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Abstract. The paper considers the analog of the first initial boundary value
problem for a quasihydrodynamic system of equations in the case of a weakly
compressible fluid in weighted Sobolev spaces. The system is an elliptic-parabolic
system: its first part is an elliptic equation for the pressure gradient, and its se-
cond part is a parabolic system for the velocity vector. The unknown variables of
the pressure gradient and velocity vector belong to the principal parts of the ellip-
tic equation and the parabolic system. The fixed part of the system is not uni-
formly elliptic, thus complicating the study of the problem. T.G. Elizarova and
B.N. Chetverushkin introduce the system by averaging the known kinetic model.
The first versions of the system are the system of quasi-gasodynamic equations.
Later, Y.V. Sheretov, based on a more general equation of state, obtains another
model, which is called quasihydrodynamic system of equations, and thoroughly
analyses its properties. However, the issues of generalized solvability of initial
boundary value problems for such systems have not been studied in detail yet.
There are only some partial results. The paper aims to fill this gap. We prove
generalized solvability of the system in some weight classes characterizing the be-
havior of solutions at t—co according to the Galerkin method and the obtained
prior estimates. The decreasing (growing) behavior of the solution depends on the
decreasing (growing) right-hand side of the system. The decrease (growth) at
t—oo of the used weight functions can be both exponential and power.

Keywords: Initial-boundary value problem; quasihydrodynamic system; prior es-
timates; weight functions; existence theorem.

Introduction. We consider a quasihydrodynamic system of equations in the case of a weakly com-
pressible fluid:

divu =divw, W= r[(U,V)U+1Vp—?J,(t,x)eQ =(0,0)xG,G c R?,
g ®

%“+(U—W,V)G+EVp=?+yAU+w(u)+(u,v)W+Wdivu,y=¢7/p.

Yol
where G is bounded domain with boundary T eC?2, z=n/ p is kinematic viscosity coefficient. Densi-
ty p, dynamic viscosity u and characteristic relaxation time z are positive constants. Vector field

f= 7(x,t) determines the mass density of external forces. The system (1) is closed with respect to the
unknown functions, i. e. the velocity vector U=Uu(x,t) and the pressure p= p(xt). Symbols div and

V denote the divergence and gradient, respectively.
We look for a solution to the system (1) satisfying the following initial and boundary conditions and
the normalization condition:

0l = 0,w-v|,. =0, =Uo(x), [ p(t,x)dx =0, @)
G

where v is the unit vector of the outward normal to 7.

The system (1) in a more general form was derived in [1, 2] by averaging the known kinetic model.
The first variants of the system are called the system of quasigasodynamic equations. The derivation of
the system and some results can be found in the monographs [3, 4]. Later, using a more general equation
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of state, another model known as quasihydrodynamic system of equations was developed in [5, 6]. In
particular, a detailed analysis of the properties of this model is presented in the monograph [7]. Here, for
a quasihydrodynamic system of equations in the case of a weakly compressible fluid (i.e., for system
(1)), dissipative properties are investigated and a theorem of uniqueness of the classical solution to the
main initial-boundary value problem is proven. Zlotnik A.A. in [8] constructed a system with a general
regularizing velocity on the basis of a linearized (on a constant solution) quasihydrodynamic system of
equations and established the degeneration of the parabolicity property of the original system. Later, for
the first time, he constructed a quasigasodynamic type regularization of the heterogeneous model (in the
quasihomogeneous form), for which the difference scheme an explicit two-layer in time and symmetric
three-point in space in the 1D case was constructed [9]. In [10], a model based on quasigasodynamic and
quasihydrodynamic equations in multiscale media is investigated, which can be used in applications to
porous media theory. A computational multiscale method based on the idea of bond energy minimiza-
tion was proposed to solve quasigasodynamics problems and improve the accuracy of simulations. Re-
cently, regularized hydrodynamic equations of quasihydrodynamic type have been used in the numerical
solution of a number of practical problems. Relevant results are exposed in [11-14]. Note that the sys-
tem (1) is an elliptic-parabolic system and both equations, elliptic and parabolic, contain the senior de-
rivatives of the unknown pressures p and the velocity vector u . Such systems often arise in applica-

tions. In [15], to solve the problem of two-phase non-isothermal filtration, the authors consider a system
consisting of one elliptic and two parabolic equations with known boundary conditions. The authors in
[16], using the technique of Fourier multipliers, proved an a priori estimate for strong solutions to ellip-
tic-parabolic equations of mixed type in Sobolev space. In [17], a family of models for the flow and
transport of multiscale single-phase fluid in inhomogeneous porous media based on an elliptic-parabolic
system consisting of an elliptic equation for steady-state flow and a parabolic equation for transient ad-
vection-diffusion is described. The existence and uniqueness theorems of generalized and regular solu-
tions of an analog of the first initial boundary value problem for the system (1) are presented in [18, 19],
respectively. The proof of the existence of generalized solution in [18] is based on the Galerkin method
and a priori estimates. In [19], under certain conditions on the data, it is shown that there exists a unique
regular solution of the initial-boundary value problem locally in time. The existence and uniqueness the-
orems for generalized and regular solutions to an initial-boundary value problems for a
quasihydrodynamic system in the linearized case are presented in [20]. In the case of a regular solution,
there are some restrictions on the norms of the data. The obtained results provide appropriate stability
estimates for solutions to the original nonlinear problem.

In this paper we study the solvability of initial-boundary value problems for the system (1) in some
weight classes characterizing the behavior of generalized solutions as t — .

Preliminaries
Let t,p be a sufficiently smooth solution to the problem (1), (2). We say that te Ly, (0,0 E)

(E is a Banach space), if tie L, (0,T;E) forany T <co. Let y(¢) be a non-negative function such that
,u({t : y/(t) =O}) =0. Here u is the Lebesgue measure. By L, , (O,oo; E), we mean the space of meas-
urable functions G(t) such that wleL,(0,o0;E). Let us multiply the first and second equation of the

system by the functions ¢ and w respectively such that ¢e LZ(O,oo;WZl(G)), .[go(x)dx=0,
G

vel, (O,oo;Wzl(G)), :p|s =0, ¢@andy have bounded supports. Integrating the results over G, we

arrive at the equalities:

[ U-Vpdx = [ W- v pix =r((U,V)J,V(p)Jr%(Vp,Vgo)—T( f.Vo),

E R PN (P

p(ii, divi ) +((i, V), )+ (wdivid, 7 ),
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where the point - means the scalar product in R® and (u,v)=_[uvdx for scalar functions and

(U,V): jU-de for vector functions. Integrating by parts, we have
G

((d@,V)wy7) = [ (U, V)W-ydG = [ diviw- dG — [ (1, V) - WdG. ()
G G
Using this equality in (3), we obtain the equations

(u‘,v(p)=(w,v(p),(%,zpj—((u—v‘v,v)y7,u’)+%(vp,,,;)+

#(VU,V )+ p(divi,dive) +((0,V)g,w)=(f.p7), (5)
valid for almost all t. Equalities (5) can serve as a basis for defining a generalized solution to the prob-
lem. Let pye[13/2], q,=2py/(4py—3), p,=5/4. Then qye[L2]. Functions

U € Lyjoc (0.09W5 (G)) M Lo (0,905, (G)) U e L,y loc (0,25 (G)), peLy, (0,5W;, (G)) such

that @+(U,V)Ue Ly joc (0,90, L, (G)), satisfying (2) are called generalized solutions of the problem
o,

1), @) if

j(u,w)dt:j(w,v j[(a—“,lp) (U —W, V), u+—(Vp w) +
0 0 0

w(VU,Vy )+ pu(divi,divg ) +((4,V)y, w)dt =

O'—;g

(f, y/)dt

for all functions peL, (O,oo;WZ( ) with I (t,x)dx=0,p € LS(O ( )) and z/7|S =0, having a
bounded supportin t. Let

a(ﬁ,&):(%ﬁy]—((u W,V)y,u)+ ;(Vp,¢)+y(vu,v./7)+ﬂ(a,div¢)+((u,v).p,w).

The main results
Let's introduce an auxiliary weight function. We consider several different cases. In the former case

B(t)= et (7 #0,y <ul268,), where &, isthe constant &, from Poincaré's inequality
2
[l dx< s, [Ividx,
G G

valid for all G €W, (G), such that U[.=0. In the second case S(t)=(M +t)” (y#0), where M >0 is
some constant, which will be chosen below.
Theorem. Let f{/8eL,(Q), UyeL,(G). Then there exists a generalized solution of the problem

(D, @ such that JBuel,(00W5(G)), Buel,(0xiL,(G)), B(uV)uel(Q),
\/ﬁ(@Jr(g,v)ﬂ eL,(Q), B(u,Viue Loy (O,oo; Lo (G)) for any Po €[1,3/2],

P
Vpp* e Lo, (0,00; Lo (G)) upB% e Lo, (O,oo;Wgol(G)) for any p, €[1,3/2] and for all « such that

a<y2 if p=¢" (y>0) and a<%_2|ﬂ?0 if p=@+M)"7,B3<0; the case of a:% is possible
o
when q, =2; a>l+ﬂ and e 21if B=(t+M)7,B>0; a=1if g=¢" (y<0).
2 2|Blag
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Proof. First, we derive the first a priori estimate with weight g for smooth solutions to the prob-
lem. Take ¢ = pg, w= pu inthe definition of a generalized solution. We obtain the equalities

r((u,V)a,ﬂVp)+1(Vp,mp)—r(?,ﬁVp)—(a,ﬂVp)=
(5U G'Bj ((u WV)u u,B) p(Vp JUB)+ u(Vu,vupg)+ u(divi,divig)+ (6)
((G,V)Uﬂ,(r(a,v)m%w—T?D=(?,Uﬁ).

Dividing the first equality in (6) by p and adding it to the second equality and using the equality
((U—W,V)G,U):O, we obtain that

o ol i |2 o .
aj'w'zﬁdX_Ilu|2ﬁtdx+,u(Vu,Vuﬂ)+,u(leU,dIVUﬁ)+%(Vp,ﬁvp)‘i‘

(@, v)a, ﬂVp)——(f ,BVp)——(u AVP)+=(Vp,uB)+7((U,V)u,(u,v)ipg)+ 7)

iy
P
;(Vp,(u,v)up’)—r((U,V)U'?ﬂ):(

Transforming this equality, we conclude that

Yol
?,uﬂ).

.12 .

%({ (u |2 ﬂ)dx_(J; (u |2 P+ (Vi Vi) + p(dlivii diviig) +

£ GBI E (G0
5(F.908)~<((@v)as.p)=(/.8).

J' ’Bd J'|4| ’Btdx+ﬂ(Vu Vip)+ pu(diva, divip ) +
g

r[ﬁ(%ﬂﬂ,v)ﬁj,[%+(U,V)UB:r[?,7ﬂ+(ﬁ,v)ﬁﬂj+(?,ﬁﬁ). 9)

Estimate the right-hand side using the Cauchy inequality

e 2 1 9
ab|<=-a“+—b", 0). 10
|ab| S o (£>0) (10)
We have that
|fF B

ST.[G ; X +— I| + (@, V)i |* Bdx (11)

F o E (112 £ 2
f.up)|<=1|u dx f dx—. 12
( ﬁ)i2£||ﬂ+£llﬂzg (12)

Using these inequalities in (9), we obtain
12
f [0l By, flu |2 By + (v, V) + pu(dive, divig) +
G

2 gl Y2 vya || Y24 (u,v)a j|f|ﬂdx+—j|f|ﬂdx+g50j|w| Bdx.  (13)
2[ (p Mp D

Let's take &= u/5,. We conclude that
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u| ﬁdx Il i Py & 2(Vu Vig)+ u(divi,divig)+
— 2
( j [Vp (U,V)a D fIf] ﬁdx(hi} (14)
p 5 2 2u
Consider the foIIowmg two cases: a) S, <0, b) S, >0. Let

J :%(VU,VGﬁ)+y(divU,divUﬁ)+%[ﬂ(@+(U,V)UJ,(@+(U,V)UD. Integrating (14) from 0 to
P

Salo)

N

Y2,
t, in case a) we obtain

luP B ¢ t ug

T2 0 _
({Tdmgiadxdtsclw f ,dedt+z|;?/5’(0)dx—M. (15)
In the case b), we can rewrite the inequality (14) in the form

flul ﬂ(t)dX+I|U| (ﬂﬂ ﬁt]+JdX<I|f|ﬁdx[f ;szj (16)

Let B(t)=¢" (7>O). Since y<ul/28,, (16) implies that the inequality (15) holds. Let

B=t+M)7 (7 < 0). In this case, choosing a sufficiently large number of M (L+l >0), we ob-
0

tain the inequality % —% >0 which validates the inequality (15). The inequality (15) yields
0

max, (G2 Bdx <M, [1d 2 (t,x)dx < 20—, (17)
‘i i T
5 (V0.V0p) + u(diva)’ ﬁ+%(ﬂ(v—§+ (U,V)U),(V—F:JJr (@ V)i) <M. (18)

Q
As a consequence, we obtain the following a priori estimates for solutions:

547 om0 | 20107
where C,(M) is some constant depending on M, 7,
“G\/EHLOO(O,OO; L, (G)) <G (M). (20)

Next, we evaluate all summands included in the definition of a generalized solution. Demonstrate
that

<C, (M), (19
L(Q)

18UV (000 L (G) <C,po€[13/2], (21)
qo( T TRo )
where the constant C has the same properties as the constant C, . The Holder inequality yields
S 32 i g¥2
a9y, =clvar?] o Jos, @)

where ¢ = 5 - Next, we use the embedding Wy (G) = Ly, ,(G) for pya=r= 3—625 , in this case
Po _ 3 _ o= 3(po-1)
2-pp 3-2s Po

The necessary inequality s<1 is equivalent to the inequality p, <3/2. From (22) it follows that

,v)a <C,|vup¥? 0gY? : 23

|8(a,v) ||Lp0(G) Cl” B HLZ(G) H P s ) (23)
We estimate the last multiplier using the interpolation inequality [21]
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oAl

HU ’B \WS(G) (24)

where s =6 . From (23) we obtain the estimate

pa.9)l,_ oy <C A

3(G)

o WPl @)

L(G)'

Using (20), we obtain

. (1 )
AV 6.0, 0 =il (I | <Cy(m), (26)
where we choose
Uo(1+5)=2,i.e.0y=2py/(4py—3). 27)
By definition, g, >1. The estimate (19) yields
H@\/ﬁ+\/ﬁ(u,v)u <C(M). (28)
P L(Q)
Vp .
Let g =(—+(U,V)u). Next, we infer
P
a Vp < a a .
— < + u . 29
g L Hqu (0,0;Lpy (G)) Hﬂ gHLQO (0.1 (G)) Hﬂ ( HLQO (0.205Lpy (G)) %)
Let 4 >0 and let o <1. In this case
5 (a,v)aHqu 0y ) S ||ﬂ(G,V)U||LqO oty @y SC(M): (30)
If 5 <0 and « 21 then similarly we have that
s (U,V)U”qu Ot ) ||ﬂ(u,v)a||LqO 0ty SCOD) (31)
Next, we derive that
a i P %/Po gado gt)/d
|2 QHL ot £(£|g| " ch)®/ P geogit) Vb (32)
where
(J‘l g [P dx)Qo/Po < (J'| g |2 dX)qO/ZCO, Co= #(G)%(J/Po*l/Z)1 (33)
G G

with x is the Lebesgue measure. In this case, we infer
1 o 2q0 1 qO

|| q(f(j|g| ) f2 B 2dt)q0<q(jﬂj|g| dxdt)z(jﬂz 2y ™ (3a)

qu (Ovoovao (G))
Let S=e’", »>0. In this case, for convergence of the last integral, it is necessary that o <1/2. If
B=@+M)7,y<0, then it is necessary that
2—
1 (2-99)

2 2|yldy
Note that the inequality «>0 is satisfied under the condition that 2/(1+|y[)<q,<2. Let

(35)

B=e"",y<0. For convergence of the integral, it is necessary that & >1/2. If f=(t+M)7,y>0,itis
necessary that

a>(2_q°)+1. (36)
2|ylqy 2
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QO)
2|y 1d,
gualities (29), (30) imply the estimate

[o°|

Note that the inequality (

+=2>1 is fulfilled whenever if 2 > (. If B, >0, then the ine-
2 1+ 7|

<c(M), (37)

Lag (0ciL g (G))

where a<1/2 if p=¢" (7>0) and a<%—22| |q° if p=(@+M)7,y>0.The case a:% iS pos-
%
sible when q,=2. If S <0, the inequalities (29), (31) yield

<C(M), (38)

qu (O,DO, Lpo (G))

where o> =+ 2%  and g1, If —2 >, then the inequality 1, 27% 51 poigs.
2|74 I+ 7] 2 |7|QO
We have obtained the estimate
@ U U <
Z VpHquw'w;Lpo(G)f”ﬂ (V) 09 < Co (M), (39)
As a consequence, if p,=p, =5/4 (py =0, in this case) then we conclude that
”'B pHL (Q)+||ﬂ U V u"L (Q) _C4(M)' (40)
Since
W=T(@+(u,v)a—?j, (41)
o)

we have the following inequality for the norm of E

£ (G,V)a f <Cs(M). 42
IV G sCl) I V) &

Let us estimate the summands from the definition of a generalized solution. We have that
((U—w,V)w,0) '[Z W, )y . (43)

Gij
Consider the functional I(y) . The Holder inequality yields

| =jwiy/jxiujdx, 1< wiy; | 1/ py+1/ ph =1. (44)
G

Lpy (©)

Jvs
Lp, (©) P

Further, we obtain (see (20)) that

1
[f 1w 1P (u;)Pax]™ <|w I, ‘“”JHLZ,JO Oenleg (@)
G 2-py

Cs (45)

Z(G) ”Lz(G) ”UJ“\NZ(G) H JHLZ(G) Iy,
where s=3(p, —1)/p, . We can conclude that

" I1ﬂ”(ﬂgo(0,oo) < .([ﬂqo ||Wi|qLZ(G) Hui ‘Wg(e) “ui Hl(_lz_(ZjO d< C.[H\/_W HL (G) H\/_

where C = H\/zu J “ . Applying the Holder inequality with q = 3, we infer
Lo (0,0;L2(G)) 0

||/3|1||L (Ooo) H \FHL (e)) [J.H

2 . L . .
Note that 23& = 2. In this case the previous inequality can be rewritten as
— 0o
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”ﬁllnqu 0 SCs(M). (48)
The expression
1) = [ Wy e = (W, V)7, 1) (49)
ijG

is a linear continuous functional over Vovlpé(G) . It follows from (44), (47) that

e 20 gL =iy Bl Bl
where py = po/( Py —1). Using (48), we obtain that
"I B ”qu (0.20W, (G)) <Cp(M). (51)
Denote
(VP.y7)=h(¥),Vp €Ly (0,0 L, (G)). (52)

This expression has a sense for functions Lo (0,00; Lo (G)) with a bounded support. Then we
have

L(y) < "Vp"LpO ©G) '"'/7"% ©F (53)
In view of the estimates (37), (38), we derive
”Il(l’/;)’g HLqO (O,w;W[;()l(G)) g”ﬁ vp Lgo (0:01L, (G)) SC“(M ) (54)

For integrals of the form

L) =((4,V)y,u) =Zjui.,7jxiujdxdt,|3(y7) =((u,V)w,w),
ijG
we have the estimates (as in the proof of the estimate (53))

MBI, o.esw 2oy <Cra(M),i=23 (55)

Let {p} — be a basis for the subspace of the space W, (G), consisting of functions ¢, satisfying the

condition j(pdx =0. As vector functions {y; }, we choose the eigenfunctions of the problem
G

—AG =2y, ¥l =0, ¥ =(y1,¥2,3) eW; (G) MW 3(G). (56)
They form an orthonormalized basis for L,(G) (after normalization) and an orthogonal basis for the

space V =W, (G) "W 5(G) if we take the expression (G,V), =(AU,AV) as a new inner product. Let
Py is orthoprojection in L,(G) on the subspace Vy =Lin{yy,¥,,...,wn}. It's obvious that
Py e L(V,V) and, in view of duality and selfadjointness, it allows an extension to a bounded operator

of the class L(V',V') , where V' — dual space constructed by L,(G) and V as a completion of L,(G)

with respect to the norm |uf - =sup|{u,v)y, |/|V], . In particular, we have that (u,Pyv)=(Pyu,v) for all
veV

veV,ueV . Note that W22 (G)m\;vlz(G) c VOVE(G) and the embedding is dense. This is a consequence

of the embedding theorems. Since V Wé(G) we have that W, (G)cV' . Let 4 be the correspond-

ing eigenvalues.
We look for an approximate solution to the problem in the form

Uy = %Ci (t)wi (x), py :%:ozi (t) e (x).
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where ¢;(t) and ¢ () are solutions to the system:

(uy —wN,vgoj):o,a(uN,y;j):(?,y;j), 6 (0)=(Up, %), j=L1..,N. (57)
The first equation of the system can be rewritten as
(GN _ VP —z(UyV)Uy + fr,qu,JzO. (58)
2
We have that
™Vpy r
Vo =;Zaj (t)(V(/)j,V(p,),det(Vgoj,ng}l)7&0. (59)
j=1

The last determinant is the Gram determinant and it does not vanish. Indeed, the following estimate
holds:

”vp”L2 (G) Z CO || p”'—z (G) Vp EWZ:L(G) . .[ de = O
G

This inequality guarantees that an equivalent inner product <u,v>=(Vu,Vv) can be introduced in
the required subspace of functions ¢, which guarantees the claim. Let A be a matrix with elements

a; =(V¢;, Vo, ). In this case the system (58) is rewritten in the form

P (Uy —7(Uy,V)ly +7f.02) | ©0)
T (UN —T(UN,V)UNJrTf,goN)
Substituting a into the second system, we obtain a nonlinear system of ordinary differential equa-
tions for functions c; (t) The a priori estimate below guarantees that the Cauchy problem for this sys-
tem has a solution on the entire interval (0,0).

Further, we obtain a priori estimates for approximate solutions. Multiply the first and the second
equation of the system (57) by ¢; and c; , respectively, and summarize the equalities over i. Then we
obtain that

We have the above-proven estimates (19), (20) and, thus,

Bl o v P 72+ )i N

yo,
where C,(M) is some constant depending on M, z,7,
“GN ﬁHLw(O,oo;LZ(G)) = Cl(M ) (63)

The estimate has the same form because ||PNf||L2(G)s||f||L2(G), ||PNu0||L2(G)s||u0||L2(G),

<C ( M ) (62)
L(Q)

Uy (0,X)=PyU, . Take py =0, =5/4 and fix the parameter o =« , satisfying the conditions from the
statement of the theorem. As a consequence of (26), (28), (40), (42), we infer

[ \/EHLZ(Q)+HVpNﬂ ao“g/4(o)+||(UN’v)UNﬂ g

Obtain an estimate for the derivative with respect to time of a solution. To this end, we rewrite the
second equation of the system in the form

(%ﬁ}((% iy, V)i )-%(VpN W)+

w(Viiy, V) - u(diviiy divig)—((ty, V)iz,wn )+ F.07) = Lo), (65)
where y €V, . It is easy to see that the expression L,(y) is a linear continuous functional over the

<C4(M). (64)

space VOV%,(G) in view of the estimates (53), (54), (55) (where the U is used instead of Gy ) and thereby
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also over the space V . Hence, there is gy (t)eV' such that Lo(w)=(gy.w) for all y V. The esti-
mates (34), (53), (54), (55), (61)—(64) ensure that

gn A" <| <Cpp(M), (66)
H N Ls/4(0,00V") Ls/4(0,20W5/4(G)) 2( )

where C;, —some constant depending on M and independent of N . The equality (65) can be rewritten
in the form

Nt = PuOn-
The previous estimates and boundedness of the operator Py in V' imply that
U B0 <C,, (M), (67)
H N g 4 0oy Ciz (M)
The sequence Uy is bounded in space endowed with the norm
i =fas] . +as (69
Ly (0,50,W5(G)) Lg/4(0,50V)

and the estimates (62)-(64) are valid. Hence, there exists a subsequence UNk and function
Uel, 50.2W;(G)) such that Uy f —>if in L0=W,(G) weakly, Uy, x5 =iy B
weakly in L,(Q), Uy,t =, weakly in Ls,4(0,00V ), divGNkﬁadivﬁ\/ﬁ weakly in L,(Q),
WNK\/,E%U\/E weakly in L,(Q), ka,B“O — pp“0 weakly in Ls;4(Q), B*Vpy, — SOVp and
Bl V)i, — By weakly in Ls;4(Q), [Biiy, —[Bii weakly in L, (0,%L,(G)) . Demonstrate
that

VD o o o

W=—-+(U,V)u-f, 4, =(u,V)d, (69)

o)
Construct an increasing sequence T, — o at k —oo. In view of the estimate (68), the subsequence

Un, is bounded in the space endowed with the norm

R R . O
o, =16l vsion 18y o

Next, we will use the compactness theorem (Theorem 5.1 of Chap. 1 in [22]). Note that the embed-
ding W 12(6) cL,(G) is compact. By the compactness theorem, there exists a sequence Uy, such that
UlNk — U strongly in LZ(QTl), QTl =(0,T;)xG and almost everywhere in QTl . Again using the com-
pactness theorem, from the subsequence U,l\,k we can select a subsequence Uy, such that G,ﬁk—m
strongly LZ(QTZ) and almost everywhere in Qr, - Repeating the arguments, we construct the family of
subsequences U,'\, such that U,i\, — U strongly LZ(QT) and almost everywhere in Qr. - Now, define the

subsequence V —uN , Which converges in LZ(QT) to U for all i and almost everywhere in Q . Fix i
and take the function y € L (Q) such that suppl//cQTi . We have

[ B((4. V)V, ~(0.9)0)-57dQ = [ B(((V —u).V ¥y + (U, V) (0~ ))- Q.
Q Q
The first integral is estimated as follows:

_[ﬂ V)V - dQI< cyg vy - u||L(QT)H\/_V “ QT_)—)Oatk—mo.

Moreover, we have that
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[(6,v)(U -V, )-7dQ >0 at k >c,
Q
due to weak convergence of AVv, to AVi in L,(Q). Since the convergence takes place for all i and

the set of functions with a bounded support of the class L, (Q) is dense in L, 4(0,0;L,(G)), we can
conclude that u; =(G,V)u and thereby W=@+(U,V)U—?. A subsequence V, coincides with some
P

subsequence uy, for a suitable choice of the sequence N, . Fix T >0 and take the set of functions
;(1),¢;(t) eC([0,0)), such that supe;,supc; = [0,T], multiply the corresponding equalities (57) with
N =N, by these functions, sum the result on i from1to n (n<N, ) and integrate the obtained equa-
tions on t. As a result, we have

I(ka — iy, ,V(p)dt -0, ja(aNk ,y?)dt = [(f.v)at, (72)
0 0 0
n n
where y :Zciy/i and (/)=Zai(p| . Let us consider successively all summands. First, we can pass to
i=1 i=1
the limit in the first equality and obtain that
j(u—w,vq))dt=0,W=r[(u,v)U+EVp—?} (72)
Yo
0

In the second equality, we consider only the nonlinear summands, since in the linear part the pas-
sage to the limit is realized due to the weak convergence. Consider the summand

Iy, =j((UNk iy, V)70, )dt.
0
Demonstrate that Jy, —J = j((ﬁ—v”v,V)y?,U)dt as k — oo Consider the difference
0

Iy, =3 :I(HNK Vi, .V )7, Uy, —Udt+I((UNk Vi, ,V)l/?),ﬁdt.

The second integral tends to zero due to weak convergence, and the first integral is estimated as fol-
lows:

I((uNk Vi,V )7,y —U)dt <cluy, _UHLZ(QT) —>0ask — oo,

Similarly, we can show that T((UNk ,V)y?,WNk )dt —>T((U,V) *,W)dt at k —oo. Passing the limit
as k — oo, we can conclude that 0 0
T(%,lﬁj—((ﬁ—W,V)W,U)+%(Vp,z/7)— #(VU,V )+ p(divi,divig) +((d, V), w)dt =T(?,V7)dt.
: In view of the choice the basis, we obtain that G is a generalized solution to the probleom. Proof of
the last statement of the theorem, e, inclusions Vp,(u,Vu)ue qu (0, 00; Lpo (GQ)),

uB% e Lo, (O,oo;Wp’0 L(G)) for any Po e[1,3/2] and the corresponding parameters o was carried out in
the first half of the proof.
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OBOBLUEHHASA PASPELLMMOCTb HAYAIIbHO-KPAEBbLIX 3A[1AY
anda KBASUrnapPOAMHAMUYECKOU CUCTEMbl YPABHEHUN
B BECOBbIX MPOCTPAHCTBAX COBOJIEBA

®.A. Escees™”

! H0zopckuti 2ocydapemeeHHbiii yHugepcumem, 2. XaHmbi-MaHcutick, Poccutickasi ®edepayusi
2 AY «HALl PH um. B.W. Lnunbmaray, 2. XaHmeli-MaHcutick, Pocculickast ®edepauyus

E-mail: fedor_evseev@rambler.ru

AnHotanus. B pabote paccMaTpuBaeTcsi aHAIIOT MEPBOM HAYabHO-KPASBOW 3aJ1auu JUIsi KBa3UTHI-
POOMHAMHUYECKON CHCTEMbI ypaBHEHHUH B Cilyyae CIa00CKHMAaeMOM KHMIKOCTH B BECOBBIX IPOCTPAHCT-
Bax CoOoneBa. Cucrema sIBISIETCS IIMITUKO-NApaboInuecKoi CHCTEMOM: MepBasi €e 4acTb MpeCTaB-
JseT coOOM 3IUINNTHYECKOE YpaBHEHHE OTHOCHTENIBHO T'PaJUEHTa JaBJIEHUS, a BTOpas MpEeACTaBISET
co00# mapaboNNIecKyr0 CHCTEMY OTHOCHTEIILHO BEKTOpa CKOPOCTH. Henm3BecTHBIE TpajiMeHT AaBIICHUS
1 BEKTOP CKOPOCTH BXOJST B IVIABHBIC YAaCTH 3JUTMITUYECKOrO YPAaBHEHHS U NapaboIn4ecKOi CHCTEMBI.
CranuoHapHas 4acTh CHCTEMBI HE SBIISETCS PABHOMEPHO 3JUIUNTHYECKOH, YTO CO3/aeT JIOTOIHUTENb-
HbI€ TPYAHOCTH IpH HcchenoBaHuy 3anaun. Cuctema Obuta BeiBeneHa T.1°. Enuzaposoit u b.H. Yetse-
PYLIKMHBIM IyTEM OCPEIHEHMs M3BECTHOW KMHETHUeCKOoW Mozenu. IlepBrie BapHaHThI CCTEMBI Ha3bl-
BalOTCA CHUCTEMOI KBa3urazoinHamuyeckux ypaBHenwid. [lozmaee F0.B. lllepetoBeiM Ha ocHOBe Ooee
00IIIEero ypaBHEHHUsI COCTOSHHS ObLIa IMOJTyYeHa ellle OJHA MOJIENb, KOTopas MoJy4niia Ha3BaHHE «KBa-
3UTHIPOAMHAMHUYECKasl CUCTeMa ypaBHEHHH». MM ke Obul mpoBeleH AeTalbHBIN aHAU3 CBOICTB 3TOM
cucrembl. OHAKO paHee Jake B JUHEHHOM cilydae MoJpOoOHO HE MCCIEAOBAINCH BOIPOCH 0000IICH-
HOM pa3peimnMoCcTy HaualbHO-KPAeBbIX 3aj1a4 Ui TAKUX CHCTEM, UMEIOTCS TOJIBKO HEKOTOPhIE YaCTHBIE
pe3ynbTaThl. B manHON crarthe OyneT mpeAnpuHsTa MOMBITKA BOCIIOIHUTH 3TOT mpoben. Jloka3siBaeTcs
000011IeHHAsT Pa3PEIIMMOCTh CUCTEMBI B HEKOTOPBIX BECOBBIX KJlaccaX, XapaKTEepU3YIOIIUX MOBEJCHHE
pemennii mpu t—oo. Jloka3aTenbCTBO OCHOBAaHO Ha MeToAe lanepkrHa M TOITy4aeMbIX ampHOPHBIX
oreHkax. Ommcano yObIBaHHE (POCT) pelIeHHs B 3aBUCUMOCTH OT YOBbIBaHUS (pOCTa) MPaBOi 4acTH CHC-
TeMbl. YObIBaHUE (POCT) MpH {—00 UCTIONB3YyEeMbIX BECOBBIX (DYHKIHMH MOXET OBITh KaK SKCHOHEHIIU-
aJIbHBIM, TaK U CTEIICHHBIM.

Kntouegvie cnosa: nauanvmo-xkpaesas 3adaua; Kea3ueUOpoOUHAMUYECKAS cUucmema; anpuopHvle
OYEHKU, 8eco8ble (DYHKYUU, Meopema Cyuecmeo8anusl.
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