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Аннотация. Рассматривается построение оптимального управления 

решениями стохастической нестационарной системы леонтьевского типа. 

Нестационарность системы взята в некотором усредненном виде и вынесе-

на как сомножитель в правой части операторно-дифференциального урав-

нения с вырожденной матрицей коэффициентов при производной. При этом 

стохастическая составляющая предполагается в начальном условии. Ис-

пользуя линейность рассматриваемой системы, мы расщепляем ее на де-

терминированную и стохастическую задачи. Далее на основе алгоритмов, 

полученных ранее для детерминированной нестационарной задачи, нахо-

дим оптимальное управление. Основная цель данной статьи – описать вы-

числительный эксперимент, иллюстрирующий результаты о разрешимости 

данной задачи. Статья кроме введения, заключения и списка литературы  

содержит две части. В первой части содержится информация о разрешимо-

сти поставленной задачи, а во второй – приводятся результаты вычисли-

тельного эксперимента. 

Ключевые слова: уравнения леонтьевского типа; производная Нельсона – 

Гликлиха; пространство дифференцируемых «шумов»; вычислительный экспе-

римент. 
 

Введение 

Рассмотрим в Rn  динамическую балансовую модель экономики [1] в виде нестационарной 

системы 

( ) ( ) ( ) ( ) ( ),Lx t a t Mx t f t Bu t          (1) 

где ,L M  и B  – квадратные матрицы порядка n , причем det 0L  . Здесь :[0, ] Ra    – скаляр-

ная функция, описывающая изменение во времени параметров взаимовлияния состояний иссле-

дуемой системы, а матрица M  – ( , )L p -регулярна (т. е. существует комплексная C  такая, что 

det( ) 0L M   , и   является полюсом 1( )L M   порядка 0, 1p n  ). Вектор-функция 

:[0, ] Rnf    описывает внешние воздействия на систему, а вектор-функция :[0, ] Rnu    опи-

сывает управляющее воздействие на систему. 

Уравнение (1) в силу условия det 0L   нельзя разрешить относительно производной и, сле-

довательно, при для решения таких систем не применимы классические методы решения. Систе-

мы, не разрешенные относительно производной, часто встречаются при описании экономических 

процессов [1] в силу невозможности запасать определенные ресурсы. Для того чтобы решить 

систему вида (1), необходимо выполнение некоторых специфических условий [2, 3]. На сего-

дняшний день подобные вырожденные системы не имеют общепринятого называния (см., на-

пример, [2–4]). В работе [4] такие системы предложено называть системами леонтьевского типа, 

в честь их прототипа – знаменитой балансовой модели В.В. Леонтьева «затраты – выпуск» [1]. 

Кроме того, такие модели часто имеют нестационарный характер, то есть входящие в них матри-

цы зависят от времени [5]. В данной работе будем предполагать, что зависимость от времени 

элементов матриц может быть некоторым образом усреднена и представлена в виде умножения 

матрицы при производной на некоторую функцию времени. Дополнительно отметим, что систе-

мы леонтьевского типа, являющиеся частным случаем линейных уравнений соболевского типа 

[6–8], вызывают большой интерес у исследователей в связи с их различными приложениями, ко-

торые находят применение не только в экономике, но и в технических системах [9, 10]. 
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Отметим, что вырожденная система (1) разрешима не для любых начальных условий [11]. 

Поэтому при численных решениях для таких систем удобнее использовать начальное условие 

Шоуолтера–Сидорова [12] 

   
1

1

0(0) 0
p

L M L x 


   
 

   при   C:det( ) 0L M    ,        (2) 

которое позволяет избавиться от необходимости согласования начальных данных. Дополнитель-

но здесь будем полагать, что начальные условия являются случайным вектором 0 Rn  . 

Для решения задачи оптимального управления решениями задачи Шоуолтера – Сидорова (2) 

для системы леонтьевского типа (1) требуется найти функцию ˆ adu U  (оптимальное управле-

ние), удовлетворяющую условию 

ˆ( ) min ( )
adu U

J u J u


 ; 

для некоторого функционала )(uJ  и такое, что )ˆ(ux  почти всюду на ),0(   удовлетворяет задаче 

(1), (2). Здесь множество adU  является некоторым выпуклым и компактным подмножеством до-

пустимых управлений в пространстве управлений U . Функционал штрафа, вид которого будет 

приведен ниже, по сути описывает меру расхождения планируемого (наблюдаемого) поведения 

системы :[0, ]z Z   и расчетного поведения системы ( )x t , полученного с помощью управления 

:[0, ]u U  . Пространство Z  содержит не все параметры состояния системы ( )x t , а только те, 

для которых есть информация (планируемое состояние системы). 

Для систем леонтьевского типа задача оптимального управления исследовалась, например, в 

работах [11, 13, 14]. Задача оптимального управления решениями нестационарных систем леон-

тьевского типа в детерминированном случае исследована в работе [15]. Существование алгорит-

ма решения данной задачи и сам алгоритм приведены в [16]. В силу того, что в условии (2) при-

сутствует случайная составляющая, для решения поставленной задачи нам понадобится провести 

исследование в стохастическом случае [17]. Основная цель данной статьи – описать вычисли-

тельный эксперимент, иллюстрирующий результаты о разрешимости данной задачи для одной 

стохастической нестационарной модели Леонтьева. 

 

Решение задачи оптимального управления 

Обозначим множество матриц размера n m  символом n mM  . Пусть , n nL M M   – квадрат-

ные матрицы порядка n . Следуя [7,10], будем называть множества  

 1( ) C:det( ) 0L M L M        и ( ) C \ ( )L LM M   L -резольвентным множеством и L -

спектром матрицы M  соответственно. Нетрудно показать [7,10], что либо ( )L M  , либо L -

спектр матрицы M  состоит из конечного числа точек. Кроме того, заметим, что множества 

( )L M  и ( )L M  не изменяются при переходе к другим базисам. Здесь и далее будем предпола-

гать, что ( )L M  . 

Для комплексной переменной C  определим матричнозначные функции 1( )L M  , 

1( ) ( )LR M L M L     и
1( ) ( )LL M L L M     с областью определения ( )L M  и будем их на-

зывать соответственно L -резольвентой, правой и левой L -резольвентами матрицы M . Также в 

силу результатов [7,10], L -резольвента, правая и левая L -резольвенты матрицы M  голоморфны 

в ( )L M . Ортогональные проекторы [7,10], расщепляющие пространство nR , имеют вид 

 
1 1

( ) , ( )
2 2

L LP R M d Q L M d
i i

 

 

 
 

   , (3) 

где контур C   такой, что C   и ( )LD M . Cужение матриц L  и ( M ) на подпространст-

ва ker P  и imP  обозначим kL  ( kM ), 0,1k   ( 0k   для сужений на ker P  и соответственно 1k   

для сужений на imP ). При условии ( , )L p -регулярности матрицы M  ( 0, 1p n  ) существуют 
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обратные матрицы 1
1L  и 1

0M   на сужениях пространства Rn . 

Рассмотрим задачу Шоуолтера–Сидорова 

 0(0) 0P          (4) 

для неоднородного нестационарного стохастического уравнения 

),()()()( tBtMtatL  


              (5) 

где   – производная Нельсона–Гликлиха [18], а ( )t  – стохастический процесс внешнего воздей-

ствия на систему. Здесь ( ) E ( ) ( )t t t     и соответственно E ( ) 0t  . Опишем пространства 

дифференцируемых «шумов», где данное условие выполнено автоматически и существуют про-

изводные стохастических процессов в смысле Нельсона–Гликлиха. 

Пусть , ,P    – полное вероятностное пространство с вероятностной мерой P , ассо-

циированное с  -алгеброй   подмножеств множества  , а R R, , L   – множество дейст-

вительных чисел со стандартной борелевой  -алгеброй   и мерой Лебега L . Измеримое ото-

бражение : R   называется случайной величиной. Множество случайных величин с нулевым 

математическим ожиданием и конечной дисперсией образует гильбертово пространство 

 2 2L L (R) :E 0,D( )        со скалярным произведением 1 2 1 2, E( )      и нормой 

2

2

L
D  . 

Возьмем множество R , отображение 2: L   задает стохастический процесс. Будем 

говорить, что стохастический процесс ( )t   непрерывен на интервале  , если п. н. (почти на-

верное) все его траектории непрерывны. Множество непрерывных стохастических процессов 

2: L   образуют банахово пространство со стандартной sup-нормой, которое мы обозначим 

символом 2( ;L )C  . Введем в рассмотрение пространства дифференцируемых «шумов» 

2( ;L )C   ( N ) случайных процессов из 2( ;L )C  , чьи траектории п. н. дифференцируемы по 

Нельсону–Гликлиху [17, 18] на   до порядка  включительно. 

Возьмем n  случайных процессов  1 2( ), ( ), , ( )nt t t    и зададим n -мерный случайный про-

цесс формулой 
1

( )
n

j j

j

t e


  , где je  – орты в пространстве Rn , 1,j n . Очевидно, что п. н. все 

его траектории непрерывны, если 2( ;L )j C    ( 1,j n ) и непрерывно дифференцируемы по 

Нельсону–Гликлиху до порядка  включительно, если 2( ;L )j C    для 1,j n . По аналогии с 

предыдущим введем в рассмотрение пространства непрерывных 2( ;L (R ))nC   и непрерывно 

дифференцируемых 2( ;L (R ))nC   n -мерных «шумов». 

Дифференцируемый процесс ( )t  будем называть решением уравнения (5), если он на   

почти наверное обращает его в тождество. Решение уравнения (5) будем называть решением за-

дачи Шоуолтера–Сидорова (4), (5), если оно дополнительно удовлетворяет условию (4). В силу 

результатов [17] это решение существует для неоднородности нужной степени гладкости и имеет 

вид 

 1 1 1
0 1 0 0 0

00

( ) ( )1
( ) ( ,0) ( , ) ( )

( ) ( )

kt p k
n

k

E Q B t
t X t X t s L B s ds M L M

a t dt a t


    



  
    

 
 ,       (6) 

где nE  – единичная матрица порядка n , символ 
dt


 означает производную Нельсона–Гликлиха и 

разрешающий поток операторов вида 
1

( , ) ( )exp ( )
2

t
L

s

X t s R M a d d
i





   


 
  

 
 

   для s t  и кон-
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тура C   как для проекторов в (3). 

Задача (4), (5) в силу линейности эквивалентна детерминированной 

 0

( ) ( ) ( ) ( ),

(0) 0

Lx t a t Mx t Bu t

P x x

 


 
                (7) 

и стохастической 

 0

( ) ( ) ( ),

(0) 0

L t a t M t

P

 

 


 


 

          (8) 

задачам. Здесь ( ) ( )x t tE , ( ) ( ) ( )t t t   E , 0 0x E , 0 0 0   E . И решения этих задач 

можно получить с помощью (6), принимая во внимание, что производная Нельсона–Гликлиха на 

обычных функциях совпадает со стандартной производной. Отметим, что управляющее воздей-

ствие осталось только в детерминированной задаче (7), а стохастическая задача (8) по сути опи-

сывает влияние помех, зарегистрированных в состояниях системы в начальный момент времени. 

Построим пространство  1 ( 1)
2 2( ) ((0, ), ) : ((0, ), ), 0, 1p pH Y v L Y v L Y p n       , которое 

является гильбертовым в силу гильбертовости Y  со скалярным произведением 

 
1

( ) ( )

0 0

, ,
p

q q

Y
q

v w v w dt





 . Пусть Z  – гильбертово пространство, а оператор :G X Y  линеен и 

непрерывен. Построим функционал штрафа 
1 2

( ) ( )

0 0

( ) ( ( )) ( , ) ( ) ,q q

Z
q

J u J x u Gx u t z t dt





               (9) 

где G  – матрица размерности n  описывает выбор параметров системы, по которым будет зада-

ваться план; вектор-функция :[0, ]z Z   описывает планируемую динамику состояний, к кото-

рой приводят систему с помощью управления :[0, ]u U   (U  – некоторое гильбертово про-

странство). Заметим, что если 1( )x H X , то 1( )z H Z . Так как U  – гильбертово, то и простран-

ство 1( )pH U  также является гильбертовым по построению. Выделим множество допустимых 

управлений adU , которое является замкнутым и выпуклым подмножеством в пространстве 

1( )pH U .  

Вектор-функцию 1ˆ ( )pu H U  назовем оптимальным управлением решениями задачи (7), ес-

ли  

 ˆ( ) min ( )
adu U

J u J u


  (10) 

для функционала (9), где функции 1( ) ( )x u H X  и adu U  таковы, что 1( ) ( )x u H X  является 

решением задачи (7). Существование оптимального управления решениями задачи (7) для любых 
1( )z H Z  и 0 Rnx   показано в [15]. В силу результатов [17] ясно, что и для задачи (4), (5) опти-

мальное управление существует и может быть найдено по алгоритму, описанному в [16]. 
 

Оптимальное управление решениями одной нестационарной модели Леонтьева 

Рассмотрим знаменитую балансовую модель Леонтьева [1] в виде конкретной интерпретации 

системы (5). В этой модели матрицы L  и B  имеют вид 

 

7 31 21 1 11
20 20 20 4 5 20

103 8 7 31 22
100 200 25 25 35 5

0 0 0 134 2
15 15 15

,L M

 

 

 

  
   
       

. (11) 

Сформулируем результат о разрешимости задачи оптимального управления решениями сто-

хастической нестационарной модели Леонтьева. 
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Теорема. Пусть матрицы ,L M  имеют вид (11), функция 1((0, );R )a C   . Тогда для любо-

го случайного вектора 3
0 R   существует единственное оптимальное управление задачи (4), 

(5), (10) с функционалом (9). 

Справедливость данного утверждения следует из результатов [15, 17] в силу расщепления 

задачи (4), (5) на задачи (7) и (8) и с учетом того, что в [19] показано, что матрица M  является 

( ,0)L -регулярной. 

Найдем оптимальное управление решениями задачи (4), (5). Для этого зададим 
2

2

3

2

( ) 2 3

2

t t

z t t t

t t

 
 
   
 
 
 

    и  вид   

2
01 11 21

2
02 12 22

2
03 13 23

( ) , Rij

C C t C t

u t C C t C t C

C C t C t

  
 
    
 
  
 

, 

матрицы 3G B E  , функцию ( ) 2a t t , длину отрезка оптимизации 2  . Начальные значения 

возьмем в виде  0 0,5 ;0,3 ; 0
T

   , где случайная величина   равномерно распределена на от-

резке [1;2] . 

Для нахождения оптимальных значений подставим ( )u t  в (6) вместо ( )t  и для нашей моде-

ли Леонтьева получим вид решения 

2
0 1

0 0 0

1 0 0

( ),
( ) exp ( ) exp ( ) ( ),

( )

t t t

k k k k k k

k s

u t
x t M a d x a d u s ds

a t


         



    
        

        
    , 

где  0 1 2, ,    – базисные векторы системы Леонтьева, 1 0,2454  , 2 2,0464   – точки относи-

тельного L -спектра матрицы M  (подробнее см. в [19]). Далее это решение подставляем в функ-

ционал ( )J u  и находим его минимум по коэффициентам ijC  ( 0,1,2;i   1,2,3j  ). 

Используя алгоритм, описанный в [16], получим 
2

2

2

5,469 111,74 102,0211

48,3447 87,9749 102,2322

42,4305 300,6506 319,5172

ˆ( )

t t

t t

t t

u t

   

   

   

 
 
 
 

 

и значение функционала ˆ( ) 2,3789J J u  . Результаты приведены в таблице. 
 

Сводные характеристики решения 

Компонента 1u  2u  3u  

iJ  14,7369 10  12,6741 10  1,6378  

Макс. отклонение 0,023  0,019  0,031 
 

Заметно, что третья компонента отличается по полученным характеристикам. Это может 

быть объяснено тем, что для нее взяли нулевое начальное значение. 

Сравнение графиков компонент ˆ( )u t  и ( )z t  приведены на рис. 1–3. 

 
Рис. 1. Сравнение 1̂( )u t  и 1( )z t , максимальное отклонение 0,023  при 1,12t   
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Рис. 2. Сравнение 2ˆ ( )u t  и 2( )z t , максимальное отклонение 0,019  при 0,87t   

 

 
Рис. 3. Сравнение 3ˆ ( )u t  и 3( )z t , максимальное отклонение 0,031  при 1,45t   

 

Также вычислительные эксперименты проводились для различных значений   (рис. 4). На 

примере второй компоненты получили результаты, приведенные на рис. 5. 
 

 
Рис. 4. Значение случайного сомножителя   

 

 
Рис. 5. Сравнение 2( )z t  (чёрная линия) и пяти вариантов 2ˆ ( )u t  (разноцветные линии)  

при разных начальных условиях 
 

Заключение 

В статье приведен вычислительный эксперимент для нахождения решения задачи оптималь-

ного управления решениями стохастической нестационарной модели Леонтьева. Случайная со-
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ставляющая предполагается в начальном условии. Результаты вычислений приведены для кон-

кретных значений параметров модели Леонтьева в случае, когда управляющее воздействие имеет 

степенной вид. 

Работа была частично поддержана грантом Российского научного фонда № 24-11-20037, 

https://rscf.ru/project/24-11-20037. 
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Abstract. The article considers the construction for optimal control of solutions for a stochastic non-

stationary Leontief type system. The non-stationarity of the system is taken in some averaged form and 

taken out as a multiplier in the right part of the operator-differential equation with a degenerate matrix of 

coefficients at the derivative. At the same time, the stochastic component is assumed in the initial condi-

tion. Using the linearity of the system under consideration, we split it into a deterministic and a stochas-

tic problem. Next, based on the algorithms obtained earlier for the deterministic non-stationary problem, 

we find the optimal control. The article aims to describe a computational experiment that illustrates the 

results on the solvability of this problem. In addition to the introduction, the conclusion and the list of 

references, the article consists of two parts. The first part provides information on the solvability of the 

problem, while the second part presents the results of the computational experiment. 

Keywords: Leontief type equations; Nelson–Glickikh derivative; space of differentiable “noises”; 

computational experiment. 
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