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Abstract. We consider the problem of determining point sources for mathe-
matical models of heat and mass transfer. The values of a solution (concentra-
tions) at some points lying inside the domain are taken as overdetermination con-
ditions. A second-order parabolic equation is considered, on the right side of
which there is a linear combination of the Dirac delta functions d(x—x;) with coef-
ficients that depend on time and characterize the intensities of sources. Several
different problems are considered, including the problem of determining the in-
tensities of sources if their locations are given. In this case, we present the theo-
rem of uniqueness of solutions, the proof of which is based on the Phragmén—
Lindelof theorem. Next, in the model case, we consider the problem of simultane-
ous determining the intensities of sources and their locations. The conditions on
the number of measurements (the ovedetermination conditions) are described
which ensure that a solution is uniquely determined. Examples are given to show
the accuracy of the results. This problem arises when solving environmental
problems, first of all, the problems of determining the sources of pollution in a
water basin or atmosphere. The results are important when developing numerical
algorithms for solving the problem. In the literature, such problems are solved
numerically by reducing the problem to an optimal control problem and mini-
mizing the corresponding objective functional. The examples show that this
method is not always correct since the objective functional can have a significant
number of minima.

Keywords: heat and mass transfer; parabolic equation; uniqueness; inverse
problem; point source.

Introduction
Under consideration is the inverse problem of recovering the point sources in the model

U, +Lu =§1;Ni (t)o(x—x)+ fo(t,x),Lu=—-Au +%:ai (x)uxi +ag(X)u, 1)

where (x,t)eQ=(0,T)xG, G is a domain in R" (n=2,3) with boundary I"C?. The unknowns
are the functions N; (t) . The equation (1) is furnished with the initial and boundary conditions
Bus =0,U._o =Uy(x),S=(0,T)xT, )

where either Bu= Z—u+au ,0r Bu=u (v is the outward unit normal to 77), and the overdetermination
v

conditions
U(yj,t)=t//j(t),j=1,2,...,s. (3)
These problems arise in mathematical modelling of heat and mass transfer processes, diffusion, fil-

tration, and in many other fields (see [1-3]). In the theory of heat and mass transfer, the function u is
the concentration of a transferred substance and the right part characterizes sources (sinks) [1]. In the

most general formulation of the problem (1)—(3), the intensities N; (t) of point sources, their locations
X; and the number m are quantities to be determined. Some descriptions of models of this type can be

found, for example, in [1]. A lot of articles are devoted to solving these inverse problems. The main re-
sults are connected with numerical methods of solving the problem and many of them are far from justi-
fied (see [4-16]). The problem is ill-posed and examples when the problem is not solvable or has many
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solutions are easily constructed. Very often the methods rely on reducing the problem to an optimal con-
trol problem and minimization of the corresponding objective functional [2, 4, 5, 9, 16]. However, it is
possible that the corresponding functionals can have many local minima. Some theoretical results devot-
ed to the problem (1)-(3) are available in [17-21]. The stationary case is treated in [20], where the
Dirichlet data are complemented with the Neumann data and these data allow to solve the problem on
recovering the number of sources, their locations, and intensities using test functions and a Prony-type

algorithm. The model problem (1)—(3) (G=R") is considered in [21], where the explicit representation
of solutions to the direct problem (the Poisson formula) and auxiliary variational problem are employed

to determine numerically the quantities ZiNiri} (here Ni(t):const forall i and ;=[x —y;j|). The
quantities found allow to determine the points {x;} and intensities N; (see Theorem 2 and the corre-
sponding algorithm in [21]). So the results of [21], for instance, say that the problem (1)—(3) and more
general problem of simultaneous recovering points {x;} and intensities {N;} in some model situations is
uniquely solvable. In the one-dimensional case uniqueness theorem for solutions to the problem (1)—(3)
with n=1,m=1 is stated in [17]. Similar results are presented also in [22].

In this article the main attention is paid to uniqueness questions of solutions to the problem in some
model cases and the general case as well. Examples showing the accuracy of the results obtained are
displayed. The constructions can be used when developing numerical algorithms. The results are based
on asymptotic representations of the Green functions of the corresponding elliptic problems (see [23]).

Preliminaries
First, we describe our conditions on the data and some corollaries of the results in [23]. Let G be a

domain in R" . The symbols L,(G) and W, (G) (1< p<w) stand for the Lebesgue and Sobolev
spaces [24]. We also use the spaces CX (5) of k times differentiable functions (see the definitions in

[24]). If .S are some sets then the symbol p(7:S) stands for the distance between these sets. The
symbol D(L) stands for the domain of an operator L. Denote by B, (X,) the ball of radius r centered
at X, . Let a=(a,,a,) for n=2 and a=(a,,a,,a;) for n=3. The brackets (-,) denote the inner prod-
uctin R". Let

1
()= [ (@0 + £x - 3p)). (x— X
0

The coefficients in (1) are assumed to be real-valued and
a eWﬁ(G)(i :l,...,n),Vw,At//,aO IS Lw(G),Gecl(l“), (@)
Consider the problem
n
— _ n

_Au+i§aiuxi+a0u+iu_5(x X ), XxeGcR", (5)
Bu|. =0. (6)
For the reader’s convenience, here we present some results the article [23] (see Theorem 3.5, 3.9,
3.11, 3.12). We consider compact K < G, containing X, , with properties: if Bu=u and G is a domain
with compact boundary then the convex hull of K is contained in G ; if G is a domain with compact

boundary and Bu=u then K BP(XO r) (xo) ;if G=R" or G=R" , then K is an arbitrary compact.

Theorem 1. [23]. Assume that the conditions (4) hold, K is a compact with the above properties,
and if G:Rﬂ , then, in case Bu=u, =0 (i.e, Bu=uXn )and a =0 for i=12,...,n. Then there

exists 4, >0 such that for all 2> 4 asolution u,(x) (n=2,3) to the problem (5), (6) in every domain
{yeK:0<e<|y—x|, 1=12,...,m} admits the representation
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1 (X)-NZx-xq 1)
Uy (X) = e” @+0(==)); ()
227 | x—x | 2 Wi
1 y(X)—Alx=xo 1
Ug(X)=—"""¢ 1+ O(—=)). 8
s ()= x] 1+0(£) ®)
Next theorem deals with solvability of the direct problem (1), (2). Let
Up (X) €W (G),Up (x)|,. = 9(x,0) if Bu=u. 9)
We also suppose that
fo € L, (Q),g(x,t)eWS/*32(S)if Bu=u,g(xt)eW;y’ *?(S)if Bu=u. (10)
Consider auxiliary problems
U + Lu = fy(t,x), Bug =g,U_q =Ug (X), (11)
m
W+ Lw=>"N; (t)5(x - ),Bws =0,w_g =0. (12)

i=1
Let Wé’B(G) be a space of functions u eWé(G) satisfying the homogeneous Dirichlet condition

whenever Bu=u and W, 5(G)=W,(G) if Bu=u. Denote by W, % (G) the dual space to W, g (G)

(the duality is defined by the inner product in L, (G), see [25]).
The following theorem follows from [26], theorem 2 and [27], theorem 8.2.
Theorem 2. Let T<oo and let pe(l,n/(n—l)). Assume that the conditions (9), (10) hold,

ael,(G) (i=04...,n),and N; €L, (0,T) (i=12,...,m). Then there exists a unique solution to the
problem (1), (2) such that u=w, +w, where w, eW21'2(Q) is a solution to the problem (11), w is a
solution to the problem (12), we LZ(O,w;WéﬁB(G)), W, € LZ(O,oo;W[;ls(G)) and weW,%(Q,) with
Q. ={(xt)eQ:|x—x; |>¢& Vi<m} forall £>0.

Main results

Here we present our uniqueness theorem for solutions to the problem (1)—(3). We introduce the
functions

1
9)(x) =~ [ @0y + 2=y ). (- )
0

Let 5 =min;r;, j=12,...,s, where r; =[x —y;|. Let A, be the matrix with entries a; =1

if [% —y;|=0J; and a; =0 otherwise. We assume, that:

det Ay =0 (13)
Condition (4) is rewritten as follows: the coefficients of L are real-valued and
q eW? (G)(i =1,...,n),V(pj Apj, a9 el (G)(j < S),aeCl(F). (14)

Firstly, we justify uniqueness in the inverse problem (1)—(3) of recovering a solutions u and inten-
sities N; (i=1...,m). Points {x;} and their number are assumed to be known.
Theorem 3. Assume that T <o, m=s, and the conditions (13), (14) hold. Then a solution (u, N)

to the problem (1)—(3) such that u belongs to the class described in Theorem 2 and N; €L, (O,T) is

unique.
Proof. It suffices to demonstrate that a solution to the problem (1)—(3) with homogeneous data is

zero. In this case the auxiliary function wy =0. Let a function u such that u eW;? (Q,) forany £>0,
uel, (O,T;W;B (G)) U el, (O,T;Wp‘ylB (G)) be a solution to the problem
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m
U+ Lu=>"N;(t)s(x—x%), (15)
i=1
BUS = 0, Ut:O :0, (16)
u(y;.t)=0,j=12,...s. (17)
We integrate the equation (15) with respect to t and make the change of variables w= j r)dr.
This function is a solution to the problem
W, + Lw= Zs (t)S(x—%),s; —J'N )dz eW; (0,T),s;(0)=0, (18)
Bwg = O,Wt:() =0, (19)
w(y;,t)=0,j=12...s. (20)

Put w=e*v, where 1R . This function satisfies the equation

m
Vi HLv+v=>" 5 () eMo(x—x). (21)
i=1
Let Vj (x,/l) be a solution to the problem

L*v]f+ﬂ,v]f:5(x—yj),B*vﬂr:O, (22)

where L~ — formally adjoint operator to operator L, B v=v, if Bu=u and B*V=%+(0'+(Ez,v))v

otherwise. The problem (22) is the adjoint problem to the problem
Lv+Av=5(x-y;),BV|. =0. (23)

Multiplying the equation (21) by v; , integrating the result over Q, and using (20), we obtain the equali-
ties

(V(T,X),V?(T,X))ZjV(T,X (T, x)dx = ZJ.S "“dtv (%). (24)
G i=10
The equality (24) can be rewritten as
A(1)S=F, (25)
T \F5

where the vectors S, F have the coordinates S =J.si (t)e™™dt and F =475, ( (T.x),v (x))
0

forn=3 and F, =2 25j7r/11’4(v(T,x),v]f (T,x))eﬁb‘j for n=2. Transform the representation

f, :(V(T,x),v’j‘ (T,x)):e’ﬂ W(T, ), (A+ L) 25(x—y,)) =

e (A + L)W %), 6(x -y ) =~ (A + L) w(T ),
Note that the last expression makes sense and these formal transformations are justified. Indicate that
w,w, €L, (O,T;W;B (G)) . In particular, we infer we C([O,T];Wé(G)) after a possible change on a set
of zero measure. By embedding theorems, WEC([O,T]; Lt1(G)) ¢ q<3p/(3-p) for n=2,3. In this
case the expression (A+ L) w(T,x) qu2 (G) is well-defined if the parameter A is sufficiently large,
say A=>4,>0 for some 4, . However, qu (G)cC(@) when n=2,3 and q>3/2. Thus, we can con-

sider the value (1 +L)™* W(T,X)|X_y_ . There is the estimate
7]
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|2+ L)W,y ) 1A+ L)W, X) lle @) < Co ll (A +L) ™ w(T, X) 26y =G WM iy @) (26)

where the constants do not depend on the parameter 4> A, and we use resolvent estimates for the ellip-

tic operators (see. [27, Ch.2]). As a consequence, we obtain the estimate

IFylecnre e vz gy,

where is the constant ¢, does not dependon A and » =0 when n=3 and y=1/4 when n=2. Fix an
arbitrary £ e(0,T). The above estimate implies that there exists a constant Cy (&) >0 such that

Co(e)e T
F.lg22" 72~
|Fjl= ]

By Theorem 1, the entries by (1) of A(1) are representable as

by (2) =475} (x ) =g [HO(%D

VA Ay, 27)

for n=3 and

by (4)=2./28,2V; (% ),11’4eﬁ5i ~a; (1+ o(%D

for n=2. Under the condition (13), we can assume that the matrix A(2) is invertible for 1> 4, and
the elements of the inverse matrix A™ ={s;;} are bounded by a constant independent of /; otherwise,
we increase the parameter A, . Therefore, we have

Si(4) Zzlsij (4)F; (1)
]=
and estimate (27) ensures that
Cy(e)(e)e "
|21

Consider the functions S;(4,+2z), where z is a complex parameter, Rez>0. The function

1S (A)]< VA2 . (28)

Si (4 +z):'|.0T S; (t)e_%te‘tht is the Laplace transform of the function § (t)=s; (t)e_ﬂot for t<T

and §;(t)=0 for t>T . Introduce an additional function W (z) = 2e7%)s. (% +2). Itis analytic in the

right half-plane and is bounded by a constant C, on the real semi-axis R* . Estimate this function on
the on the imaginary axis. Integrating by parts, we have

1 L= T -l —zt
Si(/10+z)=—/10+Z 5(T)e e +J'si.(t)e e~ ?dt |.

0

For z=iy we have the estimate
W(DIs(18 (1)1l o 1) |=Cs ve-iwyer @)
In each of the sectors O<argz<z/2, —r/2<argz<0 the function W (z) admits the estimate

W (z)|<eT) @ s (T)1+1s; ||L1(0,T)] VRez>0. (30)

Applying the Fragment—Lindelef Theorem (see theorem 5.6.1 in [28]) we obtain that in each of the
sectors 0<argz<z/2, —x/2<argz <0 the function W (z) admits the estimate

W(z)Smax(Cl,C3)=C4 VRez>0. (31
Therefore,
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1Si (Zo +2)1 =1 L(s (1)) (2)1<C4 (6)e TR /| 2] VRez > 0. (32)
We have equality (o> 4y, p=0c+i¢)
17 17 .
s, (t)=2—7ﬂ0£wep‘L(5i)(p)dp=ﬂLe eL(s ) (o +ig)de.

and, thereby,
—o-(t—(T—g))_ 1% ict ,o(T—¢) .
s;(t)e _E:Le e L(s;)(o+i&)dé

The Parseval identity yields

B o{T-2) ' C.(g) = 1 C:(¢
I's; (t)e )||L2(,M)——f L) (e rig) P de s ZE[)_J;OO-2+§2d§S ;Ef)

Since this inequality is true for all o>0, §(t)=0 for t<T —¢. Since the parameter ¢ is arbi-
trary, s;(t)=0 for t<T.We infer N;(t)=0 for t<T and every i and, therefore, the right-hand side

of (15) vanishes which implies that u=0. mi
We note that the following condition is actually a necessary condition for the uniqueness of solu-
tions to the problem (1)—(3). If it fails then any number of the points {y;} does not ensure uniqueness of

solutions (see examples below).
Condition (A). For n=2, any three points {y;} do not lie on the same straight line and, for n=3

any four points {y;} do not lie on the same plane.

Next, we describe some model situation in which Lu=-Au+4,u, 4, >0, G=R" and functions
N; on the right-hand side of (1) are real constants.
Theorem 4. Let u,,u, be two solutions to the problem (1)—(3) from class described in the theorem
r
1 with the right-hand sides in (1) of the form ZJNijﬁ(x—xi) (Nj =const, j =1,2), the condition (A)
i=1
holds, and s>2r+1 in the case n=2 and s>3r+1 in the case n=3, where r>max(r,r,) (i.e.,
there is the upper bound for the number max(r,r,)). Then u =u,, r,=r,, and N =N? forall i,
i. e., a solution to the problem of recovering the number m, points x; , and constants N; is unique.
Proof. Let the functions u;,u, do not coincide and let w=u, —u, . The function w satisfies the
homogeneous initial data and over determination conditions (3) and we have (after renumbering the con-
stants NJ and points x; )

r3 r4
W, + LW=ZNi§(x—Xi)—Zcia(x—xi*), 2r >, +1,,N;,C; =const, (33)
i=1 i1

where N;,C; >0 for all i, j. Without loss of generality, we can assume that all the numbers N;,C; are

not equal to zero and all points x;,x; are distinct. Let, for example, n=3. For simplicity, take 4, =0.
The proof is the same for other values of this parameter. Applying the Laplace transform, we infer
3

. ~=1 o VAlxx]
W(x)=) ——¢ 1, 34
(%)= §4z|x X | A Z47r|x X |/i 39
Using (3), we obtain
3 . _ ) e
z N| \ﬁl)’] Xll C \/;|yj XI ,j—12 (35)
i=147[|yj_xilﬂ‘ —147[|yj ||l
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For definiteness, we assume that r;>r,. Let us show that the sets of numbers
{n =A% -y li=12...,5}, {r; = xi*—yj l,i=12...,r,} coincide for all j. Fix the parameter j. Let

O =min; i, o

ij - Demonstrate that &;;=0;;. Assume the contrary. Let, for example,

] i
&yj <45 - Multiply the system (35) by 47r51]-/1eﬁ5“ and passing to the limit as A — +oo we obtain the
equality
X =y jl=o1
_ o o V
It is a contradiction, since N; >0. So, &;; =¢;; and multiplying the system (35) by 476, ;e and
passing to the limit as A — +oo we also derive that

> N= > G

B =Yal= i1x; — =6
So, we can reduce the following sums on the left and on the right in the equalities (35):
> N —JZlyj—xil Ci e—ﬁlyj—XFl
% ~Y1|=51 Az|yj—% |4 ey =5, zly;—x |4

Denote  &,; =min I

j and 521:mini:rij>51j rj . Repeating the arguments, we obtain that

8,5 =0, and, thereby,

N= > C.

XX =Y jl=02 i:|xi*—yj|=52j
Again, abbreviated equal summands (35), we arrive at the system (35), where the sums on the left and
on the right are taken over i:r; >&,; n i:5; >35,;, respectively. It is now obvious by induction that

there are pairs of equal numbers &;,8; k=12,...,15; <min(r,1,) and

i:lxi_yjlzé‘kj i:|xr—yj|=5~kj
moreover, the left-hand and right-hand sides of these equalities are positive. So, the sets of numbers
{r =A% -y lhi=12...,r5}, {f = xi*—yj |,i=12...,r,} coincide for all j. In particular, it follows that
for any point, for example, x; and any j, there exists a point xij such that

|M—y”qx%—ij=LZm§.
But we have s>3r+1 and r, <r is the number of points {xi*}. Hence, among the points {xi*j }?:1 there
are four coinciding points. After renumbering if necessary we can assume that these points are
xi; , xi*2 , xi’; , x;; . Then the equalities

1% —Y; |=|Xi*j -yil i=12...s.
imply that the points y; with j=1,2,3,4 lie in the same plane which is perpendicular to the segment
[xl, xd , but this fact contradicts to the conditions (A). So, w=0.

The proof in the case of n=2 is almost the same but we use an asymptotic representation for a

fundamental solution iHSl) (i\/ﬂ X—X, |) defined by the equality (7), where w=0. As in the case of

n=3, we arrive at contradiction with the condition (A). mi
We display the corresponding examples showing the accuracy the results obtained. The following
example shows that if the condition (A) fails then the problem of recovering the intensities of sources
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(sinks) located at x;,x, has a nonunique solution. At the same time, it is an example of the
nonuniqueness in the problem of recovering the intensity of one source and its location. Note that the
problem of determining the location of one source x, and its intensity N (t) is simple enough and to
uniquely recover these parameters we need two measurements in the case of n=1 [22], three measure-
ments in the case of n=2 [28] and four measurements (that is s=4 in (3)) in the case of n=4 [25].
The smaller number of points does not allow to define the parameters N (t),x0 uniquely. We should
also require that the point x, lie between two measurement points in the case of n=1 and the condition
(A) holds in the case of n=2,3. The numerical solution of the problem of recovering one source is
treated in the articles [6, 9-15, 19, 28].

Example 1. First we take n=3, G=R", Lu=—Au. Let u be a solution to the equation (1) satis-
fying the homogeneous initial conditions with the right-hand side in (1) of the form

N(t)(5(x=%)—5(x=X%,)).
The Laplace transform of this solution to the problem (1)—(2) is written as
G=N (2)(= 1 o Vx| _ 1 efﬁlele).
A | X=X | A | X=Xy |
Let P be the plane perpendicular to the segment [xl, x2] and passing through its center. We have
U(y,4)=0 VyeP.
So, u(y,t) =0 for all yeP. Precisely the same example can be constructed in the case n=2. We take

the perpendicular to the segment [xl,xz] passing through its center rather than the plane P. Thus, if

condition (A) fails then any number of measurement points does not allow to determine the intensity and
the location of the sources.

Example 2. Consider the case of G=R", Lu=-Au. Let us show that the conditions (3) with
s=4 inthe case of n=2 and s=6 in the case of n=3 does not allow to determine location of two
sources and their intensities even if the condition (A) holds. Let u, , u, be solutions to the equation (10)
satisfying the homogeneous initial conditions in which the right-hand sides are of the form

N (0)8(x=3)+ N ()(x=%),N (t)5(x—x )+ N (1) 5(x=x)-

Let, for example, n=3. Then the Laplace transforms of u,,u, are as follows:
2 Q 2 Q .
Gy (x,A)=Y A Uy (x,1)= N o Vaixxl (38)

i AT | X=X | i:147r|x—xr|

Here we use explicit representations of the fundamental solution for the Helmgoltz equation (see, for
example, in [30, §3.11 or [31, «ch. 4, 8]). We take x =(a,a,0),xf =(a,—a,0),
Xy =(—a,—a,0),x§ =(-a,a,0) (a>0). As is easily seen, the functions U;,d, coincide at the points
y; =(M,0,0),y, =(-M,0,0),y; =(0,M,0),y, =(0,-M,0), y5 =(0,0,M ), ys =(0,0,-M), where
M >0 and, thus, the problem of recovering the locations of 2 sources and their intensities admits sever-

al solutions in the case of s=6. It follows from the theorem 2 that in the case of s=7 points x;,x, and

the intensities are determined uniquely (if the condition (A) holds and the intensities are constants).
Consider the case of n=2. As before, we construct functions u;,u, whose Laplace transform is of

the form
. &iN . . &N _ .
G, =Z—Hél)(|\/2| x—X; ), G =Z—H((Jl)(|\/ﬂ_b| x=X; ),
=t =t
where Hyg is the Hankel functions [32]. Let us take x =(a,a),x =(a,-a),%, =(-a,-a),x, =(-a,a)
(a>0). Itis easy to check that
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0y (y;,2)=0,(y;,2) Vi=1...,4, e R" (39)
where y; =(M,0),y, =(-M,0),y;=(0,M),y, =(0,—M). It follows from the theorem 2 that the

points x;, X%, and intensities are determined uniquely in case s=5 (if condition (A) holds and the inten-

sities are constants).

Remark 1. The examples show that the number of minima of the corresponding objective
functionals introduced if we solve the problem (1)—(3) numerically reducing the problem to an optimal
control problem can be large and even can be a manifold.

Remark 2. Relying on asymptotic representations and Theorem 1 in the case of constant values
N; , we can construct a numerical algorithm for finding sources {x;} employing the ideas from the arti-

cle [19]. Some review of the results connected with numerical determining point sources can be found in
the article [33] and some results in [34-37].
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O EAMHCTBEHHOCTU B 3AA0AYAX OMNPEAOENEHUA TOYEYHbIX
MCTOYHUKOB B MATEMATUYECKUX MOAOENAX TEMTOMACCOINEPEHOCA

J1.B. Heycmpoeea
KOzopckuli eocydapcmeeHHbIl yHUsepcumem, 2. XaHmbl-MaHculick, Poccutickass ®edepauusi
E-mail: Starkovalv@mail.ru

Annorarus. B pabore paccMoTpens! 3a1aun 00 OnpeaeeHHH TOYeYHBIX HCTOYHUKOB ISl MaTeMa-
THYECKHX MOJIeNell TeruoMacconepeHoca. B kadecTBe ycioBuil mepeonpenencHust OepyTcsi 3HauCHUS
peuieHus (KOHIIGHTpalMii) B HEKOTOPBIX TOUYKaX JieKaluX BHyTpU obnactu. PaccmarpuBaercst mapabo-
JMYECKOE YpaBHEHHE BTOPOTO MOPSAKA, B MPABOW YacTH KOTOPOTO MPUCYTCTBYET JIMHEIHAs KOMOMHA-
st genbTa-QyHKnui Jupaka o(X—X;) ¢ koaddunmeHtaMu, 3aBUCSIIAME OT BPEMEHH U XapaKTePHU3YIO-
IIMMH MOIITHOCTh MCTOYHHUKOB. PaccMaTpMBarOTCs HECKOJBKO PAa3MYHBIX 337ad, B TOM YHCJE 3a/1a4a
OIpezieNeHNss HHTeHCUBHOCTEH HCTOYHUKOB B CIIydyae, €CIM UX MECTOIOI0KEHHE 3a/IaHO.

B sTOoM cirydae MBI MPUBOJMM TEOpEMY €ANHCTBEHHOCTH PEIICHHH, JOKA3aTeIbCTBO KOTOPOH OCHO-
BaHO Ha Teopeme Pparmena—JIunneneda. Jlanee B MOAEIBHOM CIydae MbI pacCMaTpUBaeM 3agady 00
OJTHOBPEMEHHOM OIIPE/IEIICHHH MOIITHOCTEW UCTOYHUKOB U UX MECTONOJ0KeHHUs. ONUcaHbl yCIOBUS Ha
quciie 3aMepoB (YCIIOBHUIT MepeonpeiesieHnsi), Korja peieHre ONpeaesieTcss eqUHCTBEHHBIM 00pa3oM.
[TpuBeneHBI PUMEPHI, MOKA3bIBAIOIINE TOYHOCTH MTOJIYYEHHBIX pe3ysbTaToB. [IpobiiemMa BO3HUKAET IpH
pelIeHAN IKOJIOTUYECKUX 3ajiad, MPEX/Ie BCETo 3a7ayu ONpeeeH!s] HCTOYHUKOB 3arpsi3HEHUs] B BOJIO-
eMe win arMocdepe. Pe3ynbTaThl BaxKHBI IPH MOCTPOCHUH YUCIICHHBIX aITOPUTMOB PElIeHus 3a1aun. B
JUTEpaType TaKue 3a/1a4d PEIIAlOTCs YHCICHHO C TIOMOIIBIO CBEJCHUS 33/1a4H K 33aJa4e ONTUMAIBHOTO
yIpaBJIeHUs] © MUHIMHU3AIHA COOTBETCTBYIOIIETO 1eNeBOro GyHKInoHana. [IpiMepsl OKa3bIBaloT, 4TO
TaKOW CHoCcO0 pellleHrs] He BCET/Ia KOPPEKTEeH, TTOCKOIBbKY IeNeBON (PYHKIIMOHAT MOXKET UMETh 3HAUU-
TEJIFHOE KOJMYECTBO MUHIMYMOB.

Knrouesvie crosa: mennomacconepeHoc; napaboauyeckoe ypasHeHue; eOUHCMEEeHHOCMb; 00pamHas
3a0aya; moueuHwlll UCTOYHUK.
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