МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА ЭНТРОПИИ КРИСТАЛЛИЧЕСКИХ ОКСИДОВ

А.Г. Рябухин

Расчеты по уравнениям предложенной математической модели адекватны результатам, приводимым в справочной литературе для элементов подгруппы ванадия и их оксидов. Энтропия состоит из двух слагаемых: ΔS_m (определяется массой частицы) и ΔS_{in} (определяется взаимодействием частиц). Аддитивными являются обратные значения ΔS_{in} с учетом объемных структурных постоянных.

Одной из важнейших термодинамических и теплотехнических характеристик веществ является энтропия. Ее изменение ΔS связано с «не конвертируемой теплотой». Наибольший теоретический и практический интерес представляет расчет энтропии веществ в конденсированном состоянии, так как в газовой фазе этот вопрос решен методами статистической физики.

Вычисления энтропии сложных веществ (в частности, оксидов) суммированием энтропий элементов или их инкрементов не дают результатов, согласующихся с экспериментами.

Отсюда следует необходимость создания математической модели определения энтропии кристаллических веществ.

«Энтропия твердого тела зависит от атомных весов составляющих его атомов и сил, действующих между этими атомами» [1]. Это высказывание 1921 года. К сожалению, автор не стал развивать идею взаимодействий в кристаллах, а пошел на поиски инкрементов, хотя в 1951 г он опубликовал эмпирическое уравнение для расчета энтропии одноатомных ионов в вводном растворе в зависимости от его атомной массы и кристаллического радиуса по Л. Полингу.

В 1976 г. я уточнил численные значения коэффициентов в эмпирическом уравнении Латимера [2], но уравнение осталось эмпирическим с необоснованными теоретически коэффициентами и произвольными радиусами ионов и добавок к ним (к тому же эта сумма в квадрате, что противоречит физическому смыслу). Проблема ионных радиусов решена [3, 4], вскрыт физический смысл добавок [4]. Созданы согласующиеся с экспериментами математические модели расчетов термических характеристик ионов (s²p⁶) в водном и аммиачном растворах. Для ионов (s²p⁶) вопрос решен [4, 5]. Сделан шаг к нахождению термических данных ионов d – элементов [6, 7] в водном растворе.

В отношении кристаллического состояния пока создана только математическая модель расчета энтальпии кристаллической решетки [4]. Экскурс в историю необходим для лучшего понимания диалектики познания этих сложных вопросов.

Вернемся к высказыванию Латимера.

Примем

$$S = \Delta S_m + \Delta S_{in} \,, \tag{1}$$

 ΔS_m – от mass – масса; ΔS_{in} – от interaction – взаимодействие.

Все дальнейшие расчеты отнесены к одному молю металла, энтропия в Дж·моль⁻¹·К⁻¹.

Частицы имеют одну степень свободы поступательного движения (вдоль пути взаимодействия), то есть

$$\Delta S_m = \frac{1}{2} R \ln M \,, \tag{2}$$

М-относительная молекулярная (атомная) масса; R = 8,31441 – универсальная постоянная.

Математическая модель расчета ΔS_{in} еще не создана, однако для проверки справедливости ур. (1) используем следующее:

$$\Delta S_{in} = S - \frac{1}{2} R \ln M \,. \tag{3}$$

Для расчета ΔS_{in} оксида произвольного состава MeO_x используем оправдавший себя подход при расчете теплоемкости [8–10], то есть аддитивность обратных величин с учетом линейной и объемной структурных постоянных.

Электронная структура атомов и ионов определяет свойства химических связей и пространственное расположение частиц, то есть структуру вещества.

Используем методику [8–10] деления системы Ме–О на области твердых растворов внедрения (ОТР), границами между которыми являются кристаллообразующие вещества (КО). Примем, что внутри каждой ОТР монотонно изменяются свойства оксидов с изменением состава. При этом происходит переход от одной структуры к другой, что отражается на величинах структурных постоянных К для каждой ОТР.

1	ao	ли	цa	1

	Me	MeO	Me_2O_3	Me ₃ O ₅	MeO ₂	Me_2O_5
1	2	3	4	5	6	7
V	ОЦК	ГЦК	Тетрагон.	Монокл.	Тетрагон.	Ромбич.
Nb	ОЦК	ГЦК	ГЦК	—	ГПУ	Монокл.
Та	ОЦК	ГЦК	—	Тетрагон.	Тетрагон.	Ромбич.

Типы кристаллических структур оксидов подгруппы ванадия [13, 23, 24]

Из данных табл. 1 следует:

1. У всех элементов Ме кристаллизуются в структуре ОЦК, MeO – в ГЦК. В первой ОТР (Me – MeO) величина К₁ одинакова.

2. Структуры оксидов ванадия (x = 1 - 2) отличаются от аналогичных для Nb и Ta, поэтому К₂ для VO_x должна отличаться от структурных постоянных для NbO_x и TaO_x.

3. Структуры VO_x (x = 2-2,5) одинаковы с TaO_x и K₃(VO_{2,5}) = K₃(TaO_{2,5}).

Переход от одного оксида к другому параллельный (встречный) процесс, поэтому для определения интегральной величины необходимо суммировать обратные значения свойства кристаллообразующего и суммы свойств компонентов с учетом кристаллических структур.

Предлагается основное уравнение модели в виде

$$\frac{1}{\Delta S_{in}(\text{MeO}_x)} = \frac{1}{\Delta S_{in}(\text{KO})} - \frac{X - X(\text{KO})}{K[\Delta S_{in}(\text{O}) + \Delta S_{in}(\text{KO})]}.$$
(4)

Система ванадий – кислород

Для проверки ур. (4) используем энтропии оксидов ванадия. Кислород входит в состав всех оксидов. При адсорбции, которая предшествует химическому взаимодействию, двухатомные молекулы простых веществ диссоциируют [11]. При этом атомы не существуют в свободном состоянии, а при адсорбции вступают в связь с металлом или диффундируют через оксид и в расче-

тах используется
$$\frac{1}{2}S^0$$
 (O₂, г, 298). S^0 (O₂, г, 298) = 205,035 ± 0,008; $\frac{1}{2}S^0$ (O₂) = S(O) = 102,5175;
 ΔS_m (O) = $\frac{1}{2}R \ln 15,9994 = 11,5261; \Delta S_{in}$ (O) = 102,5175 - 11,5261 = 90,9914.

В табл. 2 приведены экспериментальные данные [12–22]. Энтропии в основном взяты из [21, 22], в которых приводятся доверительные интервалы.

Из рис. 1 следует, что $\Delta S_{in}^{-1} - X$ образуют три ОТР.

В 1ОТР кристаллообразующим (КО) является металл. Ванадий кристаллизуется в структуре ОЦК (α – Fe), монооксид – в ГЦК (NaCl). В этом случае K₁ = 0,5. Подстановка численных величин в ур. (4) дает (x = 0 ÷ 1):

$$\frac{1}{\Delta S_{in}(VO_x)} = \frac{1}{\Delta S(V)} - \frac{X}{0.5[\Delta S_{in}(O) + \Delta S_{in}(V)]} =$$
$$= \frac{1}{12,239} - \frac{X}{0.5(90,9915 + 12,239)} = 0,08118 - 0,01936X.$$
(5)

В табл. 2–4 приводятся наряду с экспериментальными данными результаты расчетов S оксидов, для которых имеются какие-либо данные. На рис. 1–3 они обозначены + (крест).

Вещест- во	S [12–22]	М	ΔS_m yp.(2)	$\begin{array}{c} \Delta S_{in} \\ yp.(3) \end{array}$	ΔS_{in}^{-1}	ΔS_{in}^{-1} yp.(5–7)	S yp.(1)
V	$28,670 \pm 0,335$	50,9415	16,341	12,329	0,08111	0,08111	28,670
VO _{0,86}	32,761 ±0,418	64,701	17,335	15,426	0,06483	0,06489	32,746
VO	33,540 ±0,419	66,941	17,476	16,064	0,06225	0,06225	33,540
VO _{1,24}	38,828 ±0,418	70,781	17,708	21,120	0,04735	0,04731	38,845
VO _{1,30}	40,710 ±0,418	71,741	17,764	22,446	0,04358	0,04357	40,716
V ₂ O ₃ VO _{1,5}	98,788 49,894 $\pm 0,628$	74,941	17,945	31,944	0,03130	0,03130	49,898
V ₃ O ₅ VO _{1,667}	$154,808 \\ 51,603 \\ \pm 1,396$	77,607	18,091	33,512	0,02984	0,02964	51,825
V ₄ O ₇ VO _{1,75}	211,433 52,858 ±0,209	78,940	18,162	34,696	0,02882	0,02882	52,864
$\begin{matrix} V_6O_{11} \\ VO_{1,833} \end{matrix}$	323,842 53,974 ±1,396	80,274	18,231	35,743	0,02798	0,02799	53,957
V ₂ O ₅ VO _{2,5}	131,047 65,524 ±0,418	90,940	18,750	46,774	0,02138	0,02138	65,523
$VO_{0,5}$	_	58,9412	16,947	_	_	0,07150	31,609
VO _{1,15}	_	69,341	17,623	_	-	0,05268	36,606
VO _{1,29}	_	71,581	17,755	_	-	0,04414	40,408
VO _{1,333}	_	72,274	17,795	-	-	0,04150	41,889
VO _{1,39}	_	73,181	17,874	_	_	0,03805	44,129

Энтропии оксидов ванадия (эксперимент и расчет)

Таблица 2

Во 2 ОТР кристаллообразующим выступает VO, кристаллизующийся в структуре ГЦК (NaCl). Граница проходит по V₂O₃ – структура тетрагональная (α – Al₂O₃). Этому переходу соответствует $K_2 = \frac{1}{3} \frac{K(\Gamma \amalg K)}{K(\tau erp)} = \frac{1}{3} \cdot \frac{1}{\sqrt{2}} \cdot \frac{3\sqrt{3}}{8} = 0,15309$.

Ур. (4) можно представить так ($X = 1 \div 1,5$):

$$\frac{1}{\Delta S_{in}(VO_x)} = \frac{1}{\Delta S_{in}(VO)} - \frac{X-1}{K_2 [\Delta S_{in}(O) + \Delta S_{in}(VO)]} = \frac{1}{16,409} - \frac{X-1}{0,15309(90,9914+16,409)} = 0,06182 - 0,06095(X-1) = 0,12277 - 0,06095X.$$
(6)

В 3 ОТР кристаллообразующим можно выбрать хорошо изученный и широко используемый (катализатор окислительно-восстановительных процессов с участием кислорода) V₂O₅ (ромбическая V₂O₅). Переходу структур V₂O₃ – V₂O₅ отвечает $K_3 = \sqrt{3} - 1 = 0,73205$. Для третьей ОТР (X = 1,5 ÷ 2,5):

Рис. 1. Взаимосвязь обратной величины энтропии взаимодействия с составом оксидов ванадия: • – эксперимент, + – расчет

Данные табл.2 (колонки 2 и 8) показывают хорошее согласие опытных и расчетных величин стехиометрических и нестехиометрических оксидов ванадия, для которых имеются справочные данные по энтропиям. В табл. 2–4 приведены также результаты расчетов энтропий оксидов, для которых известен состав (диаграммы состояния), но отсутствуют сведения о термических константах.

Система ниобий – кислород

В табл. 3 и на рис. 2 приведены справочные и расчетные величины энтропий оксидов ниобия. Из рис. 2 следует, что в системе Nb – О также существует три OTP: Nb–NbO, NbO – NbO₂ и NbO₂ – Nb₂O₅. Уравнение формы ур. (5) для первой OTP Nb – NbO, $K_1 = 0,5$:

$$\Delta S_{in}^{-1}(\text{NbO}_x) = 0,05648 - 0,01867\text{X}$$
(8)

Оксид	М	S [12–22]	ΔS_m yp.(2)	ΔS_{in} yp.(3)	ΔS_{in}^{-1} yp.(9)–(11)	S yp.(1)
1	2	3	4	5	6	7
Nb	92,9064	36,568±0,209	18,839	17,729	0,056405	36,568
NbO	108,9058	46,000±0,209	19,499	26,501	0,037734	46,000
NbO ₂	124,9052	54,518±0,418	20,069	34,449	0,029028	54,518
Nb ₂ O ₅ NbO _{2,5}	132,9049	68,604±0,042	20,327	48,277	0,020714	68,604
NbO _{1,333}	114,239	—	19,698	28,883	0,034623	48,581
NbO _{1,5}	116,9055	—	19,794	29,972	0,033364	49,766
NbO _{1,667}	119,572	—	19,888	31,559	0,031687	51,447

Энтропии оксидов ниобия (эксперимент и расчет)

Таблица 3

Математическая модель расчета энтропии кристаллических оксидов

· · · · · · · · · · · · · · · · · · ·	Рябухин	А.Г.
---------------------------------------	---------	------

1	2	3	4	5	6	7
NbO _{2,417}	131,577	_	20,285	45,339	0,022056	65,624
NbO _{2,455}	132,185	—	20,305	46,672	0,021426	66,977
NbO _{2,468}	132,393	_	20,311	47,146	0,021211	67,457
NbO _{2,480}	132,585	_	20,317	47,593	0,210112	67,910

Окончание табл. 3

Рис. 2 Взаимосвязь обратной величины энтропии с составом оксидов ниобия: • – эксперимент, + – расчет

Во второй ОТР происходит переход от NbO к NbO₂ (тетрагональная). Этому соответствует $K_2 = K(\Gamma \amalg K) \frac{1}{\sqrt{3} - 1} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3} - 1} = 0,96593 \text{ (KO - NbO)}.$ $\Delta S_{in}^{-1}(\text{NbO}_x) = 0,04657 - 0,00881\text{ X}.$ (9)

При выборе в качестве репера NbO₂ в соответствии с ур. (4) $K_2 = \frac{2}{3} \cdot \frac{1}{\sqrt{3}-1} = 0,90979$ и уравнение для второй ОТР имеет вид:

$$\Delta S_{in}^{-1}(\text{NbO}_x) = 0,04652 - 0,00876\text{X}.$$
⁽¹⁰⁾

Для третьей ОТР логично в качестве репера (КО) выбрать хорошо изученный пентаоксид динио-

бия Nb₂O₅. Переход от Nb₂O₅ (моноклинная) к NbO₂ (тетрагональная) приводит к
$$K_3 = \frac{\sqrt{3}}{4}$$
 и к ур. (11):

$$\Delta S_{in}^{-1}(\text{NbO}_x) = 0,06213 - 0,01658\text{X}.$$
(11)

Результаты расчетов по ур. (8)–(11) приведены в табл. 3 и на рис. 2. Расчетные и справочные величины хорошо согласуются в пределах доверительных интервалов экспериментальных данных.

Расчеты S⁰(Nb₂O₃) по ур. (9) и (10) дают соответственно 99,558 и 99,504, то есть среднее 99,531 \pm 0,027. Это подтверждает справедливость предложенной математической модели и ее предсказательность. Аналогичные расчеты проведены для оксидов ванадия.

Система тантал – кислород

Для этой системы приводятся энтропии Ta и Ta_2O_5 . Оценку энтропий оксидов в трех OTP можно произвести по уравнениям типа (3)–(11) с использованием их структурных постоянных и энтропий взаимодействия приведенных веществ.

Химия

 $\Delta S_{in}^{-1}(\text{TaO}_x) = 0,04992 - 0,01801 \text{X}.$

Энтропии оксидов тантала (эксперимент и расчет)

Расчеты по ур. (12) приведены в табл. 4 и на рис. 3

		-		-		
Оксид	M	S	ΔS_m	ΔS_{in}	$\Delta S_{ m in}^{-1}$	S
		[12-22]	yp.(2)		yp.(12)–(14)	yp.(1)
1	2	3	4	5	6	7
Та	180,9479	41,631±0,167	26,599	20,032	0,04992	41,631
Ta ₂ O ₅	220,9464	141,420±1,674	22,440	48,270	0,02072	70,710
TaO _{2,5}		70,71±0,837				
TaO _{0,054}	181,812	_	21,630	20,430	0,04895	42,060
TaO _{0,25}	184,948	_	21,701	22,018	0,04542	43,719
TaO _{0,5}	188,948	_	21,790	24,441	0,04092	46,231
TaO	196,947	_	21,962	31,338	0,03191	53,300
TaO _{1,333}	202,280	_	22,073	33,542	0,02981	55,615
TaO _{1,5}	204,947	_	22,128	34,764	0,02877	56,892
TaO _{1,667}	207,614	_	22,182	36,079	0,02772	58,261
TaO ₂	212,947	_	22,287	39,032	0,02562	61,319

Рис. 3. Взаимосвязь обратной величины энтропии взаимодействия с составом оксидов тантала: • - эксперимент, + - расчет

Полученная величина $\Delta S_{in}(\text{TaO})$ использована для расчета $\Delta S_{in}(\text{TaO}_2)$. Переходу структуры ГЦК к тетрагональной соответствует $K_2 = 2 \cdot \frac{3\sqrt{3}}{8} = 1,29904$. Для второй ОТР (X = 1 ÷ 2) $\Delta S(\text{TaO}) = 0,03820 - 0,00629 \text{X}.$ (13)

Расчет по ур. (13) дает $\Delta S_{in}(\text{TaO}_2) = 39,032$ и $S(\text{TaO}_2) = 61,319$.

В третьей ОТР [структуры TaO_x и VO_x (X= 2–2,5) совпадают] при $K_3 = \sqrt{3} - 1 = 0,732051$ дает $\Delta S_{in}^{-1}(\mathrm{TaO}_{x}) = 0,04524 - 0,00981 \mathrm{X}.$ (14)

184

Таблица 4

(12)

Расчет по ур. $(14) - \Delta S_{in}(\text{TaO}_2) = 39,032$ и $S(\text{TaO}_2) = 61,319$. Согласие расчетов по ур. (13) и (14) позволяет утверждать, что предложенная модель отвечает всем требованиям к математическим моделям физического процесса.

В табл. 4 и на рис. 3 приведены результаты расчетов по ур. (12)–(14) для оксидов тантала, для которых известны кристаллические структуры.

Взаимосвязь энтропии взаимодействия и электронной структуры, количества электронов и их ориентации, магнитной проницаемости и т.д. требует специального исследования.

Заключение

1. Предложена математическая модель расчета энтропии кристаллических оксидов.

2. Энтропия складывается из двух величин: ΔS_m (определяется массой частиц) и ΔS_{in} (определяется взаимодействием).

3. Обратная величина ΔS_{in} оксида равна сумме обратных значений ΔS_{in} кристаллообразующего и компонентов с учетом структурной постоянной.

4. Адекватность модели экспериментальным данным показана на примерах оксидов (дальтонитах и бертоллидах) ванадия, ниобия и тантала.

5. Показана возможность расчета энтропии образования оксидов произвольного состава.

6. Предсказательность модели подтверждена на примерах оксидов ванадия, ниобия и тантала.

Литература

1. Латимер В.М. Окислительные состояния элементов и их потенциалы в водных растворах/ Пер. с англ. – М.: Изд-во иностр. лит., 1954. – 400 с.

2. Рябухин А.Г. Электрохимические и коррозионные свойства пористых электродов. – Челябинск: Южно-Ур. кн. изд., 1976. – 132 с.

3. Ryabukhin A.G. Effective ionic radii// Высокотемпературные расплавы. ЧНЦ УрО РАН. – 1996. – № 1. – С. 33–38.

4. Рябухин А.Г. Эффективные ионные радиусы. Энтальпия кристаллической решетки. Энтальпия гидратации ионов. – Челябинск: Изд-во ЮУрГУ, 2000. – 115 с.

5. Рябухин А.Г. Стандартная энтропия катионов (s²p⁶) в водном растворе // Изв. ЧНЦ УрО РАН. – 2000. – Вып. 2. – С. 32–35.

6. Рябухин А.Г. Координационные числа двухзарядных ионов 3d-элементов и их магнитная восприимчивость // Изв. ЧНЦ УрО РАН. – 2003. – Вып. 3(20). – С. 23–25.

7. Рябухин А.Г. Энтальпия гидратации двухзарядных ионов 3d-элементов и их координационные числа // Изв. ЧНЦ УрО РАН. – 2003. – Вып. 3(19). – С. 28–31.

8. Рябухин А.Г. Модель расчета стандартных теплоемкостей C_p^0 нестехиометрических соединений // Изв. ЧНЦ УрО РАН. – 2003. – Вып.4(21). – С.38–42.

9. Рябухин А.Г. Расчет молярных теплоемкостей C_P^0 нестехиометрических бинарных соединений (бертолидов) // Вестник ЮурГУ. Серия «Математика, физика, химия». – 2003. – № 8(24). – Вып. 4. – С. 134–141.

10. Рябухин А.Г., Стенников М. А. Теплоемкость кристаллических оксидов. – Челябинск: Изд. ЮУрГУ, 2004. – 84 с.

11. Глесстон С., Лейдлер К., Эйринг Г. Теория абсолютных скоростей реакций/ Пер. с англ. – М.: ИИЛ, 1948. – 584 с.

12. Физический энциклопедический словарь/ Гл. редактор. Б.А. Введенский. – М.: Советская энциклопедия, 1983. – Т.3. – 924 с.

13. Химическая энциклопедия/ Гл. редактор И.Л. Кнунянц. – М.: Большая Российская энцикл., 1988. – Т.3. – 623 с.

14. Уикс К.Е., Блок Ф.Е. Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов. – М.: Металлургия, 1965. – 240 с.

15. Термодинамические свойства неорганических веществ: Справочник. – М.: Атомиздат, 1965. – 500 с.

16. Реми Г. Курс неорганической химии. – М.: Мир, 1966. – Т. 2. – 836 с.

17. Рябин В.А., Остроумов М.А., Свит Т.Ф. Термодинамические свойства веществ. – Л.: Химия, 1977. – 392 с.

18. Краткий справочник физико-химических величин/ Под ред. А.А. Равделя, А.М. Пономаревой. – Л.: Химия, 1983. – 242 с.

19. Некрасов Б.В. Курс общей химии. – Л.: Госхимиздат, 1952. – 972 с.

20. Краткая химическая энциклопедия/ Под ред. И. Л. Кнунянц. – М.: Советская энцикл., 1961. – Т.1. – 1262 с.

21. Термические константы веществ/ Под ред. В.П. Глушко. – М.: Наука, 1974. – Вып. 7. – 343 с.

22. Термодинамические свойства индивидуальных веществ / Под ред. В.П. Глушко. – М.: Наука, 1978. – Кн. 2. (Т. 1). – 326 с.; 1982. – Кн. 2 (Т. 4). – 360 с.

23. Физико-химические свойства окислов / Под ред. Г.В. Самсонова. – М.: Металлургия, 1978. – 471 с.

24. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. – М.: Физматиз, 1961. – 863 с.

25. Рябухин А.Г. Р-потенциал // Изв. ЧНЦ УрО РАН. – Челябинск, 1999. – Вып. 3. – С. 23–25.

26. Рябухин А.Г. Способ согласования термических свойств веществ// Изв. ЧНЦ УрО РАН. – Челябинск, 2000. – Вып.2. – С. 29–31.

27. Рябухин А.Г. Стандартная энтропия электрона в водном растворе // ЖФХ. – 1977. – Т. LI. – № 4. – С. 968–969.

Поступила в редакцию 1 ноября 2005 г.