных продуктов представлен на рис. 2.

Образцы металла и шлака заливали в эпоксидную смолу для изготовления микрошлифов. Шлифы изучали на оптических и электронном сканирующем микроскопах. Образцы металла

a)

Рис. 2. Исходный офлюсованный порошок руды (а), шлак и металл после плавления (б)

подвергали также рентгенофазному исследованию на дифрактометре ДРОН-4.

Состав исходных материалов. В экспериментах использовали кемпирсайскую руду состава (мас. %): 51,0 Cr₂O₃; 7,2 Al₂O₃; 0,40 CaO; 7,0 SiO₂; 19,16 MgO; 12,2 FeO; 0,033 P; 0,032 S. Состав угля коркинского месторождения (мас. %): влажность W^r 11,7 %, зольность чистого угля A^c 25,0 %, выход летучих V^r 41,6 %, содержание серы 1,2 %. Химический состав золы (мас. %): 47,0 SiO₂; 22,7 Al₂O₃; 12,6 Fe₂O₃; 5,30 CaO; 3,0 MgO; 5,60 SO₃; 0,90 TiO₂; 1,90 K₂O; 1,30 Na₂O; 4,6 P₂O₅; 0,30 MnO. В качестве флюсующего материала использовали кремнезем состава (мас. %): 99,4 SiO₂, 0,14 Al₂O₃; 0,26 Fe₂O₃; 0,03 MgO; 0,01 TiO₂; 0,02 Na₂O.

2. Результаты экспериментов и их анализ

Результаты экспериментов показали, что выход металла увеличивается с увеличением времени изотермической выдержки при твердофазном восстановлении. Он составил 31, 38 и 43 % соответственно при 1, 2 и 3 ч восстановительного обжига. С увеличением продолжительности этой выдержки растет степень извлечения и хрома и железа, но железо восстанавливается несколько быстрее – степень извлечения железа достигает 94 % уже после 2-часовой выдержки, в то время как степень извлечения хрома при этом составляет всего 84 %. Но после восстановительной выдержки в течение 3 ч степень восстановления и хрома достигает 95 % (рис. 3).

Рис. 3. Степень извлечения металлов двухстадийным процессом при разной продолжительности восстановительного обжига

Структура металла, полученного в результате разделения продуктов восстановления, соответствует структуре углеродистого феррохрома. В металле всегда обнаруживаются карбидные фазы и силициды, причем с увеличением продолжительности восстановительной выдержки содержание кремния и, соответственно, количество силицидов возрастает. При этом концентрация железа в составе силицидов увеличивается и заметно уменьшается в составе карбидов (рис. 4).

Согласно результатам рентгеноспектрального анализа основными фазами в сплаве являются карбиды $(Cr,Fe)_{23}C_6$ и $(Cr,Fe)_7C_3$. Помимо карбидных фаз присутствуют силициды FeSi₂ и Cr₃Si (рис. 5).

N₂	С	Si	Cr	Fe	Ni
1	2,8	_	75,9	21,3	0,1
2		1,3	26,4	69,8	2,5
3	3,1	_	80,1	16,7	0,1
4	_	13,3	8,4	76,2	2,1
5	_	13,6	9,4	75,2	1,9
6	5,1	_	89,8	5,1	—

Рис. 4. Содержание элементов (мас. %) в металле после жидкофазного разделения продуктов твердофазного восстановления в течение 1 ч (т. 1 и 2), 2 ч (т. 3 и 4) и 3 ч (т. 5 и 6)

Рис. 5. Рентгенограмма феррохрома после разделения продуктов восстановления в течение 1 ч (а) и 3 ч (б): 1 – (Cr,Fe)₂₃C₆ [8], 2 – (Cr, Fe)₇C₃ [9], 3 – FeSi₂ [10], 4 – Cr₃Si [11]

Проба шлака	Содержание компонентов, мас. %							
	Cr ₂ O ₃	FeO	SiO ₂	MgO	Al ₂ O ₃			
Восстановление в течение 1 ч								
1	13,64	1,85	37,71	26,39	20,41			
2	13,27	0,62	38,21	27,20	20,70			
3	12,29	2,79	39,50	23,72	21,69			
4	15,36	2,15	35,41	28,26	18,83			
Средний	13,64	1,85	37,71	26,39	20,41			
Восстановление в течение 2 ч								
5	9,12	1,24	37,19	30,89	21,57			
6	9,09	0,34	36,75	28,72	25,11			
7	6,04	0,05	40,14	32,88	20,88			
8	8,08	0,54	38,03	30,83	22,52			
Средний	7,85	0,53	38,48	30,21	22,53			
Восстановление в течение 3 ч								
9	3,81	0,62	35,94	32,59	27,04			
10	2,31	0,28	27,09	25,93	44,39			
11	0,94	_	35,1	36,28	27,68			
12	3,41	0,54	34,04	36,07	25,94			
Средний	2,50	0,48	33,04	32,71	31,26			

Состав шлака после жидкофазного разделения

В составе шлака с увеличением продолжительности восстановительной выдержки содержание оксидов железа и хрома снижается. Как и следовало ожидать, вначале более быстро снижается содержание оксидов железа. После 2-часовой выдержки в шлаке содержится уже порядка 0,5 % оксидов железа. Содержание оксидов хрома понижается медленнее и достигает 2,5 % после выдержки в течение 3 ч (см. таблицу).

Заключение

Установлены количественные характеристики выхода металла и шлака в процессе жидкофазного разделения в зависимости от параметров твердофазной металлизации неокомкованной рудной мелочи. Показано, что в результате твердофазной металлизации в течение 3 ч офлюсованных рудных частиц даже при относительно низкой (1400 °C) температуре можно обеспечить высокую (порядка 95 %) степень извлечения железа и хрома.

Литература/References

1. Akberdin A.A., Kim A.S., Akberdin R.A. Agglomeration of Refractory Chromite Ore. *The Thirteenth International Ferroalloys Congress*. Almaty, 2013, pp. 1–4.

2. Чернобровин В.П., Рощин В.Е., Спирина Т.П., Чернобровина М.В. Экстракция черных металлов из техногенного сырья: учеб. пособие. Челябинск, Издат. центр ЮУрГУ, 2013. 173 с. [Chernobrovin V.P., Roshchin V.E., Spirina T.P., Chernobrovina M.V. *Ekstraktsiya chernykh metallov iz tekhnogennogo syr'ya* (Extraction of Ferrous Metals from Technogenic Raw Materials). Chelyabinsk, SUSU Publ., 2013. 173 p.]

3. Naiker O., Riley T. Xstrata Alloys in Profile. Southern African Pyrometallurgy, S.A.I.M.M., 2006, pp. 297–306.

4. Naiker O. Development and Advantages Xstrata Premus Process. *XI International Ferroalloys Congress*. New-Delhi, 2007, pp. 113–119.

5. Geldenhuys I.J. Aspects of DC Chromite

Smelting at MINTEK – An Overview (PLENARE). *The Thirteenth International Ferroalloys Congress*. Almaty, 2013, pp. 31–47.

6. Едильбаев И.Б. Синтек – Алматы, ООО Luxe Media Publishing, 2014. 162 с. [Edil'baev I.B. Sintek – Almaty. Luxe Media Publishing, 2014. 162 p.]

7. Cullough S., Hockaday S., Johnson C., Barcza N.A. Pre-Reduction and Smelting Characteristics of Kazakhstan Ore Samples. *The Twelfth International Ferroalloys Congress Sustainable Future*. Helsinki, 2010, pp. 249–262.

8. Powder Diffraction File International Centre for Diffraction Data (PDF-2, ICPDS, 78-1500)

9. Powder Diffraction File International Centre for Diffraction Data (PDF-2, ICPDS, 5-720)

10. Powder Diffraction File International Centre for Diffraction Data (PDF-2, ICPDS, 71-642)

11. Powder Diffraction File International Centre for Diffraction Data (PDF-2, ICPDS, 7-186)

Ахметов Кайрат Телектесович, аспирант кафедры металлургии и литейного производства, Южно-Уральский государственный университет, г. Челябинск; kairat.telektesovich@gmail.com.

Рощин Василий Ефимович, д-р техн. наук, профессор кафедры металлургии и литейного производства, Южно-Уральский государственный университет, г. Челябинск; roshchinve@susu.ac.ru.

Поступила в редакцию 10 августа 2015 г.

DOI: 10.14529/met150407

LIQUID-PHASE SEPARATION OF METALLIZED FINES OF CHROME ORE

K.T. Akhmetov, kairat.telektesovich@gmail.com, *V.E. Roshchin*, roshchinve@susu.ac.ru South Ural State University, Chelyabinsk, Russian Federation

The paper presents the results of the experimental study of the effect of solid-phase metallization time on the yield and composition of metal obtained by subsequent liquid-phase separation. Kempirsai chrome ore fines (1...2 mm) fluxed with quartzite were subjected to solid-phase metallization sintering at 1400 °C in mixture with coal and then separated into metal and slag at 1850 °C. It is found that 2 hours of metallization even at relatively low temperature 1400 °C permits to reduce and extract more than 80 % of chromium and 90 % of iron, and the degree of extraction of both metals after 3 hours' metallization reaches 95 %. The structure of the metal obtained after the liquid-phase separation of reduction products is similar to the structure of carbon ferrochrome. The metal contains carbides $(Cr,Fe)_{23}C_6$ and $(Cr, Fe)_7C_3$ and silicides FeSi₂ and Cr₃Si. Increasing reduction sintering time increases the amount of silicides and iron content in them, while carbides are enriched in chromium.

Металлургия чёрных, цветных и редких металлов

The slag obtained after separation depletes in iron and chromium oxides with increasing sintering time, Fe and Cr average amount decreasing to 0.5 and 2.5 % after 3 hours of sintering. *Keywords: chrome ore; pre-reduction; liquid-phase separation.*

Received 10 August 2015

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Ахметов, К.Т. Жидкофазное разделение металлизованной мелочи хромовой руды / К.Т. Ахметов, В.Е. Рощин // Вестник ЮУрГУ. Серия «Металлургия». – 2015. – Т. 15, № 4. – С. 57–62. DOI: 10.14529/met150407

FOR CITATION

Akhmetov K.T., Roshchin V.E. Liquid-Phase Separation of Metallized Fines of Chrome Ore. *Bulletin of the South Ural State University. Ser. Metallurgy*, 2015, vol. 15, no. 4, pp. 57–62. (in Russ.) DOI: 10.14529/met150407