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Abstract. In this paper, a screened harmonic system with Dirichlet and
Neumann boundary conditions in a domain with complex geometry is considered,
and a method for analyzing such a system is proposed. The development of this
method is especially relevant for solving boundary value problems for the
screened Poisson equation in domains with complex geometry, which are used to
describe various physical systems in mechanics, hydrodynamics, electrical engi-
neering, and heat engineering. The proposed algorithm for analyzing a screened
harmonic system under these boundary conditions makes a significant contribu-
tion to this area. The proposed method includes the continuation of the screened
harmonic system through boundaries with Dirichlet and Neumann conditions.
Then, the continuation is discretized by a system of linear algebraic equations. An
asymptotically optimal analysis of the discrete continued screened harmonic sys-
tem and an algorithm implementing the method for analyzing the screened har-
monic system with optimal asymptotics in the number of arithmetic operations
are carried out.
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Introduction

The development of an asymptotically optimal method for solving a boundary value problem for the
screened Poisson equation is relevant for the analysis of screened harmonic systems in domains with
complex geometry, which describe the corresponding physical systems. For the screened Poisson equa-
tion, a boundary value problem in a domain with complex geometry is used to describe a stationary
physical system in nature and technology, for example, in mechanics, hydrodynamics, electrical engi-
neering, heat engineering, etc. Such a problem was studied within the framework of similar approaches,
for example, in works [1, 2]. While creating numerical techniques for the analysis of screened harmonic
systems in domains with complex geometry, they are reduced to a system in rectangular domains for
which asymptotically optimal marching methods are known [3]. In order to achieve results with optimal
asymptotics for elliptic problems with the Neumann boundary condition, a methodology of fictitious
components for solving second-order elliptic boundary value problems in the presence of a Dirichlet
boundary condition was proposed, studied, and optimized in the works [4—6]. This paper is devoted to
the numerical solution of a mixed boundary value problem, which describes the displacements of mem-
brane points under transverse pressure with fixed and free edges based on its analysis as a screened har-
monic system:

ur—Au+xU=f|o, QcR? x>0, (1)
B ou
4lr,=0. 55lr:=0

where

1. Screened harmonic system and its continuation
For the screened Poisson equation, the boundary value problem is considered as a screened harmon-

ic system in two versions with variable index w eW, W = {L II}. When @ <W we consider the problem

(1), and when W \'w we introduce the fictitious problem. From the theory of elasticity comes definition
of energy of a deformed membrane:

E, (uw)zlfw [ @y +uly)aQ, o1 [ Ku2dQ, — [ Pu,dQ,,
2 Q ’ 2(2 Q

@ (]
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where the displacement of the membrane is u,, the membrane tension coefficient is fw >0, the elastic
foundation stiffness coefficient is K, >0, the pressure is P,, a limited domain Q_ with a piecewise

smooth boundary 0Q, of class C? without self-tangencies and self-intersections,
Q,=5,,8,=I,1Ul,,, T,iNl,;=9, if i=], i,j=12The variation of energy of membrane
equates to zero
OE ) (U) =T,y [ WanVie + Uy ¥,y )AQ, + [ K,0,%,dQ, - [ Py, dQ, =0,
Q Q, Q,

ifv, =ou, x,=K,/T,, f =P, /T then
j (wava)x + lja)y\7a)y + KwﬁwVw)de = J- Fruva)de'
Q, Q,

We integrate by parts
ou -
[ (a0, +x,0,)v,d0, + | 5 VoS, = [ f,9,09,.
If i, is outer normal to o2, the membrane is fixed on I' ,;, and the membrane is freeon T, ,,
then boundary value problem arises:

w —

~AU,, + 5,0, = T, |0, K, 20,

_ ., oa,
r(u - ! T r(u =
@1 el on, 1" @2
Same boundary value problem in variational form
u,eH, A, @,V,)=F,V,)VW,eH,, F,eH 2

in the space of Sobolev functions
F'a) = |:|a)(£)a)) = {Vw EWZ:L(QQ)) : vw'rwl = O}

The dot product in bilinear form is defined as
AUy V) = [ WUV + UgyVipy + 5,09, A,
Qa)
The assumption below implies that the problem's solution exists and is unique
3c;,¢, €(0;+40): q||\7m|ﬁ,21(gw) <A,(V,V,)<c, ||\7w||\i,21(gw) W, eH,,
if for a given function f, eL,(€2,) the linear functional is
F, (V)= [ f,v,dQ,.
Q(U

Let us consider fictitious problem
_AUW\LU + KW\wU\N\a) = 1:W\a)’ fW\a) =0,
aUW\a) ‘ —
’ My, Twiw,2

uW\a) ‘ rw\wvl =

Same problem in variational form:
Lj\N\a) € HW\w : AW\a)(U\N\a)’VW\a)) = FW\a)(Va)) va\w € HW\w’ FW\a)(Vw) =0.

A continuation of the boundary value problem is performed for the screened Poisson equation,

which is regarded as an extension of the screened harmonic system:
aeV: AU, 1V) + Ay (U,V) = F (1V)+ Fy (V) W eV (3)
on extended space
V =V(IT) = {\7 eW(rT): V|, = o},
1

assuming, that domains are
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QUQH =11, QN =, 0, < R?,
and the boundary of the domain IT is a piecewise smooth boundary of class C? without self-tangencies
and self-intersections

5H=§, S:rl Urz, FI ﬂrl :Q, |¢ j, i, J :1,2
At the same time
o N0 =S,S=T NIy, #2.
The solution space of the extended problem \71 is the subspace of the extended space
We use arbitrary projection operators
IV VLV =imlg, | =12
Additionally, we define subspaces of the extended space
V3 :V3(H) = {\73 eV: \73|I‘I\QH = 0} ) VO =V1 @VS!
v :\71 OV, 69\73 :\71 69\711!\71 :\71 ®\72’ Vi :\72 69\73-
The decomposition into direct sums here is determined by the the bilinear form
A(U,V) = A (U,V) + Ay (U,V) VU,V eV,
We consider bilinear form to be such that following inequality takes place:
Y o 112 v
3c,,¢, >0: C-I-”V”\/\/Zl(l_[) <A(V,V)<c, ||V”w21(n) wWeV,
and continuation of functions with preservation of the norm and class take place in the following form:
3B € (O], B, €l Bl BAN, Vo) <Ay (V5,V5) < SoA(V;,V;) VY, €V

Let us denote solution to the problem (2) and solution to the continued problem (3) as function in
the same way, and

H,(Q,)=V,(Q,) oe{l 1I}.
Proposition 1. The following dot products are equal to zero:
A, (U, V) = A, (V5,Up) =0 VU, €Yy, VY, €V,, wel{l, 11}.
Proof. This is obtained from the following equalities
Aq (U, Vp) = Ay (U, Vo) = AUy, V) =0 VU €V, WV, €Vy,
Ay (Ug,V5) = Ay (U3, V) = AU, V) =0 VU3 €V, YV, €V,
Statement 1. The solution to problem (3) U eV, exists, is unique, matches with solution to the
problem (2) on Q_, and this is U, €V, (zeroat w=1)on Q,,, -
Proof. If u, u? are both solutions, and u® =u* —a?, then
A, 1V) + A, (@O, V)=0 W eV.
Then t° =a? eV, because forv =V, we have
AU, 13¥p) + A (U°, V) = A (U°, V) + Ay (U°, V) = AU®,Vp) =0 WV, €V,
If v=us, then
A (U3, 4U7) + Ay (U3, U7) =0,
and according to proposition 2.1 we have
Al(Ug’ 1,U;) =0, Ay (Uzoauzo) =0,
and U3 =0 on €, because A(.,.) is dot product, and
0< BAUI,U) <Ay (ud,ud)=0,
then
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A(ud,ud) =0,
and U3 =0 on IT, because A(.,.) is dot product. Therefore, G® =uJ =0 on IT. The existing solution
to the problems in (3) is indicated in the formulation of the statement.

2. Continued system in finite-dimensional subspace
Let us consider the discretization of the continued problem with

IT=(0;by) x (05, ), Ty = {by } x (0;b,) U (Osby) x {b, },
I, ={0} % (0;b,) U(0;by) x {0}, by, b, € (0;+0).
In area IT we define the grid nodes
(%:¥;) =((-1,5h;(j -15)h,),
hh=b /(m-15), h, =b,/(n-15),i=L2...m, j=L2..,n,m-2,n-2eN.
We define grid functions on grid nodes
Vi j =v(xi;yj)eR, i=12.,m j=12..,nm-2n-2eN.

We take into account boundary conditions and define linear basis
O (xy) =P ()W (y), i=2...m-1 j=2..n—-1, m-2,n-2eN,
P (x) = [2/i1¥P(x/h, —i+3,5)+¥(x/h —i+2,5),
Y2 (y) =12/ i1¥(y/h, — ] +3,5)+¥(y/h, — j +2.5),

z, z€[01],
Y(z)=<2-12,2€[L2],
0, z¢(0;2),

where function [ .] is integer part of a number. We additionally determine that
" (xy)=0, (x;y)ell, i=2...m-1 j=2...n-1L m-2,n—2eN.
We will use the approximation of the extended space by a finite-dimensional subspace
m-1n-1 L _
V=10=>>v o (xy) V.
i=2 j=2
Let us consider the continued problem in a finite-dimensional subspace
deV: A (0, 1,9) + Ay (0,7) = R (1,9) + Fy (V) W eV.
Finite-dimensional subspace of solutions of the continued problem
Vi, =V (IT) :{\71 Vi, :o}.
We assume that the projection operator
determined as

m-1n-1 . m-1n-1 .
'1[ Zvi,j®"’<x:y)]=ZZvi,,-ll(dW(x;y)),
i=2 j=2 i=2 j=2
N @1 (x;y), suppl{@il = Q,,
(@M 6y))= (o} =2

0, supp{dbi'j}czﬁl.
We assume that, for example, for a function f set supp{ f} denotes its support. Let us define subspac-
es in a finite-dimensional subspace

\73 2\73(1_[) = {\73 6\7 . \73|H\Q“ = O}, \70 :\71 (‘D\731
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We assume that the provisions on the possibility of continuing functions with preservation of the norm
and class on a finite-dimensional space are fulfilled in the following form:

3B e O, B elBi: AT, %) < Ay (%, %) < SA(T,, %) W, €V

3. Continued system on Euclidean space
We approximate the continued problem and obtain a system of equations

ueRY:Bu="f, feR", (4)
where matrix B and right side f are defined as follows
(BU,V) = Ay (0, 1)9) + Ay (0,9) Vi,V eV, (T,7)=FR(10) WeV,
(F.)=(F.W)hh, = Ty, 7= (v, V..., vy ) €RY, N =(m-2)(n-2).
In this system of equations, we enumerate first the basis functions ®" and their coefficients, if
supp{@i'j} cQy,
then enumerate second the basis functions @ and their coefficients, if
supp{d)i'j}ﬂﬂl # @Asupp{dbi'j } NQy, =3,
and enumerate third the basis functions ®"/ and their coefficients, if
supp{d)i'j} Q.
With this enumeration, the vectors are
V=% %), 0=(0,0,,0), f=(f,f), ).
The matrix B is obtained in block form

All A12 0
0 A32 A33

Additionally, we define the matrices A, Ay; :
(AT, V) = A (0,9), (AyT,V) = A (0,9) V0,7 V.
The matrices A, A, are obtained in a block form

Ay A, O 0 O 0
AI = A21 Azo 0 vAn: 0 Aoz A23 .

We introduce an extended matrix
A=A+Ar=|Ay Ap Ap|=|An Ay 0|+|0 Ay Ayl
Let us define vector subspaces

\71={\7=(\71',\72',\73’)’e RN :v,=0, v, =6},

A {\7:(\71',\72',\73’)’e RN:v,=0,v, =6},\70 =V, ®V;,

We note that
RN ¥, @V, &V, =V, 6V, V, =V, &V, V, =V, &V,

BecTtHuk OYplY. Cepusa «MaTtemaTtuka. MexaHuka. Pusuka» 17
2025, Tom 17, Ne 2, C. 13-22



MaTemaTuka
We assume that the provisions on the possibility of continuing functions with preservation of the
norm and class on a finite-dimensional space are fulfilled in the following form:
3B, €(0;+0), B, €[Bi;+0): B (A%, V) <(AV,, V) < B, (A, V, ) VW, V.
When @ =1, the continued problem in matrix form is
_ All A12 0 U1 fl
0 A32 A33
and the original and fictitious problems in matrix form are
_[Ap Axl[G,] [
Az Ag U] [
When @ =11, the continued problem in matrix form is
Ay A, O] [0
0 A32 A33 __3 f3
and the original and fictitious problems in matrix form are

Agy Ay || f; _ - =
[ = 2|, Ayl + AL, =0.
Az Agz || U3 fy

4. Asymptotically optimal analysis of continued system
Let us present a method for analyzing problem (4), if we define the extended matrix as

C=A1+7A1,|Cy Cp Cp|=|An Ay O0+7[0 Ay Ay | re(0;+0),

and we assume that
371 € (0;+00), 7 €15 +0) 77 (CVy, C%, ) < (AyV, AV, ) < 75 (CVy, C%, ) VY, €V, Wy
Jare (0;+0): (A, AWy) < & (AyVy, Ay, ) VW, €V, V.
Together with the least residuals approach and the inclusion of additional parameter in the formula-
tion of the extended matrix, we propose method for solving problem (4)

a“eRV: c@* -a* ) =—7 ,(BT*'-f), keN, (5)
T4 :<Fk_1,ﬁk_l>/<ﬁk_l,ﬁk_l>, k eN,va° 6\70), a<y, if =1, then 7, =1,
where the residual vectors, correction vectors and equivalent residual vectors are calculated respectively
rl=Br* -, wt=Ccr*  keN,
—Kk-1 _ pok-1
n =BW T, wk=1 keN.
Let us introduce a norm stronger than the energy norm
7]z = \[{C?v.v) v eRM.
Lemma 1. In method (5), if w=1, then
1 - —0 —
[o* -l <2 -],.

Proof. If error in (5)

g* =u* -0, ke NU{0},
then
(@ -7, - 7)) =(-A A ),
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(cit.ct)—2(Ci,Cp°) +(Cir° Ci7° ) = Ay, Ayi? ).
We have
<C‘/70,C‘/70> 2 <A111/710,A11(/7f>,
then
<Cl/7,1C1/71> - 2<C1/71,C1/70> < o,<cy71,cy71> 2< 4<C1/71,C1/70>2 < 4<C1/71,C1/71><C1/70,C1/70>.
When reducing
<Cl/71,Clﬁl> < 4<C1,/70,Ct/70>, H;;l
Theorem 1. In method (5) estimates are

w=1 Huk _U“cz < gHUO —UHCZ L e=2(r,/1)a/y) keN,

ot —a

o <2u’-u

—0
o2 SZHW o2 2

w=1I, Huk _U“cz < 5HU0 ‘UHCZ Le=(rp/1)a/7)<, keN.

Relative errors in a norm stronger than the energy norm are estimated from above by members of infi-
nitely decreasing geometric progressions.
Proof. Except for o,k =1, we have

We define
<AHC_1F"_1,Fk_l> <Fk—1'ﬁk—1>
k1= <AHC_1FK_1,AHC_1FK_1> - <ﬁk—1,ﬁk—1>'
We have
o <AHC_1Fk_1,Fk_1> ) <AHWk—1,CWk—1>
e (At Ay t) (A AW Y)
We mark
AW =3, AW =D
We note
b.a+yb ab a,a)"%(b,b)" 3 7\
= 7] >:7‘§§,5§ o a><6,<5> — o

With selected 7,
AL ClpkL ph 2
<Fk 4 > B <FH'FH> - <A§1CHle1, AHC1F>“> '

We introduce the relation
2
<Fk ’Fk> <AHC_1Fk_1,Fk_1>

<Fk71,Fk71> 1 <AHC71Fk71,AHC71Fk71><Fk71,Fk71>
) b

yb,a
B A A, @) (Cak 2 o) B (b.b)(a+yb.a+yb)
We define
(a,a)=a,(b,b)=b,(ab)=z
We have
BecTtHuk OYplY. Cepusa «MaTtemaTtuka. MexaHuka. Pusuka» 19
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2 2
2 ab—z 2 2 —a a a 2
O = < max g, (z)=¢ (—)=—S—=q :
“ba+yb+2pz) b Ly )y 4R
because of
. 2
o2 >0,(q2(z)) = 27/(z+a/7/)(z+;/b)’ - b<—a+—7b<— ab <—E<\/£.
k k 2 2 e
z b(a+y°b+2y2) 2y 4
We obtain
<Fk’rk>£ qz <Fk—1,rk—1>, <Anl/7kaAH‘/7k>$q2 <AHl/7k71,AHl/7k71>.
Considering
w=1, <Cl/7k , Ci* > <p’ <AH‘/7k ya > <y q?t <AH‘/71'A111/71> =
A Ba D (Ct, CFt) <an i P (Ci, cp°),
o=1I, <C‘/7k , C* > <n’ <Anl/7k ya > <y’q* <An‘/701 AH‘/70> =
<nrsa®(cy’, cp°),
we conclude

o=1(Ci*, CF*) <43 (Ci®, Ci7),
o=11, (CF*, CF*) <y1°r5a™ (C7°, C7°).
Remark 1. If in (5) "' =0, then U* =1.
Proof. In iterative process we obtain
a“eRN: c@* -a)=—7_,(BU-f), keN,
and
T“eRN:c@ -m)=0,0"-0=0,0"=0,keN.

5. Algorithmic implementation of method
If @eW, W ={1, 11}, then algorithm:
1. Value of the squared norm of the initial absolute error
Eo=(f,F)h%
2. Initial approximation
vl eV,

3. Residuals

F*l-Bo* -, keN.
4. Value of squared norm of absolute error

By =(T 1) ke,
5. Corrections

W ow =T keN.
6. Equivalent residuals

71 =BW*?, w k=1 keN.

7. lterative parameter

1, w,k =1,
Tk-1 ={<Fk1’ﬁkl>/<ﬁk1,ﬁkl>, o, k=1 keN.

8. Next approximation
g -1

—g* -7 W keN.
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9. Stop criterion based on a given relative error ¢ € (0; 1)

E, ; <Ey6% keN.
If the criterion did not reach, then repeat everything from step 2.

Conclusion

The main results of this work include the development of a method for analysis of a screened har-
monic system under Dirichlet and Neumann boundary conditions in a domain with complex geometry,
with optimal asymptotics in the number of arithmetic operations. Additionally, the paper presents an
asymptotically optimal analysis of the discrete continued screened harmonic system and introduces an
algorithm that implements the method for analyzing screened harmonic systems with optimal
asymptotics in the number of arithmetic operations. The work contributes to the field of analysis of
screened harmonic systems and provides a method for solving boundary value problems for the screened
Poisson equation in areas with complex geometry.
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AHAIN3 3KPAHUPOBAHHOM FAPMOHI/I‘-IEC}KOVI CUCTEMBI
NMPU KPAEBbBIX YCNNOBUAX AUPUXITE U HEUMAHA

M.I1. Epemyyk
tOxHo-Ypansckutli eocydapcmeeHHbIl yHUsepcumem, 2. YensbuHck, Poccutickass @edepauyusi
e-mail: zedicov74@mail.ru

Annortanus. PaccmaTpuBaercs 3KpaHUpOBaHHAS TapMOHUUYECKAs! CUCTEMA C TPAHUYHBIMHU YCIOBUSI-
mu Jlupuxiie u Helimana B 00iacT CO CIIOKHOM T€OMETPHEH W MpeiaraeTcss METOJ aHalln3a TaKOu
cucteMbl. Pa3paboTka 3TOro MeToja 0COOCHHO aKTyajibHa JJIsl PeIIeHUs] KPAaeBBIX 3a7a4 JIJIsl SKPaHHUPO-
BaHHOTO ypaBHeHHs I[lyaccoHa B 00yacTsX CO CIOXKHOW reoMeTpueil, KOTOPbIe UCIOIb3YFOTCS JIIS OITH-
CaHHus pas3sIMYHbIX (1)I/I3I/I‘-IGCKI/IX CUCTEM B MEXAHUKE, TUAPOIUHAMHUKE, DJICKTPOTEXHUKE U TCIJIOTCXHU-
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ke. [IpeqnoKeHHBIN anropuT™M aHaIu3a YKPAaHUPOBAHHON TapMOHUYECKOM CHCTEMBI MIPHU 3TUX I'pPaHUY-
HBIX YCIIOBUSIX BHOCHUT CYIIECTBEHHBIH BKJIAJ B 3Ty 00JacTh. [IpeyiockeHHBIA METOJ BKJIOYAET MPO-
JIOJKEHUE SKPAaHUPOBAHHOM TapMOHUYECKON CUCTEMBI Yepe3 IpaHulbl ¢ ycaoBusMu dupuxie u Heid-
MaHa. 3aTeM MPOIOIDKEHHE JUCKPETU3UPYETCSl CUCTEMOM TMHEHHBIX anreOpanmdeckux ypaBHeHui. [Ipo-
BOJUTCS] aCUMIITOTUYECKU ONTUMANBHBIA aHAIN3 JUCKPETHOU MPOAOLKEHHON SKPaHUPOBAHHOM rapMo-
HUYECKON CHCTEMBI U AJITOPUTM, PEATU3YIOLIUI METO/ aHAIN3a SKPAaHHUPOBAHHOW TApMOHUYECKOU CHUC-
TEMBI C ONITUMAIIBHON aCHMITOTHKOM IO YUCITy apU(PMETHUECKUX OTIEPAITHIA.

Knrouesvie cnosa: sxkpanuposannas capmonuieckas cucmema, ACUMHMOMUYECKU ONMUMATbHbIU
aHanus.
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