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Abstract. This article is devoted to the analysis and processing of infor-
mation for a stochastic model based on the equation of potential distribution in a
crystalline semiconductor with the Nelson-Glicklich derivative and the
Showalter-Sidorov initial condition. By semiconductors, we mean substances that
have a finite electrical conductivity that rapidly increases with increasing tem-
perature. It is assumed that the initial experimental data may be affected by ran-
dom noise, which leads to the study of the stochastic model. An analysis of the
stochastic model of the potential distribution in a crystalline semiconductor is
given. Conditions under which there are step-by-step solutions of the model un-
der study with the Showalter-Sidorov initial condition are found. Further, on the
basis of the theoretical results, an algorithm for the numerical analysis of the sys-
tem is given. Its implementation is presented in the form of a computational ex-
periment, which is necessary for the further processing of information.

Keywords: stochastic model of potential distribution in a crystalline semiconduc-
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Introduction

As a rule, functioning of real physical processes is accompanied by the impact of hard-to-control
perturbations. Under their influence, the study of systems is no longer possible in a deterministic case
and, as a result, the transition to stochastic modeling takes place. Stochastic differential equations can be
considered with various additive random processes. One of the classical ways to study stochastic models
is the Ito—Stratonovich—Skorokhod method, which allows to move from differential equations to
integral ones. At the moment, the method is extended to the infinite-dimensional situation [1], and
various applications to classical models of mathematical physics are considered [2]. This approach has
also been extended to degenerate Sobolev-type models [3].

Another direction in the study of stochastic models is the approach where “white noise” is consid-

0
ered as the Nelson-Gliklikh derivative n of the Wiener process [4, 5]. An example would be a

Shestakov—Sviridyuk model measuring device model [6]. This model is based on a Leontief type
stochastic system. Note also that if 7 is a function then the Nelson-Glicklich derivative can be

considered in the classical case. The idea of “white noise” in this theory, which existed in finite-
dimensional spaces [7, 8] shows high efficiency. Therefore, later the principle was carried over to
infinite-dimensional spaces [9, 10]. This approach allows us to transfer to the stochastic case the applied
(well-known) methods of functional analysis in the deterministic case.

In this work, we present the analysis and processing of information for one stochastic system. To
this end, first of all, we analyze the Sobolev-type stochastic model itself. Next, we find the conditions
under which there exists a trajectory solution to the problem. This makes it possible to construct an
algorithm for the numerical method and conduct a series of computational experiments. With the help of
computational methods it is possible to process information. In the stochastic case, the mathematical
model of the distribution of potential in a crystalline semiconductor has the form

n(s,t) =0,(s,t) edD %[0, T], (1)
(o]
(2= A)n—agAn —aydiv( VP Vi) =0, )
with the weakened Showalter—Sidorov problem
lim (A —-A)((t) =70) =0, seD. @)
t—0+

Here the function 7 = 7(s,t) is the potential electric field, the parameters 1R, a,a, €R,and Dc R"

is a bounded domain and &D of the class C”. The mathematical interpretation of the model is presented
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in [11]. Note that in the stochastic model 7, is a random influence. Problem (1), (2) can be reduced to
the stochastic equation

(0]
Ln=Mn+N(7) (4)
with condition (3). A solution to (4) is 7 =n(t) that is a stochastic K-process and each of the processes

is considered to be equated, if almost surely each trajectory of one of the processes coincides with a pro-
cess otherwise.

1. Analysis of Stochastic Mathematical Model
Consider a complete probability space Q= (€, A, P) and the set of real numbers R endowed with a

Borel o -algebra. The set of random variables (a measurable mapping &:D—>R) with zero
expectations (i.e. ES=0) and finite variance forms the Hilbert space L, (i.e. D& < +o0) with the inner
product (&,&,)=E&SE,. Here E, D are the expectation and variance of the random variable,
respectively. A mapping 7:1xQ—>R of the form 7n=n(,o)=g(f(t),®) is called an (one-
dimensional) random process, where f:l—L, (IcR is some set) and g:L,xQ—R. The set of
continuous stochastic processes forms a Banach space C(l,L,) .

Consider a real separable Hilbert space (H,<-->) identified with its conjugate space with the

orthonormal basis {¢,}. Let's write down x = z <X, ¢ > ¢, for each element xeH. Next, choose a
k=1

o0
monotonely decreasing numerical sequence K ={z } such that Z y,f < +o0, Consider a sequence of
k=1

random variables {& } <L, such that Z uZDE, < +o0. Denote by HL, the Hilbert space of random
k=1

K-variables of the form &= Z 14.Ec@- Moreover, there is a random K-variable & e HiL, . Note that
k=1

dot prouct in HylL, has form (&',&%) = w?EE&EL. Consider a sequence of random processes
k=1
{m}<=C(,L,) and define the H -valued continuous stochastic K-process

n) =" un Oy, )
k=1
which is denoted by C*(l;H,L,) and
o= D Mok (6)
k=1

Note that the Nelson-Gliklikh derivatives of the random K-process

2= e @)
k=1

inclusively in the right-hand side, and all series converge uniformly in the norm H L, on any compact

from |. Next, consider the space Cl(I;HKLZ) of continuous stochastic K-processes whose trajectories
are almost surely continuously differentiable by Nelson-Gliklikh.

Consider dual pairs of reflexive Banach spaces (N,N") and (B,B”), where N =W}(D), B=W;(D),

H =L, (D) (note that B“and N"are dual spaces to B and N) are defined in the domain D such that the
embeddings
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NecBcHceN B (8)
are dense and continuous.
The solvability of the problem (1)—(3) in deterministic case is considered in [12]. Let us use similar
reasoning for the stochastic case. Since model (1)-(3) refers to the deterministic case, we obtain the
following splittings of the spaces:

N> ker L =cokerL —N*, N L, o [ker L] L, =[coker L] L, =NxL,,
N=coimL®kerL , NkL, =[coimL]xL, ®[kerL]cL,,

N" =cokerL @imL, Ni L, = [coker L], L, ®[imL]cL,,
B=kerL®[coimLB"], BeL, =[kerL]cL, ®[coimL~B I L,,
B =cokerL ®[imLNB], BxL, =[coker L], L, ®[imL NB ] L,.

In stochastic case, the operators L, M and N are defined as follows:
(Ln,&)= [(Ang +Vn-VE)ds V¥ i,¢ eNely,
D

(Mn,¢) =—a1IV77-V§d8V77,C€NKLz,
D

(N@).&) ==, [ IV Vi-VEds V¢ eByl,,
D

where (-,-) is the scalar product in H,L,. Note that L:N—N* is a linear, continuous, self-adjoint,
non-negatively defined and Fredholm operator in the deterministic case, then L:N,L, —NL, it has the
same properties. For all a eR, a, R the operator M :N¢L, —NgL, and N:B,L, —BL, are dissi-

pative. Similarly, we construct the spaces N¢L,. For an orthonormal basis, consider the sequence of
eigenfunctions {¢, } and eigenvalues {4, } for homogeneous Dirichlet problem for the Laplace operator
(—A) in the domain D.

Let 1>,
kerL:{ {0} A>=A;
spa{p}, A=-4.
Then
[im LlcL, ={ R A=
{neNLy: (7,¢) =0}, A=-4,
NgLo, A>—4;

[coim L]kL, ={
{neNcLy: (n,0) =0}, A=-4.

Suppose that 1 = (0, T). We use the space H in order to construct the spaces of K-“noises”, the spac-
es C'(l;HyL,)and C'(;NcL,), k € N. Consider stochastic Sobolev type equation (4). A stochastic K-

process € Cl(I;NKLZ) is said to be a solution to equation (4), if almost surely all trajectories of n satis-
fy equation (4) for all t € 1. A solution 5 = 5(t) to equation (4) that satisfies the initial value condition
lim L(7(t) ~775) =0 ©)

t—>0+
is called a solution to Showalter—Sidorov problem (4), (9) for some random K-variable 7, € N¢L, . Fix
w € Q, since the solution of the problem is considered trajectory.
Theorem Let 1>-4, &,a, €R, then for any 7, € N¢L,, there exists a unique solution n <
C'(;N¢L,) to problem (1)—(3).
Proof. Since w € Q is fixed, then the proof of the theorem is equivalent to those in the deterministic
case [12]. m

2. Process Information
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In [13] an algorithm was proposed for numerical study of Sobolev type stochastic models with
Showalter-Sidorov conditions. A feature of the study of models with random influence is that it is
necessary to carry out m computational experiments. Each of them uses a normally distributed generator
of random variables with specified parameters of mathematical expectation and variance. As a result, we
get several implementations of the solution. According to the results of the experiment, the selective
mathematical expectation E(5(s, t)), for any value of t, is equal to the mathematical expectation of the
corresponding part, i.e. the mean trajectory obtained as a result of processing m experience. In addition
to showing the performance of the experiments, it is also necessary to check if they are within the
confidence interval. The width of the confidence interval depends on the size of the standard error,
which, in turn, depends on the sample size and, when considering a numerical variable from the
variability of the data, give wider confidence intervals than studies of a large data set of few data. If the
realizations lie within the confidence interval, then the results are consistent with this likely value. The
probability that the confidence interval contains the realizations of the experiment is called the
confidence probability (usually 0,95 or 0,99).

Consider problem (1)-(3) and represent the solution: UN(S’t):ZL\l:1ﬂk77k(t)¢k(s)'

Initial random influence has form nON:ZszlﬂkUOK(Dk' Let's set the initial da-

tax =18 =1a, =1 g =1\ k%, the parameter T = 1 of the time interval [0, T],
Galerkin approximation N = 5, the parameter of the random effect is the mathematical expectation of 0
and the standard deviation of 2, the domain D = (0; z). For each experiment, initial random influence
Mok 1S randomly generated.

In Fig. 1, the graphs represent the function #(s, t), i = 1, 5, 10. On Fig. 2 shows the execution of the
estimate, the lines represent the graphs of the functions #(s, t), i =1, ..., 10, at a fixed point in time;
dotted lines show the boundaries of the confidence interval obtained numerically.

Experiment no. 1 Experiment no. 5 Experiment no. 10
Fig. 1. Graphs of the function n(s, t),i =1, 5, 10

10

Implementation n(s; 0) Implementation n(s; 0,5) Implementation n(s; 1)
and confidence interval and confidence interval and confidence interval
Fig. 2. Implementation n(s; t) at a fixed point in time and confidence interval
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AHAIN3 N OBPABOTKA MH®OPMALIMK AN OOHOU CTOXACTUYECKOW
CUCTEMbI COBOJIEBCKOIo TUMA

K.B. lNepeso3yukoea
KOxHO-Ypanbckuli 2ocydapcmeeHHbIl yHUgepcumem, e. YensbuHck, Poccutickasi ®edepauyusi
E-mail: perevozchikovakv@susu.ru

Annotanus. CtaTbs MOCBALICHA aHATU3Y U 00paboTKe WHPOPMAIUH [T CTOXaCTUYECKOH MOJIEIH,
OCHOBAaHHOH Ha YpPaBHEHHMHU PACIPEICICHUS OTCHINAIOB B KPUCTAIUIMYECKOM TIOJIyTIPOBOIHHUKE C IIPO-
n3BogHoN Henbcona—Inuknuxa m HadaneHbIM ycnoBueM Llloyontepa—Cunoposa. Ilog momynpoBogHu-
KOM MBI OyZieM MMOHHMMAaTh BEIIECTBa, 00JaJarolue KOHEYHOH AJIEKTPOIPOBOAHOCTHIO, OBICTPO BO3pac-
Tarolel ¢ poctoM temneparypsl. IIpennomnaraercs, 4To Ha HKCIEPUMEHTAJIbHbIE HayaJbHbIC NaHHbIC
BO3MOXHO BJIMSHHUE CIIyYaiHBIX MTOMEX, KOTOPbIC MPUBOAST K UCCICAOBAHUIO CTOXaCTHYECKOH MOJIEIH.
B pabote npuBeneH aHanu3 MOMTyYEHHOW CTOXaCTHUECKONW MOJIENTU paclpe/ieieH sl MOTEHIIAIOB B KPH-
CTAJUIMYECKOM IIOJIyNpOBOAHUKE. HaleHbl YCIOBHS, IPH KOTOPBIX CYIIECTBYET NOTPAEKTOPHOE CyIIIe-
CTBOBAaHHE PEIICHUH HCCIIeAyeMOoi MoJenu ¢ HadanbHeIM ycinoBueM llloyonrepa—CumopoBa. Ha 6aze
TEOPEeTHYECKUX PE3yIbTaTOB Pa3pabOTaH aJI'OPUTM YHCICHHOTO aHAJIM3a CHCTEMBI U MPEACTABICHA €ro
peanu3anys B BUJE BBIYACIUTEIFHOTO IKCIIEPUMEHTA, KOTOPHIA HEOOXOJUM I JanbHeleld 00padoT-
K# UH(OpMAITHH.

Kniouesvie cnosa: cmoxacmuyeckas mooenb pacnpedenenus NOMEeHYUanos 6 KpUcmaiiuiecKom
NONYNPOBOOHUKe; aHamu3 u oopabomka ungopmayuu; npouseoonas Henvcona—Inuxnuxa; ypaenenus
€00071e6cK020 Muna.
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