ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Pb-Ag ПРИ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ВОЗГОНКЕ

А.А. Королев, С.А. Краюхин, Г.И. Мальцев

АО «Уралэлектромедь», г. Верхняя Пышма

При переработке свинца образуется серебристая пена (СП), требующая комплексной переработки с получением товарных моноэлементных продуктов. Одним из возможных способов рекуперации СП является вакуумная перегонка, считающаяся одним из самых эффективных и экологически чистых методов для разделения и очистки, переработки и рафинирования различных металлов. Для предварительного выбора температуры и давления системы, оценки эффективности разделения компонентов при вакуумной перегонке используют фазовые диаграммы. Цель работы состоит в расчете равновесных состояний «газ – жидкость» VLE (vapor *liquid equilibrium*), включая зависимости состава фаз от температуры (T-x) и давления (p-x)для Pb-Ag сплава при вакуумной перегонке на основе модели MIVM (molecular interaction volume model). В интервале температур 1073-1773 К рассчитаны давления насыщенного пара для Pb (1,5^{-10⁻¹}-4,86^{-10²}) и Ag (5,1^{-10⁻⁵}-6,6). Высокие значения соотношения p_{Pb} / p_{Ag} = $= 2,9 \cdot 10^3 - 74$ и коэффициента разделения $\beta_{Pb} = 1,8-3,9$ создают теоретические предпосылки для селективного выделения этих металлов вакуумной дистилляцией, когда свинец обогащается в газовой фазе (β_{Pb} > 1), а серебро – в жидкой. Мольная доля свинца в газовой фазе у_{Pb} = 0,878–0,999 увеличивается с ростом температуры 1073–1773 К и мольной доли металла в сплаве x _{Pb} = 0,1-0,9. С использованием модели *MIVM* рассчитаны коэффициенты активности свинца $\gamma_{Pb} = 0,474-0,999$ и серебра $\gamma_{Ag} = 0,331-0,999$ для Pb-Ag сплава различного состава в исследованном температурном диапазоне. Для фазовых диаграмм VLE может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Для границы раздела фаз «жидкость - газ» Pb-Ag сплава определены значения избыточных энергии Гиббса, энтальпии и энтропии: $G_m^E = 0,01-1,34$ кДж/моль; $-H_m^E = 0,32-1,53$ кДж/моль; $S_m^E = 0,52-1,65$ кДж/моль К. Фазовые диаграммы VLE сплавов обеспечивают необходимой информацией для проектирования технологических параметров промышленного производства вакуумной металлургии, а также для прогнозирования необходимого состава Pb-Ag сплава в зависимости от температуры и давления в процессе вакуумной перегонки.

Ключевые слова: равновесная фазовая диаграмма; вакуумная дистилляция; молекулярная объемная модель взаимодействия.

Введение

Вакуумная перегонка считается одним из самых эффективных и экологически чистых методов для разделения и очистки, переработки и рафинирования различных металлов. Она имеет ряд преимуществ, таких как относительно низкое потребление энергии, короткий производственный цикл, высокую рентабельность, отсутствие подлежащих утилизации отходов по сравнению с традиционными методами, например, пирометаллургической переработкой и электролизом [1–4].

Равновесные фазовые диаграммы «жидкость – газ» (vapor liquid equilibrium – VLE), включая зависимости состава от температуры (T-x) и давления (p-x), рассчитаны для Pb–Ag сплава при вакуумной перегонке на основе модели VLE и молекулярной модели объемного взаимодействия (*мolecular interaction volume model* – *MIVM*). Объективные *VLE* зависимости важны для выбора температуры и давления системы, оценки эффективности разделения в вакуумной перегонке. Определение термодинамических характеристик из экспериментальных данных занимает много времени и требует значительных финансовых затрат. Следовательно, теоретический расчет является альтернативным и эффективным способом получения информации о термодинамических свойствах сплавов, особенно для многокомпонентных систем [5–8].

Методика исследований

В равновесной системе «жидкость – газ» химический потенциал (фугитивность) каждого компонента в обеих фазах равен и соответствует зависимости [9]:

$$\Phi_i p y_i = \Phi_i^* p_i^* \gamma_i x_i \exp\left(\frac{V_i^l(p-p_i^*)}{RT}\right), \tag{1}$$

где $\Phi_i - \phi$ угитивность компонента *i* в газовой фазе; $\Phi_i^* - \kappa$ оэффициент фугитивности насыщенной жидкости чистого компонента *i*; *T* и *p* – температура и давление в системе; $p_i^* - д$ авление насыщенных паров чистого компонента *i* при температуре *T*; $\gamma_i - \kappa$ оэффициент активности компонента *i* в жидкой фазе при данных температуре, давлении и мольной доли компонента *i*; *x_i* и *y_i* – мольная доля компонента *i* в жидкой и газовой фазах, соответственно; V_i^l – мольный объем чистой жидкости *i*; *R* – универсальная газовая постоянная.

Остаточное давление в исследуемой системе достаточно низкое ($p \le 133$ Па) и паровая фаза ведет себя как идеальный газ, откуда $\Phi_i = \Phi_i^* \approx 1,0$, а экспоненциальный член $\exp\left(\frac{V_i^l(p-p_i^*)}{RT}\right) \approx 1$. Таким образом, уравнение (1) можно упростить, подобно модифицированному закону Рауля [9]:

$$py_i = p_i^* \gamma_i x_i. \tag{2}$$

Если жидкая смесь является идеальным раствором, то $\gamma_i = 1$ в (2).

Для бинарного сплава *і–ј* справедливо:

$$x_{i} + x_{j} = 1, \ y_{i} + y_{j} = 1;$$
(3)
$$p = p_{i}^{*} \gamma_{i} x_{i} + p_{j}^{*} \gamma_{j} x_{j} =$$

$$= p_i^* \gamma_i x_i + p_i^* \gamma_i (1 - x_i).$$
 (4)

Объединяя уравнения (2) и (4), получим выражения для x_i и y_i :

$$x_i = \frac{p - p_j^* \gamma_j}{p_i^* \gamma_i - p_j^* \gamma_j};\tag{5}$$

$$y_i = \frac{p_i^* \gamma_i x_i}{p}.$$
 (6)

Коэффициенты активности компонентов в жидкой фазе имеют решающее значение для расчета фазовой диаграммы VLE. Модель MIVM [10] считается одной из наиболее удобных и надежных моделей [11–13]. Согласно MIVM молярная избыточная энергия Гиббса G_m^E для границы раздела фаз «жидкость – газ» смеси *i*–*j* может быть выражена как

$$\frac{G_{RT}^{E}}{RT} = x_{i} \ln\left(\frac{V_{mi}}{x_{i}V_{mi}+x_{j}V_{mj}B_{ji}}\right) + x_{j} \ln\left(\frac{V_{mj}}{x_{j}V_{mj}+x_{i}V_{mi}B_{ij}}\right) - . - \frac{x_{i}x_{j}}{2}\left(\frac{Z_{i}B_{ji}\ln B_{ji}}{x_{i}+x_{j}B_{ji}} + \frac{Z_{j}B_{ij}\ln B_{ij}}{x_{j}+x_{i}B_{ij}}\right),$$
(7)

где x_i и x_j – молярные доли; Z_i и Z_j – координационные числа; V_{mi} и V_{mj} – молярные объемы компонентов *i* и *j*, соответственно; R – уни-

версальная газовая постоянная, а потенциальные энергии парного взаимодействия B_{ij} и B_{ji} определяются следующим образом:

$$B_{ij} = \exp[-(\frac{\varepsilon_{ij} - \varepsilon_{jj}}{kT})] B_{ji} =$$

= $\exp[-(\frac{\varepsilon_{ji} - \varepsilon_{ii}}{kT})],$ (8)

где k – константа Больцмана; ε_{ij} , ε_{ii} и ε_{jj} – потенциальные энергии парного взаимодействия i-j, i-i, j-j систем, где $\varepsilon_{ij} = \varepsilon_{ji}$.

Для бинарной смеси *i*–*j*, с помощью термодинамического соотношения $(\partial G^{E}_{m}/\partial x_{i})T, p, x_{j},$ коэффициенты активности компонентов *i* и *j* могут быть получены из уравнения (7), соответственно, как:

$$\ln \gamma_{i} = \ln \left(\frac{V_{m,i}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}} \right) +$$

$$+ x_{j} \left(\frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}} - \frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}} \right) -$$

$$- \frac{x_{j}^{2}}{2} \left[\frac{Z_{i}B_{j}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}} + \frac{Z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}} \right];$$
(9)
$$\ln \gamma_{j} = \ln \left(\frac{V_{m,j}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}} \right) +$$

$$+ x_{i} \left(\frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}} - \frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}} \right) -$$

$$- \frac{x_{i}^{2}}{2} \left[\frac{Z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}} + \frac{Z_{i}B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}} \right].$$
(10)

Когда x_i или x_j в приближаются к нулю, коэффициенты активности бесконечно разбавленных растворов γ_i^{∞} и γ_j^{∞} являются производными из уравнений (9) и (10) следующим образом:

$$\ln\gamma_{i}^{\infty} = 1 - \ln\left(\frac{V_{m,i}B_{ji}}{V_{m,i}}\right) - \frac{V_{m,i}B_{ij}}{V_{m,j}} - \frac{1}{2}(Z_{i}\ln B_{ji} + Z_{j}B_{ij}\ln B_{ij});$$
(11)

$$\ln\gamma_{j}^{\infty} = 1 - \ln\left(\frac{V_{m,i}B_{ij}}{V_{m,j}}\right) - \frac{V_{m,j}B_{ji}}{V_{m,i}} - \frac{1}{2}(Z_{j}\ln B_{ij} + Z_{i}B_{ji}\ln B_{ji}).$$
(12)

Необходимые двоичные параметры B_{ij} и B_{ji} можно рассчитать из уравнений (11) и (12) по формуле Newton [10] если известны коэффициенты активности для бесконечно разбавленных растворов, т. е. γ_i^{∞} и γ_j^{∞} бинарных жидких сплавов и соответствующие параметры их компонентов [14, 15]. Координационное число Z_i жидких металлов рассчитывают как [10]:

$$Z_{i} = \frac{4\sqrt{2\pi}}{3} \left(\frac{r_{mi}^{3} - r_{oi}^{3}}{r_{mi} - r_{oi}} \right) \times \\ \times \rho_{i} r_{mi} \exp\left(\frac{\Delta H_{mi}(T_{mi} - T)}{Z_{c} RT T_{mi}} \right),$$
(13)

где $\rho_i = N_i/V_i$ — молекулярная плотность; V_i — мольный объем и N_i — число молекул; ΔH_{mi} — энтальпия плавления; T_{mi} — температура плавления; $Z_c = 12$ — координационное число плотной упаковки, T — температура жидкого металла, K; R — газовая постоянная; $r_{0i} = 0,918d_{covi}$ — доля атомного ковалентного диаметра (d_{covi}), который подразумевает, что длина ковалентной связи образуется путем обмена внешних валентных электронов с другими атомами элемента при подходе на наименьшее расстояние между соседними атомами; r_{mi} равняется, примерно, атомному диаметру σ_i ($r_{mi} = \sigma_i$).

Значения B_{ij} и B_{ji} при требуемой температуре (T_2) можно получить из уравнения (8) для известных значений B_{ij} и B_{ji} при температуре (T_1), принимая независимой от температуры потенциальную энергию парного взаимодействия компонентов $-\frac{\varepsilon_{ij}-\varepsilon_{jj}}{k}$ и $-\frac{\varepsilon_{ji}-\varepsilon_{ii}}{k}$. Например, в бинарной системе Pb–Ag при $T_1 = 1300 B_{ij}/B_{ji} = 0,5974/1,445$, тогда для $T_2 = 1273$:

$$-\frac{\varepsilon_{ij}-\varepsilon_{jj}}{k} = \text{Tln}B_{ij} = 1300 \cdot \ln(0,5974) =$$

= -669,719 K;
 $B_{ij} = \exp(-669,719/1273) = 0,5910;$
 $-(\varepsilon_{ij} - \varepsilon_{jj}) = -0,058 \text{ э-в};$
 $-\frac{\varepsilon_{ji}-\varepsilon_{ii}}{k} = \text{Tln}B_{ji} = 1300 \cdot \ln(1,445) =$
= 478,542 K;
 $B_{ji} = \exp(478,542/1273) = 1,456;$
 $-(\varepsilon_{ji} - \varepsilon_{ii}) = 0,041$ э-в.
Лавление насышенных паров чистых ко

Давление насыщенных паров чистых компонентов рассчитывают [16]:

$$\lg_{*} p^{*} = AT^{-1} + B \lg T + CT + D,$$
(14)

где p^* – давление насыщенных паров чистого компонента, Па; *A*, *B*, *C*, *D* – константы испарения для компонентов жидких сплавов; *T* – абсолютная температура.

Необходимые для расчета параметры Рb–Аg сплава даны в табл. 1.

Для выполнения экспериментальных ис-

следований на лабораторной установке вакуумной возгонки были приготовлены Pb–Ag сплавы с переменным содержанием компонентов в диапазоне 0,1-0,9 мольных долей (x_{ij}).

Степень разряжения в вакуумной камере во время эксперимента составляла 1,3–133 Па, температура 1073–1773 К, продолжительность (до момента установления равновесия в системе) 2–10 ч. Образцы возгонов и жидкой фазы были получены из конденсата и огарка соответственно. Анализ на содержание свинца и серебра в продуктах дистилляции выполнен из предварительно полученных растворов атомно-абсорбционным методом на установке *GBC* 933*AB Plus*.

Для того, чтобы проверить адекватность расчетных значений содержания компонентов Pb–Ag сплава в жидкой и газовой фазах, сравнили их с экспериментальные данными. Для этого были вычислены показания среднего относительного отклонения (S_i) и среднего квадратичного отклонения (S_i^*), как показано:

$$S_{i} = \pm \frac{100}{n} \sum_{i=1}^{n} \left| \frac{x(y)_{i,exp} - x(y)_{i,cal}}{x(y)_{i,exp}} \right| \cdot 100 \%, \quad (15)$$

$$S_i^* = \pm \left[\frac{1}{n} \sum_{i=1}^n [x(y)_{i,exp} - x(y)_{i,cal}]^2 \right]^{0,5}, \quad (16)$$

где $x(y)_{i,exp}$ и $x(y)_{i,cal}$ – экспериментальные и расчетные значения содержания компонента *i* в жидкой и газовой фазах, соответственно; n – количество экспериментальных данных.

Результаты и их обсуждение

Свинец имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, серебро имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 2).

Для определения возможности отделения элемента *i* от элемента *j* бинарного сплава *i–j* путем вакуумной дистилляции можно использовать коэффициент разделения β_i :

$$\beta_{Pb} = \frac{p_{Pb}^* \gamma_{Pb}}{p_{Ag}^* \gamma_{Ag}}.$$
(17)

Таблица 1

Значения $\gamma_i^{\circ}, \gamma_j^{\circ}, B_{ij}, B_{ji}, Z_i, Z_j, p_i^*, p_i^*, V_{m\,(i,j)}$ сплава Pb–Ag

<i>і–ј</i> сплав	<i>Т</i> , К	$\gamma_{ m Pb}^{\infty}$	$\gamma_{\rm Ag}^{\infty}$	$B_{\rm Pb-Ag}$	B _{Ag-Pb}	Z _{Pb}	Z _{Ag}	
Pb–Ag	1300	1,101	1,53	0,5974	1,4450	8,91	10,61	
Компонент	A	В	С	D	$V_m = f(T), \text{см}^3/\text{моль}$			
Pb	-10130	-0,985	-	11,6	19,4[1 +	$-1,24\cdot10^{-4}(7)$	⁻ - 600)]	
Ag	-14400	-0,85		11,7	11,6[1+	$-0,98 \cdot 10^{-4}$ (7	[-234)]	

Важно оценить эффект разделения и ко-

личественный состав продуктов дистилляции.

Эти данные могут быть получены из диа-

грамм фазового равновесия «жидкость - газ»

(рис. 2, табл. 4, 5). Для Рb-Аg сплава, с уче-

том равенства (3), содержание металлов в га-

зовой фазе равняется:

Таблица 2

Т, К	<i>р</i> [*] _{Pb} , Па	р* _{Ад} , Па	$p^*_{\mathrm{Pb}}/p^*_{\mathrm{Ag}}$
1073	$1,49 \cdot 10^{-1}$	5,054.10-5	$2,948 \cdot 10^3$
1173	$8,72 \cdot 10^{-1}$	$6,53 \cdot 10^{-4}$	$1,335 \cdot 10^3$
1273	3,839	5,611.10-3	$6,842 \cdot 10^2$
1373	$1,353 \cdot 10^{1}$	$3,5 \cdot 10^{-2}$	$3,866 \cdot 10^2$
1473	$4,001 \cdot 10^{1}$	$1,7 \cdot 10^{-1}$	$2,354 \cdot 10^2$
1573	$1,026 \cdot 10^2$	$6,73 \cdot 10^{-1}$	$1,525 \cdot 10^2$
1673	$2,344 \cdot 10^2$	2,253	$1,04 \cdot 10^2$
1773	$4,859 \cdot 10^2$	6,558	$7,409 \cdot 10^{1}$

Рассчитанные давление и соотношение давления паров Pb и Ag

Значения $\beta_{Pb} > 1$ (рис. 1, табл. 3), поскольку содержание свинца в газовой фазе больше, чем в жидкой ($y_{Pb} \gg x_{Pb}$). Свинец обогащает газовую фазу, а серебро накапливается в жидкой фазе ($x_{Ag} \gg y_{Ag}$), таким образом, бинарный сплав разделяется на свинец и серебро.

Рис. 1. Коэффициент разделения свинца при вакуумной дистилляции Pb–Ag сплава при температуре, К: 1073 (1); 1173 (2); 1273 (3); 1373 (4); 1473 (5); 1573 (6); 1673 (7); 1773 (8)

Рис. 2. Зависимость «у_{Рb}- x_{Pb}» Рb-Ад сплава при температуре, К: 1073 (*1*); 1173 (*2*); 1273 (*3*); 1373 (*4*); 1473 (*5*); 1573 (*6*); 1673 (*7*); 1773 (*8*)

Таблица	3
---------	---

x _{Pb}	1073 K	1173 K	1273 К	1373 К	1473 К	1573 К	1673 K	1773 К
0,1	3,15	2,872	2,635	2,428	2,246	2,086	1,942	1,813
0,2	3,215	2,926	2,678	2,463	2,275	2,108	1,96	1,827
0,3	3,289	2,985	2,726	2,501	2,305	2,132	1,979	1,842
0,4	3,375	3,052	2,778	2,541	2,337	2,157	1,998	1,855
0,5	3,472	3,126	2,834	2,584	2,369	2,181	2,015	1,868
0,6	3,578	3,205	2,894	2,627	2,402	2,204	2,031	1,878
0,7	3,695	3,29	2,955	2,67	2,432	2,224	2,043	1,884
0,8	3,82	3,376	3,013	2,708	2,457	2,24	2,05	1,889
0,9	3,944	3,457	3,066	2,739	2,474	2,246	2,049	1,892

Вестник ЮУрГУ. Серия «Металлургия». 2017. Т. 17, № 2. С. 22–33

			$x_{\rm Pb}$									
1, К	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9		
1072	γ_{Pb}	0,474	0,534	0,6	0,672	0,748	0,822	0,89	0,948	0,986		
1075	$\gamma_{\rm Ag}$	0,991	0,962	0,91	0,837	0,746	0,641	0,531	0,424	0,331		
1172	γ_{Pb}	0,554	0,611	0,673	0,737	0,802	0,863	0,919	0,963	0,990		
11/5	$\gamma_{\rm Ag}$	0,993	0,969	0,93	0,874	0,802	0,719	0,63	0,542	0,462		
1272	γ_{Pb}	0,627	0,68	0,735	0,791	0,845	0,896	0,94	0,972	0,993		
1275	γ_{Ag}	0,994	0,976	0,946	0,902	0,847	0,783	0,714	0,645	0,584		
1272	γ_{Pb}	0,691	0,739	0,787	0,835	0,881	0,921	0,955	0,980	0,995		
1373	γ_{Ag}	0,996	0,982	0,959	0,927	0,885	0,839	0,788	0,740	0,700		
1/72	γ_{Pb}	0,748	0,790	0,831	0,872	0,908	0,942	0,968	0,986	0,997		
14/3	$\gamma_{\rm Ag}$	0,997	0,986	0,968	0,943	0,912	0,877	0,841	0,809	0,787		
1572	γ_{Pb}	0,797	0,833	0,868	0,902	0,931	0,957	0,977	0,991	0,998		
1373	$\gamma_{\rm Ag}$	0,997	0,989	0,976	0,958	0,935	0,911	0,889	0,870	0,864		
1672	γ_{Pb}	0,839	0,870	0,899	0,927	0,950	0,970	0,985	0,994	0,999		
1075	$\gamma_{\rm Ag}$	0,998	0,992	0,982	0,969	0,954	0,939	0,927	0,921	0,928		
1772	γ_{Pb}	0,876	0,901	0,926	0,947	0,966	0,980	0,991	0,997	1,0		
1//3	γ_{Ag}	0,999	0,994	0,987	0,979	0,969	0,962	0,958	-	—		

Рассчитанные коэффициенты активности Pb–Ag сплава

Таблица 5

Таблица 4

Рассчитанные значения у_{Рb} сплава Pb–Ag

T V	$\chi_{ m Pb}$											
1, к	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9			
1073	0,994	0,998	0,999	0,999	1	1	1	1	1			
1173	0,988	0,995	0,998	0,999	0,999	1	1	1	1			
1273	0,98	0,992	0,996	0,998	0,998	0,999	1	1	1			
1373	0,967	0,986	0,993	0,996	0,997	0,998	0,999	1	1			
1474	0,951	0,979	0,989	0,993	0,996	0,997	0,998	0,999	1			
1573	0,931	0,97	0,983	0,99	0,993	0,996	0,997	0,999	0,999			
1673	0,907	0,958	0,975	0,985	0,99	0,994	0,996	0,998	0,999			
1773	0,878	0,944	0,968	0,979	0,987	0,991	0,994	0,997	0,999			

$$y_{\rm Pb} = \left[1 + \frac{p_{\rm Ag}^* \gamma_{\rm Ag} x_{\rm Ag}}{p_{\rm Pb}^* \gamma_{\rm Pb} x_{\rm Pb}}\right]^{-1};$$

$$y_{\rm Ag} = \left[1 + \frac{p_{\rm Pb}^* \gamma_{\rm Pb} x_{\rm Pb}}{p_{\rm Ag}^* \gamma_{\rm Ag} x_{\rm Ag}}\right]^{-1}.$$
 (18)

В области малых концентраций серебра $(x_{Ag} = 0,01-0,05)$ в Pb–Ag сплаве соответствующие значения коэффициентов активностей компонентов и содержание серебра в газовой фазе даны в табл. 6, 7 и на рис. 3.

О чистоте отогнанного свинца можно судить по равновесным фазовым диаграммам «газ – жидкость» при заданном температурном режиме (см. рис. 2, 3). Серебро может быть отделено от свинца при температуре возгонки свыше 800 °С. При известном исходном количестве серебра в сплаве можно подобрать температуру процесса, обеспечивающую заданную остаточную концентрацию примеси в рафинированном свинце. Например, исходное значение $x_{Ag (at. \%/Mac. \%)} = 4,0/2,1$, тогда при 1000 °C $y_{Ag (at. \%/Mac. \%)} = 0,0034/0,0018$, а при 1200 °C $y_{Ag (at. \%/Mac. \%)} = 0,014/0,0073$, т. е. содержание серебра в отогнанном свинце возрастает более, чем в 4 раза при повышении температуры возгонки на 200 °C.

Рассчитанные значения коэффициентов активности компонентов сплава Pb–Ag (см. табл. 4) позволили определить активности свинца и серебра в расплаве (рис. 4) [17, 18].

Для построения «T-x» диаграммы бинарной системы i-j используют интерактивный алгоритм различных значений x_i для определенной температуры до тех пор, пока сумма парциальных давлений становится равной внешнему давлению [19–24]. Подставляя соответствующие величины γ_{Pb} , γ_{Ag} , p, p_{Pb}^* и p_{Ag}^* при различных температурах (табл. 8, 9) в

уравнения (3), (5) и (6), получаем «*T*-*x*» фазовую диаграмму сплава Рb-Аg (рис. 5).

Таблица 6

				2 115	Ŭ			
x_{Ag}	1073	1173	1273	1373	1473	1573	1673	1773
0,001	0,089	0,302	0,794	1,738	3,327	5,754	9,183	13,27
0,01	0,899	3,046	8,017	17,54	33,61	58,06	92,63	134,0
0,02	1,867	6,247	16,32	35,54	67,81	117,0	186,1	272,3
0,03	2,893	9,615	24,89	54,02	102,8	176,7	281,2	414,7
0,04	4,014	13,15	33,84	73,07	138,4	237,5	377,6	560,9
0,05	5,201	16,85	43,09	92,57	174,9	299,7	475,4	707,7

Рассчитанные значения $y_{Ag} \cdot 10^{-6}$ Pb–Ag сплава

Таблица 7

Рассчитанные коэффициенты активности Рb-Аg сплава

			x_{Ag}			
Т, К	γ	0,01	0,02	0,03	0,04	0,05
1072	γ_{Pb}	1,0	0,999	0,999	0,998	0,997
1075	γ_{Ag}	0,263	0,270	0,276	0,284	0,291
1172	γ_{Pb}	1,0	1,0	0,999	0,998	0,998
11/5	γ_{Ag}	0,403	0,409	0,415	0,421	0,427
1273	γ_{Pb}	1,0	1,0	0,999	0,999	0,998
	γ_{Ag}	0,543	0,547	0,550	0,555	0,559
1272	γ_{Pb}	1,0	1,0	1,0	0,999	0,999
1373	γ_{Ag}	0,670	0,672	0,674	0,676	0,678
1472	γ_{Pb}	1,0	1,0	1,0	1,0	1,0
14/5	γ_{Ag}	0,782	0,781	0,781	0,781	0,781
1572	γ_{Pb}	1,0	1,0	1,0	1,0	1,0
1375	γ_{Ag}	0,876	0,874	0,871	0,869	0,868
1672	γ_{Pb}	1,0	1,0	1,0	1,0	1,0
16/3	γ_{Ag}	0,954	0,949	0,946	0,943	0,940
1772	γ_{Pb}	1,0	1,0	1,0	1,0	1,0
1//3	$\gamma_{\Delta \alpha}$	0,983	0,989	0,994	0,998	0,997

a

1

0,8

 $\log(y_{Ag})$

Рис. 3. Зависимость «log(y_{Ag})–x_{Ag}» Рb–Ag сплава при температуре, К: 1773 (*1*); 1673 (*2*); 1573 (*3*); 1473 (*4*); 1373 (5); 1273 (6); 1173 (7); 1073 (*8*)

0,6 0,4 0,7 0,2 0,6 0 0,5 0,2 0,4 0,8 0,6 0 1 Pb Ag x_{Pb}

а

Вестник ЮУрГУ. Серия «Металлургия». 2017. T. 17, № 2. C. 22–33

0,9

0,8

Таблица 8

Рассчитанные значения урь, уда	T_{lig}	Рb–Ад сплава д	цля « <i>Т−х</i> » диагр	амм
--------------------------------	-----------	----------------	--------------------------	-----

<i>P</i> , Па	$x_{\rm Pb}$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	T_{liq}, K	1916	1824	1766	1726	1694	1669	1648	1630	1616
133	γ _{Pb}	0,919	0,916	0,924	0,937	0,954	0,969	0,983	0,993	0,998
	$\gamma_{\rm Ag}$	0,999	0,995	0,987	0,974	0,958	0,938	0,918	0,900	0,893
	T_{liq}, K	1617	1543	1499	1468	1443	1423	1406	1392	1381
13,3	$\gamma_{ ext{Pb}}$	0,818	0,820	0,843	0,869	0,900	0,931	0,96	0,982	0,996
	γ_{Ag}	0,998	0,988	0,970	0,942	0,904	0,856	0,805	0,750	0,701
	T_{liq}, K	1399	1340	1305	1279	1259	1242	1228	1217	1207
1,33	$\gamma_{ ext{Pb}}$	0,706	0,72	0,753	0,794	0,839	0,886	0,931	0,968	0,992
	γ_{Ag}	0,996	0,98	0,95	0,903	0,84	0,764	0,678	0,589	0,505

Таблица 9

Рассчитанные значения T_{gas} , y_{Pb} Pb–Ag сплава для «*T*–*x*» диаграмм

<i>P</i> , Па	$x_{ m Pb}$	0,01	0,03	0,05	0,1	0,2	0,3	0,4	0,5	0,6
122	T_{gas}, K	2099	2034	1980	1916	1824	1766	1726	1694	1605
155	\mathcal{Y}_{Pb}	0,227	0,486	0,602	0,831	0,934	0,965	0,983	1,0	1,0
12.2	T_{gas}, K	1799	1705	1666	1617	1543	1499	1468	1443	1423
15,5	\mathcal{Y}_{Pb}	0,375	0,56	0,685	0,92	0,967	0,984	0,994	0,996	0,997
1 2 2	T_{gas}, K	1565	1480	1445	1399	1340	1305	1279	1259	1242
1,55	${\mathcal Y}_{Pb}$	0,546	0,7	0,802	0,967	0,988	0,997	0,998	0,999	1,0

Из рис. 5 следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Pb и Ag. Например, для получения конденсата свинца (Pb ~ 0,999) и, соответственно, остатка серебра (Ag ~ 0,999) при P = 13,3 Па температура не должна превышать ~ 1420 К. Содержание Ад, остающегося в жидкой фазе, при $P \le 13,33$ Па и $T \le 1420$ К выше, чем при $P \le 133,3$ Па и $T \le 1605$ К, что свидетельствует о том, что чем ниже давление, тем выше эффективность возгонки при соответствующей температуре. Кроме того, с помощью «*Т*-х» фазовых диаграмм можно анализировать протекание дистилляции, например, при P = 133,3/13,3/1,33 Па для сплавов с $x_{\rm Pb} \le 0.3/0.35/0.5$ минимальная температура процесса должна быть не менее 2100/1800/1565 К. По мере увеличения содержания свинца в сплаве $x_{Pb} \ge 0.3-0.5$ температура возгонки компонентов снижается до минимальных значений 1605-1200 К при заданных величинах давления Р = 133-1,33 Па, обеспечивая максимальное содержание свинца и серебра в возгонах и остатках, соответственно. По формулам (15) и (16) вычислены средние отклонения: относительное ($S_i = 1,4 \%$) и квадратичное ($S_i^* = 7,5$ К), между рассчитанными и экспериментальными значениями температур.

Для фазовых диаграмм *VLE* может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Pb в сырье сплава $x_0 = 0.7$, соответствующая температура перегонки 1300 К и давление 1,33 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T*–*х*» диаграмме (см. рис. 5),

где кривые жидкости и пара пересекаются в точке A и B, соответственно. Когда система достигает равновесия, составы A и B равняются x_i и y_g , соответственно. По правилу рычага можно получить

$$\frac{n_l}{n_g} = \frac{y_g - x_o}{x_o - x_l} = \frac{|OB|}{|OA|} = \frac{1 - 0.7}{0.7 - 0.3} = \frac{0.3}{0.4},$$

где $n_l = 0,3$ и $n_g = 0,4$ – количество вещества в остатках и возгонах; |OB| и |OA| длина соответствующих отрезков на линии *AB*. Если общее количество молей вещества исходного сплава n, то $n = n_l + n_g$:

$$n_{l} = \frac{y_{g} - x_{o}}{y_{g} - x_{l}} n = \frac{|OB|}{|AB|} n = \frac{0.3}{0.7} n = 0.43n;$$

$$n_{g} = \frac{x_{o} - x_{l}}{y_{g} - x_{l}} n = \frac{|OA|}{|AB|} n = \frac{0.4}{0.7} n = 0.57n.$$

Расчет диаграмм «*P*–*x*» похож на построение «*T*–*x*» диаграмм (рис. 6). Значения γ_{Sn} , γ_{Sb} могут быть вычислены из уравнений (9) и (10) для серии величин x_{Pb} при заданной температуре системы, а давление насыщенных паров p_{Pb} и p_{Ag} может быть рассчитано из соответствующих уравнений в табл. 1 при той же температуре. Затем определяют давление *p* системы, соответственно, для серий x_{Pb} , x_{Ag} , γ_{Pb} , γ_{Ag} , p_{Pb} и p_{Ag} , основанных на уравнении (4) (табл. 10), после чего получают y_{Pb} из уравнения (6) [25–28].

Фазовая диаграмма «P-x» может быть использована для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе VLE диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке. Например, «P-x» кривые при 1273 К, где давление колеблется от 0,006 до 4 Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при P = 0,53-3,84 Па содержание Pb в конденсате и, соответственно,

<i>Т</i> , К	$x_{\rm Pb}$										
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9		
1073	0,007	0,016	0,027	0,04	0,056	0,074	0,093	0,113	0,132		
1173	0,048	0,106	0,176	0,257	0,35	0,452	0,561	0,672	0,777		
1273	0,246	0,526	0,850	1,218	1,624	2,065	2,527	2,986	3,431		
1373	0,967	2,028	3,219	4,539	5,977	7,490	9,055	10,615	12,121		
1473	3,146	6,456	10,091	14,053	18,243	22,675	27,156	31,59	35,917		
1573	8,784	17,632	27,186	37,418	48,092	59,179	70,372	81,487	92,246		
1673	21,686	42,565	64,753	88,207	112,39	137,24	162,21	186,77	210,91		
1773	48,46	92,77	139,51	187,91	237,86	288,23	338,95	388,81	437,93		

Рассчитанные значения P (Па) сплава Pb–Ag

Таблица 10

Ад в остатке 0,99–0,999; при $P = (6-8) \cdot 10^{-3}$ Па количество Ад в остатке и, соответственно, Рb в возгоне 0,9999–0,999. Полученные результаты дополняют ранее полученные данные из «*T*-*x*» диаграмм Pb–Ад сплава.

Термодинамические параметры Pb–Ag сплава для диапазона исследованных температур определили по уравнению (7) (табл. 11, рис. 7). Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость – газ» смеси *i–j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Pb–Ag сплава и температуры процесса. Энтальпия поверхностного слоя или избыточная внутренняя энергия (H_m^E) складывается из энергии Гиббса и теплоты образования поверхности (TS^{E}_{m}), где S^{E}_{m} – энтропия, представляющая собой скрытую теплоту образования единицы площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре *T*. Отрицательные значения H^{E}_{m} свидетельствуют об экзотермическом характере процесса дистилляции компонентов Pb–Ag сплава.

Относительно невысокие значения молярной избыточной энергии Гиббса $G_m^E \le 1,34$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*-*j* Pb-Ag сплава в жидком состоянии, э-в: $-(\varepsilon_{ij} - \varepsilon_{jj}) = -0,058;$ $-(\varepsilon_{ji} - \varepsilon_{ii}) = 0,041$, что на два порядка меньше энергии межатомного взаимодействия в твердой фазе [29].

Таблица 11

	G_m^E , Дж/моль										
<i>Т</i> , К	$x_{\rm Pb}$										
	0,1	0,2	0	0,4	0,5	0,6	0,7	0,8	0,9		
1073	-	-	10,233	64,36	135,31	211,75	275,22	296,32	228,82		
1173	60,28	134,65	219,99	310,85	398,49	469,44	503,37	470,03	324,51		
1273	133,07	267,23	398,01	518,48	618,4	682,85	690,53	611,1	401,44		
1373	195,97	381,17	550,08	694,71	803,72	861,35	845,8	727,13	464,14		
1473	250,55	479,54	680,69	845,19	961	1012	975,76	823,5	515,81		
1573	298,05	564,79	793,34	974,33	1095	1139	1085	904,18	558,76		
1673	339,55	638,99	890,99	1086	1211	1249	1178	972,3	594,78		
1773	375,71	703,38	975,4	1182	1309	1341	1257	1030	624,88		
$-H_m^E$,	532.6	932.5	1371 1	1529.6	1532.4	1386	1106.8	731 41	323 15		
Дж/моль	002,0	,52,5	10 / 1,1	1029,0	1002,1	1500	1100,0	,,,,,,,	525,10		
<i>S</i> ^E , Дж∕моль∙К	0,5219	0,9405	1,3604	1,5735	1,6507	1,5859	1,3761	1,0265	0,5533		

Bulletin of the South Ural State University. Ser. Metallurgy. 2017, vol. 17, no. 2, pp. 22–33

Заключение

Фазовые диаграммы для Pb–Ag сплавов различного состава при вакуумной перегонке рассчитаны на основе модели равновесия системы «жидкость – газ» (VLE), которая использует при расчете коэффициентов активности молекулярную модель объемного взаимодействия (MIVM). Существенное преимущество MIVM заключается в ее способности прогнозировать термодинамические свойства жидких сплавов, используя только коэффициенты активности для двоичных (бинарных) бесконечно разбавленных систем. Поэтому *MIVM* не использует эмпирические значения параметров, характеризующих потенциальную энергию парного взаимодействия. Для последующего практического использования важно оценить степень разделения и количественный состав продуктов с помощью фазовых диаграмм «температура – состав» (T-x) и «давление – состав» (P-x), что позволит выбрать условия обработки исходных материалов для получения продуктов заданного состава.

Литература/References

1. Berman A. Total Pressure Measurements in Vacuum Technology. New York, Academic Press Publ., 1985. 380 p.

2. Winkler O., Bakish R. Vacuum metallurgy. Amsterdam, Elsevier Publ., 1971. 237 p.

3. Jia G.-B., Yang B., Liu D.-C. Deeply Removing Lead from Pb–Sn Alloy with Vacuum Distillation. *Transactions of Nonferrous Metals Society of China*, 2013, vol. 23, no. 6, pp. 1822–1831. DOI: 10.1016/S1003-6326(13)62666-7

4. Wang A., Li Y., Yang B., Xu B., Kong L., Liu D. Process Optimization for Vacuum Distillation of Sn–Sb Alloy by Response Surface Methodology. *Vacuum*, 2014, vol. 109, pp. 127–134. DOI: 10.1016/j.vacuum.2014.07.013

5. Dai Y.N. Vacuum Metallurgy of Nonferrous Metals. Beijing, Metallurgical Industry Press Publ., 2009. 72 p.

6. Yang B., Kong L.-X., Xu B.-Q., Liu D.-C., Dai Y.-N. Recycling of Metals from Waste Sn-Based Alloys by Vacuum Separation. *Transactions of Nonferrous Metals Society of China*, 2015, vol. 25, no. 4, pp. 1315–1324. DOI:10.1016/S1003-6326(15)63730-X

7. Liu D. C., Yang B., Wang F., Yu Q. C., Wang L., Dai Y. N. Research on the Removal of Impurities from Crude Nickel by Vacuum Distillation. *Physics Procedia*, 2012, vol. 32, pp. 363–371. DOI: 10.1016/j.phpro.2012.03.570

8. Dai Y.N., Yang B. Non-Ferrous Metals and Vacuum Metallurgy. Beijing, Metallurgical Industry Press Publ., 2000. 40 p.

9. Smith J. M., Van Ness H.C., Abbott M.M. *Introduction to Chemical Engineering Thermodynamics*. New York, McGraw-Hill Publ., 2001. 749 p.

10. Tao D. P. A New Model of Thermodynamics of Liquid Mixtures and Its Application to Liquid Alloys. *Thermochimica Acta*, 2000, vol. 363, pp. 105–113. DOI: 10.1016/S0040-6031(00)00603-1

11. Poizeau S., Kim H.J., Newhouse J.M., Spatocco B.L., Sadoway D.R. Determination and Modeling of the Thermodynamic Properties of Liquid Calcium–Antimony Alloys. *Electrochimica Acta*, 2012, vol. 76, pp. 8–15. DOI: 10.1016/j.electacta.2012.04.139

12. Newhouse J. M., Poizeau S., Kim H., Spatocco B.L., Sadoway D.R. Thermodynamic Properties of Calcium–Magnesium Alloys Determined by EMF Measurements. *Electrochimica Acta*, 2013, vol. 91, pp. 293–301. DOI: 10.1016/j.electacta.2012.11.063

13. Miyazaki N., Adachi N., Todaka Y., Miyazaki H., Nishino Y. Thermoelectric Property of Bulk CaMgSi Intermetallic Compound. *Journal of Alloys and Compounds*, 2017, vol. 691, pp. 914–918. DOI: 10.1016/j.jallcom.2016.08.227

14. *Materials Science and Technology*. Cahn R.W., Haasen P., Kramer E. J. (Eds.). *Vol. 1. Structure of Solids*. Gerold V. (Ed.). VCH Weinheim Publ., 1993. 621 p.

15. Hultgren R., Desai P. D., Hawkins D. T., Geiser M., Kelley K. K. Selected Values of the Thermodynamic Properties of Binary Alloys. ASM Publ., 1973. 847 p.

16. Dai Y., Yang B. Vacuum Metallurgy for Non-Ferrous Metals and Materials. Beijing, Metallurgical Industry Press Publ., 2000. 124 p. (in Chinese).

17. Yang H. W., Yang B., Xu B. Q., Liu D. C., Tao D. P. Application of Molecular Interaction Volume Model in Vacuum Distillation of Pb-Based Alloys. *Vacuum*, 2012, vol. 86, no. 9, pp. 1296–1299. DOI:10.1016/j.vacuum.2011. 11.017

18. Jiang W. L., Zhang C., Xu N., Yang B., Xu B. Q., Liu D. C., Yang H. W. Experimental Investigation and Modelling of Phase Equilibria for the Ag–Cu–Pb System in Vacuum Distillation. *Fluid Phase Equilibria*, 2016, vol. 417, pp. 19–24. DOI: 10.1016/j.fluid.2016.02.026

19. Nan C. B., Xiong H., Xu B.-q., Yang B., Liu D. C., Yang H. W. Measurement and Modeling of Phase Equilibria for Sb-Sn and Bi-Sb-Sn Alloys in Vacuum Distillation. *Fluid Phase Equilibria*, 2017, vol. 442, pp. 62–67. DOI: 10.1016/j.fluid.2017.03.016

20. Zhao J. Y, Yang H. W., Nan C. B., Yang B., Liu D. C., Xu B.-Q. Kinetics of Pb Evaporation from Pb-Sn Liquid Alloy in Vacuum Distillation. *Vacuum*, 2017, vol. 141, pp. 10–14. DOI: 10.1016/j.vacuum.2017.03.004

21. Kong L.-X., Xu J., Xu B.-Q., Xu S., Yang B. Vapor-Liquid Phase Equilibria of Binary Tin-Antimony System in Vacuum Distillation: Experimental Investigation and Calculation. *Fluid Phase Equilibria*, 2016, vol. 415, pp. 176–183. DOI: 10.1016/j.fluid.2016.02.012

22. Nan C. B., Yang H. W., Yang B., Liu D., Xiong H. Experimental and Modeling Vapor-Liquid Equilibria: Separation of Bi from Sn by Vacuum Distillation. *Vacuum*, 2017, vol. 135, pp. 109–114. DOI: 10.1016/j.vacuum.2016.10.035

23. Song B., Xu N., Jiang W., Yang B., Chen X. Study on Azeotropic Point of Pb–Sb Alloys by *Ab-initio* Molecular Dynamic Simulation and Vacuum Distillation. *Vacuum*, 2016, vol. 125, pp. 209–214. DOI: 10.1016/j.vacuum.2016.01.004

24. Zhang C., Jiang W. L., Yang B., Liu D. C., Xu B. Q., Yang H. W. Experimental Investigation and Calculation of Vapor–Liquid Equilibria for Cu–Pb Binary Alloy in Vacuum Distillation. *Fluid Phase Equilibria*, 2015, vol. 405, pp. 68–72. DOI: 10.1016/j.fluid.2015.07.043

25. Kong L.-X., Yang B., Xu B.-Q., Li Y.-F., Li L. Application of Molecular Interaction Volume Model in Separation of Pb–Sn–Sb Ternary Alloy by Vacuum Distillation. *Transactions of Nonferrous Metals Society of China*, 2013, vol. 23, no. 8, pp. 2408–2415. DOI: 10.1016/S1003-6326(13)62748-X

26. Dong Z. W., Xiong H., Deng Y., Yang B. Separation and Enrichment of PbS and Sb₂S₃ from Jamesonite by Vacuum Distillation. *Vacuum*, 2015, vol. 121, pp. 48–55. DOI: 10.1016/j.vacuum.2015.07.009

27. Kong L. X., Yang B., Xu B. Q., Li Y. F. Application of MIVM for Pb–Sn–Sb Ternary System in Vacuum Distillation. *Vacuum*, 2014, vol. 101, pp. 324–327. DOI: 10.1016/j.vacuum.2013.10.004.

28. Kong L., Yang B., Xu B., Li Y., Liu D., Dai Y. Application of MIVM for Phase Equilibrium of Sn–Pb–Sb System in Vacuum Distillation. *Fluid Phase Equilibria*, 2014, vol. 364, pp. 1–5. DOI: 10.1016/j.fluid.2013.12.003

29. Баранов М.А. Сферическая симметрия электронных оболочек атомов и стабильность кристаллов. Электронный физико-технический журнал. 2006. Т. 1. С. 34–48. [Baranov M. A. [Spherical Symmetry of Electronic Shells of Atoms and Stability of Crystals]. *Elektronnyy fiziko-tekhnicheskiy zhurnal*, 2006, vol. 1, pp. 34–48. (in Russ.)]

Королев Алексей Анатольевич, главный инженер, АО «Уралэлектромедь», г. Верхняя Пышма; А.Korolev@elem.ru.

Краюхин Сергей Александрович, канд. техн. наук, начальник Исследовательского центра, АО «Уралэлектромедь», г. Верхняя Пышма; S.Krauhin@elem.ru.

Мальцев Геннадий Иванович, д-р техн. наук, с.н.с., главный специалист Исследовательского центра, АО «Уралэлектромедь», г. Верхняя Пышма; mgi@elem.ru.

Поступила в редакцию 25 апреля 2017 г.

DOI: 10.14529/met170203

PHASE EQUILIBRIA IN THE SYSTEM Pb-Ag IN THE PYROMETALLURGICAL FUMING

A.A. Korolev, A.Korolev@elem.ru,

S.A. Krayukhin, S.Krauhin@elem.ru,

G.I. Maltsev, mgi@elem.ru

JSC "Uralelektromed", Verkhnyaya Pyshma, Russian Federation

In the processing of lead a silver foam (SP) is formed, which requires complex processing, with commercial production of single products. One of the possible ways of SP recovery is vacuum distillation, which is considered one of the most effective and environmentally friendly methods for the separation and purification, processing and refining of various metals. To pre-select the temperature and pressure of the system, evaluate the effectiveness of component separation in a vacuum distillation one uses phase diagrams. The aim of this work consists in calculating the equilibrium "gasliquid" (VLE, vapor-liquid equilibrium), including the dependence of phase composition on temperature (T-x) and pressure (P-x) for Pb–Ag alloy during vacuum distillation based on the molecular interaction volume model (MIVM). In the temperature range of 1073–1773 K the pressure of saturated steam is calculated for Pb $(1.5 \cdot 10^{-1} - 4.86 \cdot 10^2)$ and Ag $(5.1 \cdot 10^{-5} - 6.6)$. High values of the ratio $R_{Pb}^* / R_{Ag}^* = 2.9 \cdot 10^3 - 74$) and separation factor $\beta_{Pb} = 1.8 - 3.9$ provide the theoretical preconditions for the selective separation of these metals by vacuum distillation, when the lead is enriched in the gas phase ($\beta_{Pb} > 1$), and silver in the liquid. The mole fraction of lead in the gas phase $y_{Pb} = 0.878 - 0.999$ increases with increasing temperature 1073–1773 K and the molar fraction of the metal in the alloy $x_{\rm Pb} = 0.1-0.9$. Using the MIVM model activity coefficients of lead $\gamma_{\rm Pb} = 0.474-0.999$ and silver γ_{Ag} = 0.331–0.999 were calculated for Pb–Ag alloy under different composition in the investigated temperature range. For VLE phase diagrams the lever rule can be used to help predict quantities of substances, residues and sublimates at a predetermined temperature. For the phase boundary "liquid – gas" of Pb–Ag alloy the values of the excess Gibbs energy, enthalpy and entropy are determined: $G_m^E = 0.01-1.34 \text{ kJ/mol}; -H_m^E = 0.32-1.53 \text{ kJ/mol}; S_m^E = 0.52-1.65 \text{ kJ/mol}K.$ VLE phase diagrams of alloys provide the necessary information for the design of technological parameters in industrial production, vacuum metallurgy, as well as for predicting the necessary composition of Pb-Ag alloy, depending on temperature and pressure during vacuum distillation.

Keywords: VLE phase diagram; vacuum distillation; molecular interaction volume model.

Received 25 April 2017

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Королев, А.А. Фазовые равновесия в системе Pb–Ag при пирометаллургической возгонке / А.А. Королев, С.А. Краюхин, Г.И. Мальцев // Вестник ЮУрГУ. Серия «Металлургия». – 2017. – Т. 17, № 2. – С. 22–33. DOI: 10.14529/met170203

FOR CITATION

Korolev A.A., Krayukhin S.A., Maltsev G.I. Phase Equilibria in the System Pb–Ag in the Pyrometallurgical Fuming. *Bulletin of the South Ural State University. Ser. Metallurgy*, 2017, vol. 17, no. 2, pp. 22–33. (in Russ.) DOI: 10.14529/met170203