Химия

УДК 541.7:547

ВЛИЯНИЕ СКОРОСТИ НАГРЕВА НА ДЕФОРМАЦИЮ ОБРАЗЦОВ ИЗ ЗОЛЫ УГЛЕЙ^{*}

Ж.З. Афлятунов, В.Е. Гладков, В.В. Викторов

Представлены результаты по влиянию скорости нагрева в интервале 0,17– 1,8 °С на деформацию золы энергетических углей. Установлено, что температурно-деформационные характеристики образцов золы, получаемые при скоростях нагрева ≥1,3 °/с, позволяют определить температуру начала шлакования с высокой точностью без данных о валовом химическом составе золы.

Решение практических задач по обеспечению бесшлаковых режимов сжигания углей в пылевидном состоянии в основном базируется на температурных характеристиках золы, уносов, золошлаковых отложений. В качестве показателей (характеристик) золы принимают температуры, соответствующие резким изменениям различных физико-механических свойств образцов (усадка, деформация под нагрузкой, электросопротивление и т.д.). Последние, как правило, связывают с изменением фазового состава и агрегатного состояния. Анализ различных методов по определению температурных характеристик золо-шлаковых материалов, утвердившихся в отечественной практике [1], а также новых методов, разработанных в различных фирмах за рубежом [2–5], позволяет отметить следующее.

Температурные показатели, характеризующие физико-механические свойства и агрегатное состояние, получают при скоростях нагрева 0,1–0,17 °/с, следовательно, они не соответствуют реальным процессам взаимодействия и фазообразования в минеральной части углей в условиях пылевидного сжигания.

Задачу настоящей работы составляло исследование влияния скорости нагрева на температурные характеристики образцов золы различных углей.

При изготовлении лабораторной установки для решения поставленной задачи в основу был положен метод Бунте–Баума [1], широко распространенный за рубежом (особенно в Германии), но отличающийся по следующим признакам.

Использовали высокотемпературную вертикальную печь с рабочим объемом $d \times h = 75 \times 120$ мм с карбидокремниевыми (SiC) нагревателями, обеспечивающими максимальную температуру 1300–1350 °С. Образец, спрессованный из золы в виде цилиндра размером $d \times h = 10 \times 10$ мм, вводили и фиксировали в рабочем объеме печи при температуре 800 °C с помощью нижнего алундового штока. После нагрева образца до $t \sim 800$ °C и кратковременной выдержки он нагружался верхним алундовым штоком, имеющим температуру $t = 800 \,^{\circ}\text{C}$ и при необходимости дополнительным грузом (до 300 г), размещаемым на полке штока. Одновременно с нагружением образца включалась система автоматического регулирования теплового режима печи, обеспечивающая постоянную скорость подъема температуры в пределах 0,17-1,8 °/с, в интервале 800-1300 °С. Постоянство скорости нагрева контролировали по ходу зависимостей температура печи – время, фиксируемых с помощью двухкоординатного потенциометра. Перемещение верхнего штока, связанное с деформацией образца в интервале температуры 800-1300 °С, фиксировали с помощью тензометрического моста на диаграмме двухкоординатного потенциометра в виде зависимостей «относительная деформация в процентах – температура» (рис. 1–5). Сопоставление этих данных с изменением температуры печи во времени позволило, при анализе результатов с помощью дифференцирования, получить вид зависимостей скорости деформации от температуры.

^{*} Работа выполнена при поддержке гранта губернатора Челябинской области (Гр. Ур. Чел. № 04-03-96072).

Химия

Исследованию подвергали образцы, изготовленные из продуктов стандартного озоления (t = 800 °C) углей Кузнецкого, Экибастузского и Березовского месторождений. Образцы для исследования получали прессованием (~10 кг/см²) в металлической матрице. В качестве связующего использовали добавку декстрина. После прессования образцы подвергали нагреву и выдержке в лабораторной печи при 800 °C в течение 3 часов в воздушной атмосфере. Идентичность образцов одной партии после прессования и термической обработки оценивали по величине кажущейся плотности, рассчитываемой из данных о массе и геометрических размерах. В пределах партии максимальное отклонение плотности от среднего значения не превышало 4–6%.

Исследование фазового состава продуктов озоления показало, что для кузнецкого и экибастузского углей он качественно одинаков и представлен: кварцем α -SiO₂, оксидами Fe₃O₄ и Fe₂O₃, сульфатом кальция CaSO₃, монтмориллонитом. Дополнительно к указанным в продуктах озоления кузнецкого угля обнаруживается полевой шпат (твердый раствор K_xNa_{1-x}AlSi₃O₈). Продукт озоления кузнецкого угля, по сравнению с таковым от экибастузского угля, характеризуется повышенным содержанием монтмориллонита и сульфата кальция. Продукт озоления березовского угля, в основном, представлен фазами на основе кальция: CaCO₃, CaO, CaSO₄, Ca₄Fe₄O₁₁ и незначительным количеством полевого шпата Na_xK_{1-x}AlSi₃O₈. Валовой химический состав образцов представлен в таблице.

Уголь	Содержание в мол.% / мас.%										
	SiO ₂	Al_2O_3	TiO ₂	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	∑K	∑K	t _{un}
Кузнец-	70,32	12,39	0,75	2,86	4,01	4,22	2,19	2,05	84,05	13,09	990
кий	59,7	21,20	0,93	6,60	3,40	2,70	3,23	2,25	81,80	11,60	
Берё-	25,59	8,96	0,40	3,34	45,49	20,32	0,26	0,44	31,16	66,5	995
зовский	21,60	13,46	0,55	6,33	43,30	13,90	0,41	0,46	35,61	35,61	
Экиба-	60.06	21.05	1 2 2	2.06	2.02	1 2 2	0.51	0.84	02.24	4 70	
стуз-	09,90 59.01	21,03	1,55	2,90 6.45	2,05	0.62	0,51	0,84	92,34 80.01	3 59	1150
ский	57,01	27,72	1,40	0,45	1,39	0,02	0,07	0,71	07,91	5,59	

Целесообразно отметить, что параметр t_{uu} – температура начала шлакования, приведенная в таблице является основным экспериментальным показателем при обеспечении бесшлаковочного режима при пылевидном сжигании углей. В практике за температуру начала шлакования принимают температуру несущего аэродинамического потока, при которой на неохлаждаемом металлическом зонде начинают формироваться шлаковые отложения, валовой химический состав которых соответствует составу летучей золы [6]. Однако, при этом отмечается, что формирование шлаковых отложений начинается при температурах, которые ниже на 150–200 °C температур: а) интенсивного начала деформации и б) при которых имеет место инструментально фиксируемое спекание шлака при низких ($\leq 0,17$ °/c) скоростях нагрева.

Анализ экспериментальных результатов, представленных в настоящей работе, приводит к таким же выводам, но позволяет сделать однозначное заключение о роли скорости нагрева и исходного химического состава образцов на их температурно-деформационные характеристики. При минимальных ($\leq 0,17$ °/c) скоростях нагрева образцов из золы кузнецкого угля ход зависимостей «деформация – температура» без дополнительной нагрузки (ΔP) и при $\Delta P = 250$ г качественно одинаков (см. рис. 1а). На кривых изменения величины деформации можно выделить три температурных интервалах 770 $\leq t \leq 920$ °C, 920 $\leq t \leq 1040$ °C и 1040 $\leq t \leq 1100$ °C. При скоростях нагрева 0,42–0,45 °/c без ΔP величина деформации в поле разброса экспериментальных данных практически не отличается от таковой при скоростях (0,17 °/c). Приложение $\Delta P = 250$ г сопровождается увеличением деформации в температурных интервалах 920 $\leq t \leq 1040$ °C и 1040 $\leq t \leq 1100$ °C, однако ход зависимостей «температура – деформация» качественно аналогичен таковым при скоростях нагрева 0,17 °/c.

Вид температурно-деформационных зависимостей, получаемых при скоростях нагрева 1,3– 1,4 °/с, существенно отличается от рассмотренных выше. Величина деформации даже без дополнительной нагрузки (ΔP) оказывается существенно больше, чем при скоростях нагрева 0,17– 0,45 °/с (см. рис. 1б). При этом температурно-деформационные зависимости, полученные при скоростях нагрева 1,3–1,4 °/с без ΔP , имеют четко выраженный максимум при температурах 1025-1043 °С. По четырем образцам среднее значение температуры максимума деформации 1035 °С.

Рис. 1. Влияние нагрузки (а) и скорости нагрева при постоянной нагрузке (б) на деформацию образцов золы кузнецкого угля. Здесь и далее цифры у значков на поле графика соответствуют: номер образца, нагрузка в граммах, скорость нагрева, град/с

Рис. 2. Влияние скорости нагрева на среднюю скорость деформации образцов золы кузнецкого угля без дополнительной нагрузки

При средней температуре 1087 °С деформация проходит через минимум, а затем резко возрастает. Относительный «провал» деформации $U_{\min}/U_{\min} \approx$ 0,71. Приложение дополнительной нагрузки $\Delta P = 100$ г приводит к исчезновению максимума и вызывает монотонный рост деформации до предельных значений. Зависимость скорости деформации от температуры (при скоростях нагрева 1,32-1,38 °/с) характеризуется наличием максимума отвечающего среднему значению температуры ~990 °С (см. рис. 2), а при скоростях нагрева 0,16-0,17 °/с наблюдается монотонное возрастание скорости деформации.

Температурно-деформационные зависимости для образцов золы от экибастузского угля (см. рис. 3, 4) качественно аналогичны таковым для образцов золы кузнецкого угля. Отличия в количественном соотношении заключаются в следующем. Максимум на зависимостях «температура – деформация» (см. рис. 4а) наблюдается не только в экспериментах без ΔP , но и при ее

Химия

величине в 100 г. С ростом ΔP рельефность максимума уменьшается и при $\Delta P = 250$ г появляется «плато» (см. рис. 3). Максимум деформации при высоких скоростях нагрева наблюдается при среднем значении температуры ~1200 °С, а максимум скорости деформации (см. рис. 4б) несколько разный и в зависимости от нагрузки проявляется в интервале 1115-1221 °C, отвечая среднему значению 1158 °C. Интенсивный рост деформации при экспериментах без ΔP начинается, как у образцов из золы кузнецкого угля, при $t \ge 1040$ °C.

формацию золы экибастузского угля при дополнительной нагрузке 250 г

Влияние нагрузки и скорости нагрева на температурно-деформационные характеристики образцов из золы березовского угля (см. рис. 5) качественно аналогичны рассмотренным ранее. Увеличение скорости нагрева и нагрузки сопровождается увеличением величины деформации с повышением температуры. Количественные различия связаны с большей величиной деформации и ее скорости (см. рис. 5), чем таковые для золы кузнецкого и экибастузского углей. Максимума на зависимостях «температура – деформация» не выявляется при испытаниях как без ΔP , так и с ее приложением при скоростях нагрева до 1,8 °/с. Максимум скорости деформации (см. рис. 5б) для образцов березовского угля соответствует средней температуре $t = 985 \, ^{\circ}\mathrm{C}$ при скоростях нагрева >1,5 °/с, и отсутствует при скоростях нагрева $\leq 0,17$ °/с.

Анализ формы и размеров образцов после проведения экспериментов показал следующее. Все образцы, независимо от соста-

ва, прошедшие термическую обработку 800-1300 °С при скоростях нагрева 0,13-0,45 °/с имели серый цвет, достаточно высокую прочность, плотность и специфическую бочкообразную форму, получаемую при осевом сжатии цилиндра из пластического материала между подушками пресса. Объем образцов после эксперимента, меньше чем исходный. В ходе эксперимента образцы не прилипали к корундовым пластинкам и платиновой фольге, которые устанавливали на площадках нагрузочного и опорного штоков. Поверхность этих подложек оставалась чистой, что указы-

Рис. 4. Влияние нагрузки при скорости нагрева 1,13 °C/с (а) на деформацию образцов золы экибастузского угля и (б) влияние скорости нагрева и нагрузки на среднюю скорость деформации

вает на отсутствие взаимодействия между образцом и подложкой в период эксперимента.

Образцы из золы кузнецкого и экибастузского углей, испытанные при скоростях нагрева 1,3-1,4 °/с, имели коричневый цвет, существенную объемную пористость и по макро- и микроструктуре соответствовали вспененным образцам силикатных шлаков. Особенностью поведения образцов при высоких ($\geq 1,3$ °/с) скоростях нагрева является тот факт, что они очень сильно «приваривались» как к платиновой фольге, так и к корундовым подложкам. При механическом отделении на поверхности корундовой подложки остается темно-коричневое пятно. Удаление пятна требует снятия слоя определенной толщины абразивом. Из наблюдений и анализа возможных коэффициентов диффузного взаимодействия за время эксперимента($\leq 5-6$ мин) можно отметить, что появление пятна связано с эвакуацией жидкой фазы из состава образца при температуре t > 920-940 °C. При этом экспериментально наблюдаемый факт сильного «приваривания» образцов к платиновой фольге и корундовым пластинкам, используемым в роли подложек, позволяет считать, что склеивающая жидкая фаза, выделяющаяся из образца перед его вспучиванием (при прохождении через максимум) характеризуется уникальными реологическими свойствами. При рентгенофазовом анализе поверхности корундовых подложек в области пятна новых фаз не обнаруживали. При рентгеноспектральном элементном анализе обнаружено сильное обогащение железом и серой, это позволяет считать, что выделяющаяся жидкая фаза отвечала составу сульфида FeS либо эвтектике FeS-FeO.

Образцы из золы березовского угля в процессе экспериментов не взаимодействовали с подложками. Пятен от жидкой фазы не наблюдали, а, следовательно, выделения сульфидного расплава из образцов данного состава не происходило при скоростях нагрева 0,17–1,8 °/с.

Исходя из данных о химическом составе образцов (см. таблицу), отмеченные различия в ходе зависимостей «деформация – температура» и их взаимодействие с подложкой могут быть обусловлены различным концентрационным соотношением кислых (ΣK) и основных (ΣO) оксидов и их противоположным влиянием на активность FeS–FeO в жидкой фазе (расплаве), образующейся в составе образцов при их нагревании.

Рис. 5. Влияние скорости нагрева на деформацию образцов золы березовского угля без дополнительной нагрузки (а) и (б) влияние скорости нагрева на среднюю скорость деформации без нагрузки

На основании вышеизложенных особенностей о влиянии скорости нагрева на деформацию образцов золы кислого и основного состава и их взаимодействия с подложкой можно сделать следующие выводы по использованию получаемых температурных характеристик золы углей.

Температуры экстремальных точек, а также соответствующие резким изменениям в ходе зависимостей «деформация – температура» в интервале 800–1300 °С, получаемых при скоростях нагрева 0,27–1,8 °/с, не соответствуют температурам начала шлакования, установленным в промышленных экспериментах. Наблюдаемые температуры при низких скоростях нагрева (<0,45 °/с), могут быть связаны с последовательностью плавления эвтектик в многокомплектной системе, а при высоких скоростях нагрева (≥ 1,1 °/с) – с особенностями взаимодействия сульфидного и силикатного расплавов.

Температуры максимумов на зависимостях «температура – скорость деформации», получаемых при скоростях нагрева 1,1–1,8 °/с в интервале 800–1300 °С, хорошо согласуются с температурой начала шлакования (см. таблицу). Этот факт позволяет наметить новые подходы к прогнозированию температуры начала шлакования, выбора температуры газов на выходе из топки и физико-химического анализа условий шлакования.

Литература

1. Залкинд И.Я., Троянкин Ю.В. Огнеупоры и шлаки в металлургии. – М. Металлургия, 1964. – 287 с.

2. Sanyal A., Mehta A.K. Development of electrical resistance based ash fusion test/ The impact of ash deposition on coal fired plants. – Proceedings of the Engineering Foundation Conference, Solihull. – England. – June 20–25. – 1993. – P. 445–460.

3. Coal Ash Fusion Temperatures: New Characterirtaion Tech nigues and Association with Phase Equilibrium / T.F. Wall, R.A. Creelman, R,P. Cupra, C. Coin, A. Hoowe// Application of advanced Technology to Ash- Related Problems in Boilers. – Proceedings of the Engineering Foundation Conference, USA, Waterville Valley, July 16–22. 1995. – Plenumpress, New-York. – 1966. – P.541–556.

4. Barnhart D.H, Williams P.C. The sintering test, an index to ash fouling tendency // Trans. of ASME. – 1956. – V.78. – №5–6. – P.1229–1236.

5. Coin Ch.D.A., Kahraman H., Reifenstein. An improved Ash Fussion Test Applications of Advanced Technology to Ash- Related Problems in Boilers. – Proceeding of the Engineering Foundation Conference, USA, Waterville Valley, July 16–22. 1995. – Plenum Press, New-York. – 1966. – P.187–200.

6. Алехнович А.Н., Богомолов В.В. Температурные условия начала шлакования при сжигании углей с кислым составом золы // Теплоэнергетика. – 1988. – №1. – С. 34–38.

Поступила в редакцию 15 сентября 2005 г.