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The completion theorem for metric spaces is always proven using the space
of Cauchy sequences. In this paper, we give a short and alternative proof of this
theorem via Zorn’s lemma. First, we give a way of adding one point to an incom-
plete space to get a chosen non-convergent Cauchy sequence convergent. Later,
we show that every metric space has a completion by constructing a partial or-
dered set of metric spaces.
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Introduction

The completion theorem for metric spaces states that every metric space can be embedded in a
complete metric space and the original space's image is dense in that complete space. In several sources,
the proof is given by a classical method based on the space of the equivalence classes of all the Cauchy

sequences, denoted by X , of the given metric space X , see [1]. In this proof, it is shown that X is a

complete metric space, X can be embedded in X , the image of X is dense in X and this completion
is unigue up to isometry.
In this paper, we propose another way to prove the completion theorem by not using the embedding.

We prove that if a metric space X is not complete, there exists a complete metric space X including
X suchthat X isdensein X ,i.e X =X.

The proof
Lemma 1. Let (X,d) be a metric space and (xn) be a Cauchy sequence that is not convergent

in X . We define a new space X = X u{c} with the metric d as follows:

d(xy), if x,yeX,
lim d(x,,y), if x=c,yeX,
d , — ) N>
(xy) lim d(x,x,), if xeX,y=c,
n—oo
0, if x=y=c,

where ¢ is an element that does not belong to X . Then, ()Z,d) is a metric space satisfying the proper-
ties d(x,y)=d(x,y) foreach x,ye X, lim x, = ¢ and X=X.

Proof. By the reverse triangle inequality |d (Xq,y)—d (xm,y)| <d (X, Xy ), the sequence {d (X, y)}
is a Cauchy sequence in R because (xn) is a Cauchy sequence in X . Since R is complete, then
{d (xn y)} is a convergent sequence for each y e X . Therefore, the function d is well-defined from

X xX to R. Also, it is easy to see that d is a metric on the set X . Now, we show that the sequence
(xn) converges to ¢ in the metric space ()Z,&). Given & >0, there exists a natural number n, such

that d(xn,xm)<§ for all n,m>n, . Then, we have
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d(%,,€) = lim d(X,, %) <2 <&
m—o0 2
for each n>n_. This proves the above assertion and also proves that X = X .

Lemma 2. Let (X,d) be a metric space included two complete metric spaces (Y,,p;) and
(Y,.p,) with the conditions pl(X, x*):d (x, x*) and pz(X, x*):d (x, x*) for every x,X e X . If
X is both dense in (Y,, p,) and (Y,,p,), then these complete metric spaces are isomorphic to each
other.

Proof. Let teY,. Since X =Y,, there exists a sequence (X, )< X such that lim p, (x,,t)=0.
Then, (X,) is a Cauchy sequence in Y,, and also is a Cauchy sequence in Y, . Since (Y,, p,) is a com-

plete space, then there exists y in Y, such that lim p, (x,,y)=0. Let f:Y, >Y,, y="f(t). We

now show that the function f is an isometry. First, we prove that it is well-defined. Let (zn)c X be

also convergent to the point t in the space (Yl, Pl)- Then, similarly, there exists z Y, such that
lim p, (2,,2) =0.

pz(y,z):pz(limxn,lim zn):Iimpz(xn,zn):Iimd(xn,zn)zlimpl(xn,zn)

= p,(limx, limz, )= py (t1) =0= y=2.
Second, we prove that f is surjective. Let y €Y, . Since X =Y,, there exists a sequence (xn) c X

such that lim p, (x,,y)=0. Then, (x,) is a Cauchy sequence in X and also in Y,. Since Y, is com-
plete, then there exists t €Y, such that lim p, (x,,t)=0. By the construction of f, y= f(t). Final-

ly, we prove that f isan isometry. Let t,,t, €Y, .Then, there exist two sequences (X, ),(z,) < X such
that lim p, (x,,t,) =0, lim p,(z,,t,)=0, limp,(x,, f (t,))=0 and lim p,(z,, f (t,))=0.

p.(1 (), T ()= pu(limx,.limz, ) =lim p, (x,.2,) = limd (,.2,) = lim g, (x,.2,)

=p1(lim X,, lim zn)zpl(ti,tz).

This completes the proof.
Theorem 1. Every metric space has a unique completion up to isometry.

Proof. Consider the family Q of metric spaces (Y, p) satisfying the following conditions:
1) p isametricon Y,
2) X<V,
3) p(x,y)= a’(x,y) for each x,y e X,
4) X=Y.
We define a relation on Q which is as follows:
(Y. 2)<(Ya,0) =Yy Y, and p, (X, y) = pr(X,y) foreach x,y €Y;.
It is easy to see that the pair (€2, <) is a poset. We take a chain Q" in the poset (€,<) and define

y'= U V.

(Y,p)eq”

62 Bulletin of the South Ural State University
Ser. Mathematics. Mechanics. Physics, 2021, vol. 13, no. 2, pp. 61-64



Kaya U. A Short Proof of Completion Theorem for Metric Spaces

We now define a function p* from Y*xY* to R as follows. If x,yeY™, then there exists
(Yo, p0)€Q" suchthat x,yeY, because Q7 is achain. Let

P (%Y)=po (%)
Then, the function p is well-defined by the definition of the relation <. One can easily show that
p* is a metric on the set Y*. Let yeY", there exists (Y, 5)eQ" such that yeY . Since (Y,5)eQ,

then there exists a sequence (x,) in X such that r!mﬁ(xn, y)=0,ie. n"ﬂl”*(xn’ y)=0. Consequent-
ly, X =Y". These results show that the metric space (Y*, p*) belongs to Q and forms an upper bound
of the chain Q*. By Zorn’s lemma, Q has a maximal element and we denote it by ()Z&) We now
prove that the metric space ()26) is a completion of (X,d) . Since ()26) is an element of Q, then we
just prove that ()Z,& ) is complete. Assume the contrary. If ()?,6 ) has a non-convergent Cauchy se-
guence, then Lemma 1 requires that there exists a metric space (X*,d*) such that X" = X u{c*} and
()Z,&) <(X*,d*), where ¢ is a point notin X . We now show that (X*,d*)eQ. Indeed, it is enough
to show that ¢” is an accumulation point of the original set X . Given & >0. By Lemma 1, there exists

ce X such that d*(c,c*)<g. Besides, by the relation ()?,&)GQ, there exists X e X such that

d(x,c)<§. Then, d*(x,c*)gd*(x,c)+d*(c,c*):&(x,c)+d*(c,c*)<§+%:g. Thus, we

have (X*,d*)eQ. The last and the relation ()Z,&)<(X*,d*) contradict the maximality of ()26)

This completes the proof.
The unigueness up to isometry of the completion is directly obtained by Lemma 2.
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[IpuBonuTCS anbTEpHATUBHOE MJOKA3aTEIbCTBO TEOPEMBI O IIONOJIHEHHMM METPUYECKUX IPO-
CTpaHCTB, OCHOBaHHOE Ha JieMMe LlopHa.

Kniouesvie cnosa: meopema o nononnenuu; mempuieckoe npoCmpancmeo; NoaHoe npoCcmparcmeo,
nemma LlopHa.

Jluteparypa
1. Lusternik, L.A. Elements of functional analysis / L.A. Lusternik, V.l. Sobolev. — Hindustan
Publishing Corp., Delhi and Halsted Press, New York, 1974. — 360 p.

Ilocmynuna 6 peoaxyuro 30 ansaps 2021 2.

64 Bulletin of the South Ural State University
Ser. Mathematics. Mechanics. Physics, 2021, vol. 13, no. 2, pp. 61-64



