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The article is devoted to the study of the morphology of the phase space of a
degenerate two-component mathematical model of a nerve impulse propagation
in the membrane shell. A mathematical model is studied in the case when the pa-
rameter at the time derivative of the component responsible for the dynamics of
the membrane potential is equal to zero, and the theorem about the fact that the
phase space is simple in this case is proved. A mathematical model is also consid-
ered in the case when the parameter at the time derivative of the component re-
sponsible for the ion currents is equal to zero, and the theorem on the presence of
singularities of Whitney assemblies is proved. Based on the results obtained, the
phase space of the mathematical model is constructed in the case when the pa-
rameters at the time derivative of both components of the system are equal to ze-
ro. The author gives examples of the construction of the phase space, illustrating
the presence of features in the phase space of the studied problems based on the
Galerkin method.
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Introduction

Let QcR" be a bounded domain with boundary oQ of class C* . In the cylinder Q=Qx(0,T)
consider the degenerate FitzHugh—Nagumo system of equations:

oV
& ax = AV + oW - BV,
(1)

ow 3

with the Dirichlet boundary condition
v(s,t)=0,w(s,t)=0, (st)edQx(0,T). (2)
The sought functions w=w(s,t) and v=v(s;t) describe the dynamics of the membrane potential

and the behavior of sodium and potassium currents; S, Bis, Bo1, P 04, 0, €R Characterize the thresh-
old of excitation, the speed of the threshold of excitation, electrical conductivity and repolarization of
the environment. Initially, in [1, 2], a nondegenerate Fitz Hugh—Nagumo system of equations was inves-
tigated, where sought functions v and w, simulate the behavior of chemical elements in the membrane.
It is characteristic of the system of equations (1) that, with the speed of one of the sought functions in
the system, it always significantly exceeds the speed of the other sought function. This phenomenon is
called Turing instability [3]. The conditional “regulators” of this behavior of the two initial functions are
small parameters &, &, at the time derivatives. The system of equations (1) in the case when g —0 or

&, — 0 using the theory of singular perturbations was investigated in [4, 5]. In this case, the system of

equations (1) was considered as a representative of the class of systems of the reaction-diffusion type,
which have the form

51% = ogAv + fi(v,w),

& %N = a, AW+ fy (v, W).
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This class, in particular, includes problems on the transmission of nerve impulses (except for the al-
ready mentioned system (1), the Hodgkin—Huxley system), combustion problems, some models of su-
perconductivity, the Belousov—Zhabotinsky reaction, and others. The study of phase portraits for sys-
tems of the reaction-diffusion type was carried out both in the case of systems of a general form [6, 7]
and for specific interpretations [8-11]. For some specific systems of reaction-diffusion equations, the
existence of an inertial manifold was established [12, 13], and for a system of patterning equations, it
was possible to construct a global attractor for Q = R" [14]. The phase portrait of the system of equations
(1) in the finite-dimensional case, as an example of a system performing relaxation oscillations, was
considered in [15], when & >0. To research the Turing instability in systems of the reaction-diffusion

type using the consideration of degenerate equations was proposed by G.A. Sviridyuk and T.A.
Bokareva in [16]. The possibility of the existence of several solutions of the Showalter—Sidorov problem

v(s,0)=v,
for the degenerate system of equations (1) with condition (2) in the case &, =0 was investigated in [17].

The presence of the degeneracy of equations in system (1) makes it possible to reduce the system of
equations (1) with boundary condition (2) to semilinear equations unresolved with respect to the highest
derivative (Sobolev type)

Lx = Mx+ N(x), ker L ={0}. 3

The statement of the problem of the theory of bifurcation of phase portraits of differential equations
in the finite-dimensional case goes back to A.A. Andronov [18]. The word “bifurcation” means “furca-
tion” and is used as the name of any abrupt change that occurs with a smooth change in parameters in
any system: dynamic, ecological, etc. cycles, invariant sets and attractors were provided by the works of
V.1. Arnold [19]. The first attempts to pass from finite-dimensional systems to the singularity of phase
portraits of nonlinear partial differential equations in Banach spaces were undertaken in the works of
R.M. Berger, R.M. Church. and 1.G. Timouria [20, 21]. They showed that the phase spaces of some el-
liptic nonlinear partial differential equations have features called V.I. Arnold as Whitney folds or as-
sembly. In the future, in the study of partial differential equations, the definition given by V.l. Arnold
modified and acquired the following form. If there exist functions go, 0, ..., gk belonging to the class
C*(B"; R), such that the equation G(s,v)=0 s equivalent to the equation 0=gq(V)+gy(V)s+... +gu(v)s +s",
for any ve B', where B is a Banach space and a function G of class C*(B'; R), then we say that the equa-
tion G(s,v) = 0 defines Whitney k-assembly over an open set B'< B.

G.A. Sviridyuk [22] was the first to begin the study of phase spaces for semilinear Sobolev-type
equations (3). Later, together with VV.O. Kazak [23] proved the simplicity of the phase space for the Hoff
equation, when the coefficients of the equations have the same sign, and in work with I.K. Trineeva [24]
proved the existence of a singularity such as Whitney folds and folds in the phase space of this equation,
but for different signs of the coefficients of the equation. This showed that for semilinear Sobolev-type
equations the existence of singularities in the phase space is possible for different parameters of the
equation. The essence of the phase space method developed by G.A. Sviridyuk consists in reducing line-
ar and semilinear Sobolev-type equations to an equation x = Sx + F(x), defined on a certain subspace,
which is understood as a phase space (phase manifold for semilinear equations). This work continues the
research begun in [16] for the Fitz Hugh—Nagumo system of equations, generalizing and considering all
possible initial conditions and coefficients of the system of equations, including in the case of the
parameters at the time derivative of both components of the system are equal to zero.

The article is organized as follows. In the first section, a mathematical model of the propagation of a
nerve impulse in the membrane sheath is investigated in the case & =0 and conditions for the
simplicity of the phase space of the Fitz Hugh—Nagumo system of equations are found. In the second
section, a mathematical model of the propagation of a nerve impulse in the membrane is investigated in
the case &, =0 and conditions are found under which the phase space of a degenerate system has

features such as Whitney folds. And also the phase space is constructed in the case & =&, =0. In the

third section, examples of constructing phase spaces for each of the studied systems, including those
with singularities, are given.
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1. Mathematical Model of the Propagation of a Nerve Impulse in the Membrane Sheath in the
Case of g =0
In the cylinder Q xR, consider the system of equations

W, = QAW+ B W= fpV — W
with the boundary condition
v(s,t) =0, w(s,t) =0, (s,t) e0QxR.. (5)

For simplicity of presentation, we divide the reduction of problem (4), (5) to (3) in three stages.

Stagel. Take a Banach space H=H;xH,=W;(Q)xW;(Q), a Hilbert space

X =X x X, =L, () xL, (), whose scalar product is defined as [x,{]=(v,&)+(w,7), where

X=(v,w),& =(&,n), (.- is the scalar product defined on the space L,(€2). Denote by the space Y
dual to H with respect to duality [-,-]. For spaces H, X,Y itis true

HcXcY, (6)

where all embeddings are dense and continuous.
Stage 2. Define linear operators L,M : X —Y formulas

[Lx, 1= (w,7), X, & eX, (7)
[MX, 1= a1 D (Vg &6 ) — @ ) (W 775 ), %,& € X, dom M =H. (8)
i=1 i=1

By definition, the operators L,M have the properties LeL(X,Y), M eCI(X,Y). Note that for all
fixed values of the parameters ¢, , € R\{0} the operator M is L -sectorial [17].
Stage 3. Define nonlinear operator by formula

NGO, $1= (BioW— BV, &) +{BopW = gy =W, 17) ©)
and put domN =B =B, xB, = L,(Q)xL,(Q), B" =B, xB; = L, (Q)xL,(Q) the space dual to B with
3 3
respect to duality [-,-]. For spaces H, X,Y,B,B" at n<4 itis true
HcBeXcB <Y, (10)

where all embeddings are dense and continuous.
Lemma 1. [17] For all fixed values of the parameters S, /By, /B, P €R, N<4, operator

N:B—Y belongs to the class C*.

To construct the space X, put X, =X @®Xl where X =W;(Q)x{0}, X ={0}xX?,
X% =1,(Q). Forspaces H,X,,B,X at n<4 itistrue
HcX,cBcX, (11)

where all embeddings are dense and continuous.
In our case, all solutions of the system of equations (4) lie pointwise in a set Pg1 of the form

P, ={Xe X, 1 Y (Vs &)+ (B &) = (w1} (12)

i=
Theorem 1. For all fixed values of the parameters o, € R0}, 51,5 €R, o, b1, fio €Rs,
n<4, the phase space Pg1 of problem (4), (5) is a simple Banach C* -manifold.

Proof. Let's construct an auxiliary operator
n

(AV,&) =D (ol &)+, &), (13)
i=1

v,& e H;. Since
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(A, &< allvlip 1€,
where the constant ae R, depends on f;;,¢;, he embedding constants (6), and does not depend on
v,&, this proves the action of the operator A:H; — H; .

The resulting operator A: H, — H; is coercive, i.e.
1

n n 2
lim (AW Ivig=  dim | [Qlevé +puv?)ds || [QVE +vP)ds | =+,
My, —>-+0 My, +o0\ 5 i3 o il

Moreover, the operator A is strictly monotone, i. e.

n
(Av = AVy,Vy —V,) = I(%(Z%i Ve )2+ (v —V,)*)ds >0
Q i=1
as soon as v, #V,. Finally, let us show the smoothness of the operator A. Really,

n
(A& &) 1F| [ andi s, + P& dS DI Iy 1€ Ny
Q i=1l
where the constant b depends only on 4, £;; and the embedding constants (6). Therefore, the operator
A is continuously differentiable, and from this, in an obvious way, its radial continuity follows.
Applying the Vishik—Minty—Browder theorem [25], We obtain the bijectivity of the operator
A:H; — H,. Construct the operator D(w) = (A™*(w),w), domD = X2. Since the operator D satisfies
the conditions of the Vishik—Minty—Browder theorem, the statement of the theorem is true.

2. Mathematical Model of the Propagation of a Nerve Impulse in the Membrane Sheath in the
Case of &, =0

In the cylinder Q xR. consider the system of equations
Vi = oAV + oW — B4V,
0= AW+ Loy W— SV — W,
with boundary conditions (5). For simplicity of presentation, we divide the reduction of problem (5),
(14) to (3) in three stages.

Due to the fact that the right-hand side of equations in system (14), boundary conditions (5)
remained unchanged in comparison with (4), (5), stage 1 of the reduction of problem (5), (14) to (3)
coincides with step 1 of item 1. The same is true for constructing the operator from step 2. At the same
time, the operator will be different from the operator constructed in item 1, since the left side of the
equations in system (14) has changed. Therefore, we construct a linear operator L: X —Y as follows

[Lx,&1=(v.&), x g eX. (15)

Note, that for all fixed values of the parameters ¢, o, € R\{0} the operator M is L - sectorial [17].
Stage 3 of the reduction of problem (5), (14) to (3) almost coincides with stage 3 of item 1. The
only difference is in the construction of the space. X,. Take X,=X/®Xl, where

24

(14)

XP = {0}xWH(Q), X1 =X“x{0}. Forspaces H,X,,B,X at n<4 itis true
HcX,cBcX, (16)
where all embeddings are dense and continuous. This means that for all fixed values of the
parameters,Bij e R, i=1,_2, j =1,_2, n<4, the operator N is asmooth class C*(X,,Y).
All solutions of the system of equations (14) lie pointwise in a set P of the form
n
P, = {x eX, —(v,p)= <—£—iw+ ﬂiﬂmﬁ,n>+§<;‘—;wsi A >} (17)

Lemma 2. [17] Let oy, By, P € R, oy, for € Ry, Py €(—0,a50;), N<4, where v, is the first
eigenvalue of the spectral problem
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-Ap=vp,Se),
»(s) =0,5 € 0Q,
then for any vector ve X“ there is a unique vector we H, such that x =col(v,w) e P,,.

(18)

Lemma 3. [17] For any oy, B, B € R, ay,for € Ry, fry €(—0,a50;), N<4, phase space of
the system of equations (14) is a set P, and it is a simple Banach C” -manifold.
Consider the case f,, = a,v;, put
X =t e X (vt ) =0}, Hy ={w" e H, :(w",¢) =0}
If ve X** and we H, epresented in the form v=v" +rg and w=w" +qgp, where r,qe R, ¢
is the eigenfunction of the spectral problem (18) corresponding to the eigenvalue v;, then the set P,
takes the following form:

J.—Vlnlds = J‘(—@ ZWS 775
Q Q ﬂZl 21 i=1
sz =41X€ Xa . +L(WJ- + qgal)%f-jds (19)
P
Bt = [(W" +ag) gy
Q

If in the system of equations defining the set (17) is substituted instead of f,, = a,v,, , then in order

to obtain the first equation of the system (19) instead of 7 in (17) it is necessary to substitute 7 = 7",
and then to obtain the second equation (19) instead of 7 in ( 17) must be substituted 7 = ¢,.

Lemma 5. Let a,, By, € Ry, By = oy, then for any vector v e X ** there exists a unique vector
w e Hy such that

[-vtntds= j[—&wﬂf +—=% gL s+ L wts Q(/>1)3f7ljds
Q Q 1821 ﬂ21 i=1 ﬂ21

Proof. The proof of this lemma is similar to the proof of Lemma 2. Fix g R and introduce the
auxiliary operator A: H2L - H;L

<A(WL+Q¢’1)-77>:I(—&WLU 4—ZWL775 (W) } s,
ol P T T P

where H,™ ={heH, :(h,¢)=0}. Then
AW +ag). Y ECLW I, + w12, + I I D1l
2 2 2

(20)

where the constant C, € R, depends on a5, 5,5, and the embedding constants (6), but does not
depend on wt, nt.
Note that

lim (AW + Q¢1),Wi>HWLH:L =
ey > 2
2

1

- . ,822 . 1 ‘ n 1\2 L2 75_
= lim f (w Z( s) +,3 (W' +ag;)° I(Z(WS.) +(wh)ds | =+,
Q

HWL H s 100 B /321 i-1 Q i1
o
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and
n
(AW +0@r) — AW, +0p), Wi — Wy ) = J-( (Zwls nggi )2 -
1321 i=1 i=1
1
22 (o e (ot ra)° - (i +a)) (o —wé)jds =
ﬁZl ﬂZl
I[ (Zwls szs )? 2_Ln (wg —wy )%+
ﬂ21 i=1 ﬂ
1
+ﬂ—<wf -vg)° ((wf+q(p1)2+(wf+q¢1)(wé+q¢1)+(w§+q<o1)2st >0,
21
as soon as w;" =W, . This means that the operator A:H, — H," is coercive and strictly monotone.
Moreover,
1
(A ¢W1 wy) = I[ Wlslwzg_ _&Wl +3—(w" +Q¢1)2W1LW2Ljd5,
21 i-1 1321 21

where W, wy € Hy , i.e. the operator A is smooth, which means that it is also radially continuous. By

virtue of the Vishik—Minty—Browder theorem [25], the assertion of the lemma is true.
Let us turn to the second equation of the system that defines the set (19). Transforming the resulting
equation, we get:

@l (o) +30° [whds +3q [ (w)? pfds + [ (w") ds + Byyr =0. (22)
Q Q Q

Equation (21) is a cubic equation of general form aq®+bg? +cq+d =0 with respect to q.
According to Cardano's formulas, any cubic equation of general form can be reduced to the canonical

form y3 + py +e =0 with the coefficients
a=|e ||‘t4(Q) b=3[wplds,c =3[(w")*plds,
Q Q

3ac—b2e:1(2b3 be. dJ
2 i)

_ 113 _
d —i@(W Yids—furp == -~

27a® 3a° a (22)

Res(q,w') = p* +e?,
R(q,w") = g ||(,,1||i4(9) +2q [piwds + [pf (w")*ds
Q Q

. b
by replacing g=y——.
3a
For convenience of further consideration, we introduce the following sets:
HZ ={weH,:R(q,w") =0},
={weH, :Res(q,w") >0},
H, ={weH, :Res(q,w") <0}.
Theorem 2. Forany o, B, B € R, oy, 01 € Ry, re R, By =ay0, N<4, the phase space of
the system of equations (14) is a set P, and it has singularities of the Whitney 2-assembly type.

Proof. The validity of the theorem follows from Cardano's formulas for equation (21) and the
definition of Whitney folds.
In the case & =&, =0, when the phase space

0=qAV+ B oW— BV,
5 (23)
0= AW+ BroW— BoV —W
BecTtHuk OYplY. Cepusa «MatemaTtuka. MexaHuka. Pusuka» 19
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and (4) will be a set of the form
> ey & KA, = B, &),
P xeX 4 _ (24)

81=6‘2=0: a 1 n
—<v,77>=<——ﬁ 2 w—w’, Z<—a2 W, ,775.>
21 ﬂ21 i=1 ﬂZl ! :

3. Examples of Constructing Phase Spaces

Based on the modified Galerkin—Petrov method and the phase space method, an algorithm was con-
structed that allows one to find the form of the phase space and its image depending on the values of the
coefficients of the system and its degeneracy. The algorithm is implemented in the form of a computer
program complex for carrying out computational experiments on the construction of phase spaces, in-
cluding those with peculiarities.

Example 1. It is required to find the form of the phase space of the system of equations

0=V, —V+Ww,
(25)
W, =W —W—V—W
with boundary condition
v(s,t) =w(s,t)=0,sedQ, t<(0,T), (26)
at Q= (0, ).
We represent approximate solutions (25), (26) in the form

V(s,t) = rep(S) + v, W(s,t) = qey(s) +wh,  where  r=y(t), vi= iVi OIAS] q=w(t),
=

wh =W () (s).
i=2

The phase space (25), (26) is a simple C* -manifold. For a given system, the phase space can be
described based on:

-2r+q =0, 27)
—5vi+wt =0.
It is shown in Fig. 1.
Fig. 1. Phase space of (25), (26)
Example 2. It is required to find the form of the phase space of the system of equations
20 Bulletin of the South Ural State University
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Vi =V —V+W, -
{O=WSS—W—V—W3 (@8)
with boundary condition
v(s,t) =w(s,t) =0, sedQ, te(0,T), (29)
at Q=(0,x).
We represent approximate solutions (28), (29) in the form

U(s,t) =rep(s) +VE,W(s,t) = gy (s) +W",  where  r=y(t), vi= ivi D@ (s), q=w(t),
i=2

m
wo =W (0 ().
i=2
According to Theorem 2, in the case when ¢, =0, the phase space (28), (29), under certain
conditions, can contain a Whitney 2-assembly. For a given system, the phase space can be described on
the basis of:

-39° —6q(W")* + 27T +47q _ 0
2z ’

(30)
_—69°w" —3(w)® +27v" +107w" _ 0
27 '
Phase space in the case when &, =0 shown in Fig. 2.
Fig. 2. Phase space of (28), (29)
Example 3. It is required to find the form of the phase space of the system of equations
0=vg —V+w,
3 (31)
0=wg, -W-v-w
with boundary condition
v(s,t) =w(s,t)=0,se0Q,te(0,T), (32)
at Q=(0,x).
BectHuk HOYpl'Y. Cepusa «MaTtematuka. MexaHuka. ®usmnka» 21
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We represent approximate solutions (3D), (32) in the form

Us,) =ra(s) +vi WS ) =g (s) +wh,  where  r=v(t),  vi= ivi O@(s),  a=w(D),
i=2

wh =W () (s).
i=2

According to Theorem 3, the phase space (31), (32) in the case when &, and &, both are zero, is the
intersection of the phase spaces (27) and (30), it is shown in Fig. 3.

Fig. 3. Phase space of (31), (32)

The research was funded by RFBR and Chelyabinsk Region, project number 20-41-740023.
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MOP®OJIOINMA ®A30BOIr0 NPOCTPAHCTBA OJHOWU MATEMATVI‘-IECKQVI
MOAEJIN PACINPOCTPAHEHUA HEPBHOIO MMNYJIbCA B MEMBPAHHOU
OBOJIOYKE

O.B. Naepusnoesa
FOxHO- Ypanbckuli 2ocydapcmeeHHbIl yHusepcumem, 2. YensabuHck, Pocculickass @edepauusi
E-mail: gavrilovaov@susu.ru

Crarbs mocBsileHa U3y4eHUI0 MOp¢oJorun (azoBOro MPOCTPAHCTBA BHIPOKAECHHON ABYXKOMIIO-
HEHTHON MaTeMaTHYeCKOH MOIENH PaclpOCTpaHEHUs] HEPBHOTO MMITYJIbca B MeMOpaHHOH 00o0iovKe.
Martematrdeckast MOJIeNlb M3ydeHa B ciydae, KOrja MmapaMerp Npu MPOU3BOJHOM 1O BpeMEHH KOMIIO-
HEHTHI, OTBEYAIONICH 32 AMHAMHKY MEMOpPaHHOTO MOTEHIIMANIA, PABEH HYJIIO, I0OKa3aHa TEOpEMa O TOM,
49T0 (ha30BOE MPOCTPAHCTBO B ATOM CITydae SIBISETCS MPOCTHIM. Takke, pacCMOTpeHa MaTeMaTHIecKast
MOJIeJTh B ClIydae, KOT/ia ImapaMeTp MpH IMPOU3BOAHON 10 BpEMEHH KOMITOHEHTHI, OTBEYAOIIEH 32 HOH-
HBIE TOKH, PaBEH HYJIO M JOKa3aHa TeopeMa O Hanuuue ocoOeHHocTel Tuma coopok YurHu. Ha ocHoBe
MOJTyYeHHBIX PE3yNIbTAaTOB, CTPOUTCS (Da30BOE MPOCTPAHCTBO MATEMATHIECKOW MOJIETH B CiIy4ae, Koria
mapaMeTpsl TIPH MTPOU3BOAHON IO BpeMeHH 000X KOMITOHEHT CHCTEMBI PaBHBI HYJO. [IpuBeneHs! mpu-
MephI TOCTPOEHHS (a30BbIX MPOCTPAHCTB, WILTIOCTPUPYIOIIUE HATMUUsl 0cOOEHHOCTEH B (Pa3oBBIX TPO-
CTPaHCTBaX MCCIIEyEeMBIX 3a1a4 Ha OCHOBe MeToAa ["anepkuna.

Kurouesvie cnosa: ypasuenus coOone6ckozo mund, memoo @azo8020 NPOCMPAHCMBA; 3a0aya
Lloyoamepa—Cuooposa; cucmema ypasuerutl @umy Xovio—Hazymo.
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