МОДЕЛИРОВАНИЕ РАЗОГРЕВА ЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ

Ю.М. Ковалев, Е.В. Помыкалов, О.А. Шершнева

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация E-mail: kovalevym@susu.ru

> Аннотация. Анализ известных приближений для описания зависимости теплоемкости при постоянном объеме энергетических материалов (молекулярные кристаллы) от температуры кристалла показал, что существуют надежные аппроксимации зависимости теплоемкости при постоянном объеме, не требующие проведения сложных квантово-механических расчетов для определения частот нормальных колебаний как межмолекулярных, так и внутри молекулы. Для получения зависимости тепловой части внутренней энергии молекулярного кристалла, которая отвечает за разогрев материала, от температуры требуется проинтегрировать по температуре выражение теплоемкости при постоянном объеме. В данной работе были проведены расчеты зависимости тепловой части внутренней энергии молекулярного кристалла для случая, когда она вычисляется через частоты нормальных колебаний, и случая, когда она вычисляется путем интегрирования теплоемкости при постоянном объеме по температуре при помощи аппроксимационных формул. При решении спектральной задачи по определению частот нормальных колебаний внутри молекулы были использованы квантово-химические методы РМ-3 и DFT. В работе представлены зависимости тепловой части внутренней энергии молекулярных кристаллов от температуры, рассчитанные для разных способов определения, и проведен сравнительный анализ, который показал, что различие составляет менее 1 %.

> Ключевые слова: уравнение состояния; молекулярный кристалл; энергия Гельмгольца; постоянная Планка; постоянная Больцмана; приближение Дебая; приближение Эйнштейна.

Введение

Несмотря на прогресс в развитии современной вычислительной техники, проблема построения уравнений состояния, обладающих высокой точностью, для описания поведения энергетических материалов при ударно-волновом нагружении продолжает оставаться актуальной [1, 2]. В настоящее время активно развиваются квантово-механические методы расчета уравнений состояния [3, 4], молекулярно-динамическое моделирование [5–8], математические модели построения полуэмпирических уравнений состояния [9].

Все разработанные математические модели построения полуэмпирических уравнений состояния, опирающиеся на результаты динамических экспериментов, основаны на возможности разделения давления и внутренней энергии на «тепловые» и «холодные» составляющие с последующим введением функциональных зависимостей тепловых факторов от удельного объема и температуры, основанных на теоретических представлениях. Критерием достоверности построенных полуэмпирических уравнений состояния является совпадение теоретических расчетов и результатов эксперимента.

Процессы, протекающие при воздействии ударных волн на энергетические материалы, представляют большой как практический, так и теоретический интерес и являются объектом многочисленных исследований [10]. В данных исследованиях одной из актуальных проблем является проблема ударно-волнового разогрева энергетического материала. В силу того, что кинетика ударно-волнового инициирования детонации конденсированных взрывчатых веществ (ВВ) существенным образом зависит от температуры, возникающей после прохождения ударной волны, разработка математических моделей уравнений состояния для определения температур ударноволнового сжатия в задачах инициирования детонации становится особенно актуальной.

Целью настоящего исследования является построение математических моделей, позволяющих описывать тепловую часть уравнений состояния молекулярных кристаллов.

Уравнения состояния молекулярных кристаллов

Термодинамические свойства вещества полностью определяются, если известен один из термодинамических потенциалов. В работах [11, 12] было показано, что выражение свободной энергии Гельмгольца позволяет получить уравнения молекулярных кристаллов в виде:

$$P = \frac{MRT\gamma_D(V)}{V} (D(x_D)) + P_X, P_X = -\frac{\partial U_C}{\partial V} - \frac{\partial U_M}{\partial V} + \frac{3}{8}MRT\gamma_D(V)x_D/V$$
(1)

$$E = U_C + U_M + E_0 + MRTD(x_D) + RT \sum_{i=M+1}^{3N} \frac{x_i}{\exp(x_i) - 1}:$$
 (2)

$$C_V = C_{VD} + C_{VM} = MR \left(4D(x_D) - \frac{3x_D}{\exp(x_D) - 1} \right) + R \sum_{i=M+1}^{3N} \frac{x_i^2 \exp(x_i)}{(\exp(x_i) - 1)^2}.$$
 (3)

Здесь R, M, N, 3N - M, θ_D , θ_i – универсальная газовая постоянная, поделенная на молекулярную массу вещества μ , число низкочастотных колебаний, число атомов в молекуле, число высокочастотных колебаний, характеристическая температура Дебая, характеристические температуры высокочастотных колебаний. U_C – межмолекулярная (упругая) энергия, которая определяет энергию невалентных взаимодействий атомов между молекулами. Упругая энергия U_C зависит от геометрии молекулярного кристалла, т. е. от пространственного расположения молекул и объема элементарной ячейки. Внутримолекулярная энергия U_M является энергией образования молекулы и зависит исключительно от ее структуры. C_{VD} – составляющая теплоёмкости при постоянном объёме, зависящая от низкочастотных колебаний молекулы и определяемая в приближении Дебая, а C_{VM} – составляющая теплоёмкости при постоянном объёме, зависящая от низкочастотных колебаний. Часть теплоемкости C_{VM} называют внутримолекулярной. Коэффициент $\gamma_D(V)$ – коэффициент Грюнайзена (*Gruneisen*), который определяется выражением вида

$$\gamma_D(V) = -\frac{d(\ln \theta_D)}{d(\ln V)}.$$

Функция D(x) – функция Дебая, имеющая следующий вид:

$$D(x) = \frac{3}{x^3} \int_{0}^{x} \xi^3 \frac{d\xi}{\exp(\xi) - 1}$$

Энергия нулевых колебаний E_0 определяется следующим выражением:

$$E_0 = \frac{1}{2} \sum_{\alpha} h \omega_{\alpha} = \frac{3}{8} M R \theta_D \left(V \right) + \frac{1}{2} R \sum_{i=M+1}^{3N} \theta_i.$$

Подробное изложение подходов к определению количества низкочастотных колебаний *М* приведено в работах [11, 12].

В работе [13] были проведены расчеты зависимости теплоемкости при постоянном объеме для ряда кристаллов нитросоединений по формуле (3) с начальными данными, приведенными в табл. 1. Силовые постоянные для расчета спектров нормальных колебаний внутри молекулы были определены с помощью квантово-химических методов PM-3 и DFT, подробно описанных в работах [14, 15]. Для обеспечения достоверности получаемых в расчетах внутримолекулярных колебательных спектров конформации молекул определялись из данных рентгеноструктурного анализа соответствующих молекулярных кристаллов. ИК – спектры для гексогена, тротила, тетрила, ТАТБ и ТЭНа хорошо согласуются с известными экспериментальными данными [16] и приведены в работе [13].

В результате проведенных расчетов теплоемкости при постоянном объеме в работах [13, 17] было показано, что зависимость теплоемкости при постоянном объеме от температуры может быть описана аппроксимационным выражением типа:

$$C_{V} = C_{VH} - (C_{VH} - C_{V}^{0}) \exp[-(T - T_{0})/T_{C}], \qquad (4)$$

Физика

где T_C – параметр, который находится в достаточно узком диапазоне значений 555–570 К (см. табл. 1).

Для математического моделирования тепловой части уравнений состояния энергетических материалов выделим ту его часть, которая определяет разогрев:

$$E_{T1} = E_0 + MRTD(x_D) + RT \sum_{i=M+1}^{3N} \frac{x_i}{\exp(x_i) - 1}, \quad x_i = \theta_i / T, \quad x_D = \theta_D / T.$$
(5)

Таблица 1

Тепловые параметры для уравнения состояния кристалла						
	Название соединения					
Параметры	Гексоген	ТЭН	ТАТБ	Тротил		
μ , кг/кмоль	222,13	316,50	258,18	227,13		
$ ho_0$, кг/м 3	1806,0	1778,0	1937,0	1653,0		
$C_{V\!H}$, кдж/кг·К	2,3581	2,2880	2,3187	2,0866		
C_V^0 , кдж/кг \cdot К	1,0533	1,0105	0,9995	1,1222		
<i>Т</i> ₀ , К	298,0	293,0	293,0	293,0		
T_C , K	555,0	565,0	560,0	570,0		
$lpha \cdot 10^{-3}$, K ⁻¹	0,1927	0,2300	0,0995	0,0516		
М	12	16	12	11		
N	21	29	24	21		
a						

С другой стороны выражение для тепловой части уравнений состояния энергетических материалов может быть получено путем интегрирования по температуре выражения для теплоемкости при постоянном объеме (4). Проинтегрировав по температуре выражение (4), получим

$$E_{T2} = C_{VH}T + T_C \cdot (C_{VY} - C_V^0) \exp(-(T - T_0)/T_C) + E_{T2}^0.$$
(6)

Величина E_{T2}^0 определяется из условия совпадения значений тепловой энергии, вычисленных по формулам (5) и (6), при начальной температуре, определенной табл. 1.

В табл. 2–5 приведены зависимости тепловой энергии от температуры, вычисленные по формулам (5) и (6), в диапазоне значений 293–993 К для гексогена, ТАТБ, ТЭНа, тротила.

34	Таблица 2 Зависимость от температуры тепловых составляющих внутренней энергии гексогена						
Т	E_{T1}	E_{T2}	Т	E_{T1}	E_{T2}		
298	1777,79	1423,59	658	2282,79	1927,52		
318	1799,40	1445,18	678	2316,37	1961,29		
338	1821,94	1467,67	698	2350,36	1995,54		
358	1845,39	1491,04	718	2384,77	2030,24		
378	1869,71	1515,24	738	2419,56	2065,39		
398	1894,85	1540,26	758	2454,72	2100,95		
418	1920,80	1566,06	778	2490,24	2136,92		
438	1947,51	1592,61	798	2526,10	2173,30		
458	1974,95	1619,89	818	2562,30	2210,05		
478	2003,08	1647,88	838	2598,81	2247,17		
498	2031,87	1676,54	858	2635,62	2284,64		
518	2061,30	1705,86	878	2672,73	2322,46		
538	2091,33	1735,80	898	2710,12	2360,60		
558	2121,94	1766,35	918	2747,79	2399,06		
578	2153,11	1797,49	938	2785,71	2437,83		
598	2184,79	1829,20	958	2823,89	2476,90		
618	2216,99	1861,45	978	2862,31	2516,25		
638	2249,66	1894,23	998	2900,97	2555,87		

Bulletin of the South Ural State University Ser. Mathematics. Mechanics. Physics, 2022, vol. 14, no. 2, pp. 72–79

Ковалев Ю.М., Помыкалов Е.В., Шершнева О.А.

Таблица 3 Зависимость от температуры тепповых составляющих внутренней энергии ТАТБ						
T	E_{T1}	E_{T2}	Т	E_{T1}	E_{T2}	
293	1722,46	1418,69	653	2220,21	1902,68	
313	1742,97	1439,12	673	2253,71	1935,41	
333	1764,54	1460,45	693	2287,64	1968,62	
353	1787,15	1482,67	713	2321,97	2002,29	
373	1810,73	1505,73	733	2356,68	2036,40	
393	1835,24	1529,61	753	2391,76	2070,95	
413	1860,64	1554,28	773	2427,18	2105,90	
433	1886,89	1579,712	793	2462,93	2141,26	
453	1913,94	1605,88	813	2499,00	2177,01	
473	1941,75	1632,75	833	2535,37	2213,13	
493	1970,28	1660,31	853	2572,04	2249,60	
513	1999,49	1688,53	873	2608,98	2286,43	
533	2029,34	1717,38	893	2646,18	2323,59	
553	2059,81	1746,85	913	2683,64	2361,07	
573	2090,85	1776,91	933	2721,35	2398,87	
593	2122,44	1807,55	953	2759,30	2436,96	
613	2154,54	1838,73	973	2797,47	2475,35	
633	2187,14	1870,45	993	2835,85	2514,01	

Таблица 4

Зависимость от температуры тепловых составляющих внутренней энергии ТЭНа

Т	E _{T1}	E _{T2}	Т	E _{T1}	E _{T2}
293	1728,34	1387,16	653	2217,23	1873,13
313	1749,19	1407,99	673	2249,85	1905,71
333	1770,93	1429,69	693	2282,88	1938,75
353	1793,53	1452,23	713	2316,31	1972,24
373	1816,98	1475,58	733	2350,12	2006,14
393	1841,25	1499,70	753	2384,29	2040,46
413	1866,30	1524,58	773	2418,81	2075,18
433	1892,10	1550,18	793	2453,66	2110,29
453	1918,63	1576,49	813	2488,83	2145,76
473	1945,85	1603,47	833	2524,30	2181,59
493	1973,73	1631,11	853	2560,07	2217,77
513	2002,25	1659,37	873	2596,12	2254,28
533	2031,36	1688,25	893	2632,44	2291,11
553	2061,05	1717,71	913	2669,026	2328,25
573	2091,29	1747,74	933	2705,86	2365,69
593	2122,05	1778,31	953	2742,93	2403,43
613	2153,31	1809,41	973	2780,24	2441,44
633	2185,04	1841,03	993	2817,77	2479,72

В результате проведенных расчетов были получены значения энергии нулевых колебаний для тротила, ТЭНа, ТАТБ и гексогена 1604,50; 1544,86; 1561,22; 1594,77 Дж/кг и значения E^{0}_{T2} – 360,80, 344,10, 317,53, 355,27 Дж/кг, соответственно.

В табл. 6 приведены зависимости тепловой составляющей внутренней энергии от температуры, рассчитанные по уравнениям (5) и (6).

Анализ результатов расчета тепловой составляющей внутренней энергии, представленных энергетических материалов показывает, что максимальное различие расчетов, выполненных по выражениям (5) и (6), составляет менее 1%.

	Зависимость от тем	пературы тепловых с	оставляющих внут	тоат инергии трот	Таблица 5 ила
Т	E _{T1}	E _{T2}	T	E _{T1}	E _{T2}
293	1786,02	1421,21	653	2262,97	1902,17
313	1806,40	1441,61	673	2294,98	1934,61
333	1827,63	1462,91	693	2327,43	1967,53
353	1849,68	1485,06	713	2360,30	2000,90
373	1872,52	1508,04	733	2393,57	2034,71
393	1896,15	1531,81	753	2427,23	2068,95
413	1920,53	1556,36	773	2461,27	2103,59
433	1945,63	1581,64	793	2495,67	2138,63
453	1971,44	1607,65	813	2530,41	2174,06
473	1997,93	1634,35	833	2565,49	2209,85
493	2025,07	1661,72	853	2600,89	2245,99
513	2052,85	1689,74	873	2636,59	2282,49
533	2081,23	1718,37	893	2672,59	2319,31
553	2110,19	1747,62	913	2708,88	2356,45
573	2139,71	1777,44	933	2745,43	2393,91
593	2169,77	1807,83	953	2782,26	2431,66
613	2200,35	1838,76	973	2819,34	2469,70
633	2231,42	1870,21	993	2856,66	2508,02

Таблица 6

Зависимость тепловой составляющей внутренней энергии от температуры

	Гекс	оген	ТЭН		ТАТБ		Тротил	
Т	E_{T1}	E_{T2}	1	2	1	2	1	2
293	1777,79	1777,79	1728,34	1728,34	1722,46	1722,46	1786,02	1786,02
333	1821,94	1821,87	1770,92	1770,88	1764,54	1764,22	1827,62	1827,72
373	1869,70	1869,44	1816,98	1816,76	1810,72	1809,50	1872,52	1872,85
413	1920,80	1920,05	1866,29	1865,76	1860,64	1858,05	1920,52	1921,17
453	1974,94	1974,09	1918,63	1918,67	1913,94	1909,64	1971,44	1972,47
493	2031,87	2030,73	1973,73	1973,29	1970,28	1964,07	2025,07	2026,53
533	2091,33	2090,00	2031,36	2029,43	2029,34	2021,15	2081,22	2083,19
573	2153,10	2151,69	2091,28	2088,92	2090,84	2080,38	2139,71	2142,6
613	2216,98	2215,65	2153,30	2150,60	2154,54	2142,50	2200,34	2203,57
653	2282,79	2281,71	2217,22	2214,32	2220,20	2206,45	2262,97	2266,98
693	2350,36	2349,73	2282,88	2279,94	2287,64	2272,38	2327,42	2332,34
733	2419,55	2419,58	2350,12	2347,33	2356,68	2340,17	2393,57	2399,53
773	2490,23	2491,12	2418,80	2416,47	2427,17	2409,67	2461,27	2468,41
813	2562,29	2564,25	2488,82	2488,94	2499,00	2480,77	2530,41	2538,87
853	2635,62	2638,84	2560,07	2558,95	2572,03	2553,37	2600,88	2610,81
893	2710,12	2714,80	2632,44	2632,29	2646,18	2627,35	2672,59	2684,12
933	2785,71	2792,03	2705,85	2706,88	2721,35	2702,63	2745,43	2758,72
973	2862,31	2870,44	2780,23	2782,62	2797,46	2779,11	2819,33	2834,51
993	2900,96	2910,06	2817,77	2820,90	2835,85	2817,78	2856,66	2872,83

Данный факт позволяет при исследовании ударно-волновых процессов в энергетических материалах применять для расчетов тепловой составляющей внутренней энергии приближенную аппроксимацию (6) без потери точности при расчетах температуры ударного сжатия и кинетики фазовых и химических превращений.

Литература

1. Сон, Э.Е. Современные исследования теплофизических свойств веществ (на основе последних публикаций в ТВТ) (Обзор)/ Э.Е. Сон // Теплофизика высоких температур. – 2013. – Т. 51, № 3. – С. 392–411. 2. Исследования теплофизических свойств веществ и материалов в Новосибирском научном центре СО РАН в 2002–2012 годах / С.В. Станкус, Р.А. Хайрулин, В.Г. Мартынец, П.П. Безверхий // Теплофизика высоких температур. – 2013. – Т. 51, № 5. – С. 769–786. DOI: 10.7868/S0040364413050207

3. Hydrostatic and uniaxial compression studies of 1,3,5-triamino- 2,4,6- trinitrobenzene using density functional theory with van der Waals correction / M.M. Budzevich, A.C. Landerville, M.W. Conroy *et al.* // J. Appl. Phys. – 2010. – Vol. 107, Iss. 11. – p. 113524.

4. Rykounov, A.A. Investigation of the pressure dependent thermodynamic and elastic properties of 1,3,5-triamino-2,4,6-trinitrobenzene using dispersion corrected density functional theory / A.A. Rykounov // J. Appl. Phys. – 2015. – Vol. 117, Iss. 21. – P. 215901.

5. A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6- trinitrobenzene as a function of pressure and temperature / D. Bedrov, O. Borodin, G.D. Smith *et al.* // J. Chem. Phys. – 2009. – Vol. 131, Iss. 22. – p. 224703.

6. Andersen, H.C. Molecular Dynamics Simulations at Constant Pressure and/or Temperature / H.C. Andersen // J. Phys. Chem. – 1980. – Vol. 72, Iss.4. – p. 2384.

7. Parrinello, M. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method / M. Parrinello, A. Rahman // J. Appl. Phys. – 1981. – Vol. 52, Iss. 12. – P. 7182. DOI: 10.1063/1.328693

8. Wei, Y.S. Equations of State for the Calculation of Fluid-Phase Equilibria / Y.S. Wei, R.J. Sadus // J. Am. Inst. Chem. Eng. – 2000. – Vol. 46, Iss. 1. – P. 169–196. DOI: 10.1002/aic.690460119

9. Хищенко, К.В. Исследование уравнений состояния материалов при высокой концентрации энергии / К.В. Хищенко, В.Е. Фортов. // Известия Кабардино-Балкарского государственного университета. – 2014. – Т. IV, № 1. – С. 6–16.

10. Канель, Г.И. Ударно-волновые явления в конденсированных средах / Г.И. Канель, С.В. Разоренов, А.В. Уткин, В.Е. Фортов. – М.: «Янус-К», 1996. – 407 с.

11. Ковалев, Ю.М. Определение температурной зависимости изобарического коэффициента объемного расширения для некоторых молекулярных кристаллов нитросоединений / Ю.М. Ковалев // Инженерно-физический журнал. – 2018. – Т. 91, № 6. – С. 1653–1663.

12. Ковалев, Ю.М. Уравнения состояния для описания изотермического сжатия некоторых молекулярных кристаллов нитросоединений / Ю.М. Ковалев // Инженерно-физический журнал. – 2020. – Т. 93, № 1. – С. 229–239.

13. Ковалев, Ю.М. Определение температурной зависимости теплоемкости для некоторых молекулярных кристаллов нитросоединений / Ю.М. Ковалев, В.Ф. Куропатенко // Инженернофизический журнал. – 2018. – Т. 91, № 2. – С. 297–306.

14. Кларк, Т. Компьютерная химия. – М.: Мир, 1990. – 381 с.

15. Степанов, Н.Ф. Квантовая химия сегодня / Н.Ф. Степанов, Ю.В. Новаковская. // Рос. хим. журнал. – 2007. – Т. LI, № 5. – С. 5–17.

16. Gibbs, T.R. Last Explosive Property Data. Los Alamos Series on Dynamic Material Properties / T.R. Gibbs, A. Popolato. – Berkeley, Los Angeles, London: University of California Press, 1980.

17. Щетинин, В.Г. Расчет теплоемкости органических веществ в ударных и детонационных волнах / В.Г. Щетинин // Химическая физика. – 1999. – Т. 18, № 5. – С. 90–95.

Поступила в редакцию 30 марта 2022 г.

Сведения об авторах

Ковалев Юрий Михайлович – доктор физико-математических наук, профессор, кафедра «Вычислительная механика», Южно-Уральский государственный университет, г. Челябинск, Российская Федерация, e-mail: kovalevym@susu.ru

Помыкалов Евгений Валерьевич – аспирант, кафедра «Вычислительная механика», Южно-Уральский государственный университет, г. Челябинск, Российская Федерация, e-mail: boxcutter245@mail.ru

Шершнева Ольга Алексеевна – аспирант, кафедра «Вычислительная механика», Южно-Уральский государственный университет, г. Челябинск, Российская Федерация, e-mail: ostrovaoa@list.ru

Bulletin of the South Ural State University Series "Mathematics. Mechanics. Physics" 2022, vol. 14, no. 2, pp. 72–79

DOI: 10.14529/mmph220208

MODELING OF HEATING OF ENERGY MATERIALS

Yu.M. Kovalev, E.V. Pomykalov, O.A. Shershneva

South Ural State University, Chelyabinsk, Russian Federation E-mail: kovalevym@susu.ru

Abstract. An analysis of the known approximations for describing the dependence of the heat capacity at a constant volume of energetic materials (molecular crystals) on the crystal temperature has shown that there are reliable approximations of the dependence of the heat capacity at a constant volume that do not require complex quantum mechanical calculations to determine the frequencies of normal vibrations, both intermolecular and inside the molecule. To obtain the dependence of the thermal part of the internal energy of a molecular crystal, which is responsible for heating the material, it is required to integrate the heat capacity expression at constant volume over temperature. In this work, calculations have been made for the dependence of the thermal part of the internal energy of a molecular crystal in case when it is calculated through the frequencies of normal vibrations, and in case when it is calculated by integrating the heat capacity at a constant volume with respect to temperature using approximation formulas. When solving the spectral problem of determining the frequencies of normal vibrations within the molecule, the PM3 and DFT quantum chemical methods have been used. The paper presents the dependences of the thermal part of the internal energy of molecular crystals on temperature, calculated for different methods of determination, and a comparative analysis, which has shown that the difference has equaled less than 1 %.

Keywords: equation of state; molecular crystal; Helmholtz energy; Planck constant; Boltzmann constant; Debye approximation; Einstein approximation.

References

1. Son E.E. Current investigations of thermophysical properties of substances (based on recent publications in the journal High Temperature). *High Temperature*, 2013, Vol. 51, no. 3, p. 351–368. DOI: 10.1134/S0018151X1303005X

2. Stankus S.V., Khairulin R.A., Martynets V.G., Bezverkhii P.P. Studies of the thermophysical properties of substances and materials at the Novosibirsk scientific center of the Siberian branch of the Russian academy of sciences, 2002–2012. *High Temperature*, 2013, Vol. 51, no. 5, pp. 695–711. DOI: 10.7868/S0040364413050207

3. Budzevich M.M., Landerville A.C., Conroy M.W., Lin Y., Oleynik I.I., White C.T. Hydrostatic and uniaxial compression studies of 1,3,5-triamino- 2,4,6- trinitrobenzene using density functional theory with van der Waals correction. *J. Appl. Phys.*, 2010, Vol. 107, Iss. 11, p. 113524. DOI: 10.1063/1.3361407

4. Rykounov A.A. Investigation of the pressure dependent thermodynamic and elastic properties of 1,3,5-triamino-2,4,6-trinitrobenzene using dispersion corrected density functional theory. *J. Appl. Phys.*, 2015, Vol. 117, Iss. 21, p. 215901. DOI: 10.1063/1.4921815

5. Bedrov D., Borodin O., Smith G.D., Sewell T.D., Dattelbaum D.M., Stevens L.L. A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6- trinitrobenzene as a function of pressure and temperature. *J. Chem. Phys.*, 2009, Vol. 131, Iss. 22, p. 224703. DOI: 10.1063/1.3264972

6. Andersen H.C. Molecular Dynamics Simulations at Constant Pressure and/or Temperature. *J. Phys. Chem.*, 1980, Vol. 72, Iss. 4, p. 2384. DOI: 10.1063/1.439486

7. Parrinello M., Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys., 1981, Vol. 52, Iss. 12, p. 7182. DOI: 10.1063/1.328693

8. Wei Y.S., Sadus R.J. Equations of State for the Calculation of Fluid-Phase Equilibria. J. Am. Inst. Chem. Eng., 2000, Vol. 46, Iss. 1, p. 169–196. DOI: 10.1002/aic.690460119

9. Khishchenko K.V., Fortov V.E. Investigation of Equations of State of Materials at High Concentration of Energy. *Proceeding of the Kabardino-Balkarian State University*, 2014, Vol. IV, no. 1, pp. 6–16. (In Russ.).

10. Kanel' G.I., Razorenov S.V., Utkin A.V., Fortov V.E. *Udarno-volnovye yavleniya v kondensirovannykh sredakh* (Shock-Wave Phenomena in Condensed Media). Moscow, Yanus-K Publ., 1996, p. 407. (In Russ.).

11. Kovalev Y.M. Determination of the temperature dependence of the isobaric volumetric expansion coefficient for certain molecular crystals of nitro compounds. *Journal of Engineering Physics and Thermophysics*, 2018, Vol. 91, no. 6, pp. 1573–1582. DOI: 10.1007/s10891-018-1895-8

12. Kovalev Y.M. Equations of state to describe isothermal compression of certain molecular nitro compound crystals. *Journal of Engineering Physics and Thermophysics*, 2020, Vol. 93, no. 1. pp. 223–233. DOI: 10.1007/s10891-020-02112-9

13. Kovalev Y.M., Kuropatenko V.F. Determination of the temperature dependence of heat capacity for some molecular crystals of nitro compounds. *Journal of Engineering Physics and Thermophysics*, 2018, Vol. 91, no. 2, pp. 278–287. DOI: 10.1007/s10891-018-1747-6

14. Klark, T. Komp'yuternaya khimiya (Computer chemistry). Moscow, Mir Publ., 1990, 381 p. (in Russ.).

15. Stepanov N.F., Novakovskaya Yu.V. Kvantovaya khimiya segodnya (Quantum Chemistry Today). *Ros. Khim. Zhurnal*, 2007, Vol. LI, no. 5, pp. 5–17. (in Russ.).

16. Gibbs T.R., Popolato A. Last explosive property data. Los Alamos series on dynamic material properties. Berkeley, Los Angeles, London, University of California Press, 1980.

17. Shchetinin V.G. Calculation of the heat capacity of organic substances in shock and detonation waves (Raschet teploemkosti organicheskikh veshchestv v udarnykh i detonatsionnykh volnakh). *Khimicheskaya fizika*, 1999, Vol. 18, no. 5, pp. 90–95. (in Russ.).

Received March 30, 2022

Information about the authors

Kovalev Yuriy Mikhaylovich is Dr. Sc. (Physics and Mathematics), Professor, Computational Mechanics Department, South Ural State University, Chelyabinsk, Russian Federation, e-mail: kovalevym@susu.ru

Pomykalov Evgenii Valerievich is Post-graduate Student, Computational Mechanics Department, South Ural State University, Chelyabinsk, Russian Federation, e-mail: boxcutter245@mail.ru

Shershneva Olga is Post-graduate Student, Computational Mechanics Department, South Ural State University, Chelyabinsk, Russian Federation, e-mail: ostrovaoa@list.ru