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SOUND WAVE PROPAGATION ALONG THE WEDGE EDGE
Kh. B. Tolipov

There is given a theoretical research of Rayleigh wave’s propagation in an elastic
wedge. The dependencies of propagation coefficient got are in good correlation
with well-known experimental data. There is given a theoretical research of
Rayleigh wave’s transformation of surface waves in an elastic wedge. The depend-
encies of transformation coefficient got are in good correlation with well-known
experimental data.

Formulation. Let’s assume that an elastic media characterized by Lame constants A, x and density
o fills infinite wedge shaped domain Q2 (-6, &) = (r 20, -6, < 8< 6, z > 0), where z — is directed
along the wedge edge. Differential equation of particles’ movement in absence of volume forces in the
form of a vector could be represented in the form:
(A + p)graddivU + pAU = p,U" . )
Expressing vector potential in terms of 2 scalar functions y; and ys, let’s express a displacement
vector in the form:
U =grad ¢ + roty k + rotroty ,k 2)
where ¢ — scalar potential; & — unit vector along the z-axis.
In this case, solution of a vector wave equation is separated for each function y; and y»:
Ap+K,p=0, Ay, + Ky, =0, J=12, 3)
where

here C), (C,) — propagation speed of longitudinal and transverse waves, @ — angular frequency.
No density condition oy, = 0 = 0 = 0 is observed on free wedge boundaries 6 = +6,. Let’s also as-
sume, that particles’ movement starts from a state at rest.

It should be noted that to formulate a problem to a motion equation correctly, there should be boundary
conditions, radiation conditions as well as a condition, regulating the behavior of the unknown functions in
the vicinity of singular points, close to the edge.

This condition is equivalent to the requirement to observe the law of conservation of energy, and
can be given in the following form:

U =0(p*), p—>0
2. Solution of the problem. Let’s study the solutions, corresponding to the harmonic waves run-
ning towards axis z in the form:

@ = (4ychv,0 + Cyshv,0)H ) (par) expi( pz — at),
C))
v, = (4,chv,0 + C,shv,@)HS (pB) expi(pz ~ wt),

6¥=\/p2 “Kzz ’ ﬁ:\/pz _'Krz , p>0,

here p — wave number, v; and v, — angular wave numbers, J, and J, - Bessel functions.

where

Further, factor i(z — ax) is dropped.
Using (2) and Hook’s Law for an isotrope body, it better to give tensor tensions’ components in terms of
wave potentials:

Og 2 2’ 2 5¢+}_5W1 _0”2‘/’1 +__1__52W1 _,__2_ &y, __%__a_il@_.
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Substituting expressions (4) with six constants 4o, 4, 45, Cp, C) and C; into (5) we obtain an algebraic
system of six uniform equations to bind 4o, 4, 4, Cy, C; and C».
This system has solutions corresponding to symmetric and antisymmetric with respect to plane 6= 0
waves.

A condition of existence of nontrivial solutions of this equation system is that determinant, which is
represented in the form of a product A¢-A,,, where A, corresponds to antisymmetric, and A, — to symmet-
ric waves, is equal to zero. This equation has a solution at two independent conditions A= 0 and A,; =0
which determine two different kinds of surface waves. Let’s consider the first kind of waves.

3. Antisymmetric case. Let’s assume, that there are no disturbance oscillations in the vicinity of
wave’ propagation along p axis. Then, neglecting the derivatives of p coordinate, the equation for this
case will have the following form:

&)

>

2 242 Y
w’ + 5 _{rhvze} “o, ©)

Aofip? thv,6

¢! :sz —Krz PV, :sz_-Krz P

It’s not difficult to see, that at big values of a wedge angle or a distance to its edge equation (6)
transfers into the known Rayleigh equation.
For a compete solution in the boundary angular vicinity, it is necessary to include the condition on
the edge:
2
p=?£+—a——w—2-=const=A,p~—>a, )
op Opoz
where 4 — is constant.
Usmg the result of [5], it’s possible to determine the value of displacements’ amplitudes.
We’ll use Fourier transformation on p coordinate for equation (3) and (5).
Then, the solution of the wave equation, simultaneously satisfying the solution on the edge and boundary
conditions, can be given in the form:

. AJ, (K .p) ) 47, (K,p)
" BJ, (K,p)+iCT, (K,p)p’ BJ, (K, p)+iCJ, (K,p)p’

where J,(x) —~ Bessel function of the first kind, A, B, C — constants, B and C are interconnected by

boundary conditions on the wedge surface, and primes denote derivatives of p coordinate.

Transferring inverse Fourier transformation into a complex plane, we obtain solutions, corresponding to
residues in p, poles of an integrand expression.

w(k,)

Q= z Anelp"z > = ZBnelP”z s (8)
n=0 n=0
where
Jvl (Kfp) B = JVZ (Ktp)
L8y T @y
( apap )p:pn 6pap P=Py

This solution, called waveguide solution, forms a discrete field spectrum. Values of Kp roots from
the denominator in equation (6) could be called «width» of the waveguide. Values of phase velocity also
depend on this parameter and are found from equation (8). Fig. 1 shows distributions of amplitudes of
normal waves of the second and sixth order, correspondingly, with wedge angle 8= 15°.

Fig. 2 gives angular dependencies of antisymmetric wave’s velocity of the second and sixth order.

Discussion of result as the analysis shows, disturbances with a very low velocity can propagate along
the wedge edge. With an increase of a wedge angle, the velocity of these disturbances increases, and it’s
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equal to velocity of Rayleigh
VA, wave at angles 26 > 90°. An
increase of velocity of a wave
with a wedge angle speaks about
an increase of media’s tough-
ness, corresponding to a big lo-
cal wedge thickness.

Propagation of an anti-
symmetric wave along the edge
takes place in a narrow wave
channel. When disturbance di-
verge from the route of wave
propagation into the media
> A there happens a refraction of an
n B X o i antisymmetric wave because of
o 5 T 15 ) I, MM a velocity decrease. As a result,
there’s observed a turn of rays
Fig. 1. Amplitudes of normal waves of the second and sixth towards the top of the wedge
order, correspondingly, with wedge angle 6 = 15° and, a return of waves to the
wave channel. That’s why this
wave is acoustically stable in a

narrow wave channel.
/¢ Propagation of a symmetric
wave is of another character. Dis-
turbance velocity of wedge me-
dia’s particles, when approaching
the edge increases monotonically
up to the velocity of volume
waves (see [6]). At a small diver-
gence form the wave’s propaga-
tion route the velocity of the
wave decreases, and the path of
disturbances is curving into the
media. Thus, this wave is acous-
tically instable in a wave channel.
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Fig. 2. Angular dependencies of antisymmetric wave’s velocity
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