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Аннотация. Рассмотрено осесимметричное упругопластическое 

деформирование толстостенной стесненной оболочки из несжимаемого 

материала, находящейся под действием внутреннего давления. Полученное 

на основании метода переменных параметров упругости решение задачи 

учитывает нелинейный закон деформационного упрочнения. По 

результатам расчетов представлена картина распределения радиальных, 

окружных и осевых напряжений для различных относительных толщин 

стенки оболочки в случае, когда граница пластической зоны проходит через 

срединную поверхность оболочки. 
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Введение 

В широкой практике достаточно часто встречаются материалы, при упругопластическом де-

формировании которых имеет место физическая нелинейность, которая проявляется в нелиней-

ном законе деформационного упрочнения при описании диаграммы деформирования. В немно-

гочисленных трудах рассматриваются вопросы физической нелинейности. Особенно важным 

данный вопрос представляется для толстостенных оболочек, работающих под давлением. В част-

ности, в работе [1] рассмотрено пластическое деформирование толстостенного цилиндра внут-

ренним давлением при произвольном законе упрочнения и с использованием условия пластично-

сти Треска. Вопросы расчета напряженно-деформированного состояния цилиндрических оболо-

чек в условиях неоднородности и физической нелинейности рассматривались в трудах [2, 3]. Се-

годня проблеме деформирования оболочек в форме тел вращения уделяется достаточно много 

внимания. Неклассические математические модели деформирования оболочек и численные ме-

тоды их расчета исследовались в трудах [4, 5]. Некоторые решения задачи Ламе для цилиндриче-

ской оболочки рассматривались в работах [6, 7]. Деформирование осесимметричных оболочек в 

условиях комбинированного нагружения исследовались в трудах [8–10]. Многие из этих задач 

рассматривались для моделей жесткопластического тела, а также для моделей материала без уп-

рочнения, в частности, работы [11, 12]. В некоторых задачах данные упрощения обоснованны, 

однако для многих материалов неучет упругих деформаций, а также упрочнения может приво-

дить к значительным погрешностям в расчетах напряженно-деформированного состояния тол-

стостенных оболочек. 

В рамках данного исследования рассматривалось упругопластическое деформирование стес-

ненной толстостенной оболочки из несжимаемого материала, работающей под внутренним дав-

лением. Особенностью напряженно-деформированного состояния стесненной оболочки является 

то, что она находится в условиях плоской деформации. Ряд вопросов математического моделирова-

ния пластического состояния тел в условиях плоской деформации исследовались в работах [13–15]. 

В работе [16] представлено решение задачи о деформировании толстостенной стесненной 

цилиндрической оболочки под внутренним давлением, но для модели идеального 

упругопластического тела. В условиях же физической нелинейности расчет напряженно-

деформированного состояния оболочек представляет собой сложную математическую задачу и 

требует разработки численных процедур. В рамках данного исследования численный расчет 

напряженно-деформированного состояния осесимметричной оболочки проводился при 

нелинейном законе деформационного упрочнения. 
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Методика исследования 
Решение задачи осесимметричного упругопластического деформирования толстостенной 

оболочки под внутренним давлением будем проводить на основании положений линейной тео-

рии упругости и деформационной теории пластичности с использованием метода переменных 

параметров упругости [17–20]. Учитывая то, что цилиндрическая оболочка находится в условиях 

равномерного нагружения, расчет будем проводить в главных осях. В качестве меры деформации 

будем использовать деформацию Генки. Стесненная цилиндрическая оболочка представляет со-

бой цилиндр с закрытыми торцами, соответственно, в результате нагружения оболочка находится 

в условиях плоской деформации: 0,zze   где zze  – осевая деформация Генки. Поскольку рас-

сматриваемый материал является несжимаемым, коэффициент поперечной деформации прини-

мается 0,5.   

Математическая постановка задачи упругопластического деформирования толстостенной 

цилиндрической оболочки из несжимаемого материала в условиях плоской деформации будет 

описываться следующей системой уравнений: 

– уравнение равновесия: 

0,
d

d
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где ,    – радиальные, окружные напряжения, ρ  – радиальная координата. 

– уравнение совместности деформаций Генки [17–20]: 
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где ρρ θθe ,e  – радиальные, окружные деформации Генки, 

– физические соотношения согласно методу переменных параметров упругости: 
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где zz  – осевые напряжения, /i iE e  – переменный параметр упругости при условии несжи-

маемости материала, iσ  – интенсивность напряжений, ie  – интенсивность деформаций Генки: 

3
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– диаграмма деформирования: 

 Ф ,i ie               (6) 

где    Ф , ; ,n
i i i iт i i iтe Ee e e Ae e e    – функция, аппроксимирующая диаграмму деформирования 

материала, iтe   – интенсивность деформаций Генки, соответствующая переходу упругих дефор-

маций в пластические, E  – модуль Юнга материала,  A,n  – параметры кривой упрочнения диа-

граммы деформирования, 

– условие пластичности Мизеса: 

,i т           (7) 

где тσ – предел текучести материала, 

– граничные условия: 

,r p                     (8) 
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0,
R 




                (9) 

где p  – давление, r  –  внутренний радиус оболочки, R  – наружный радиус оболочки. 

Для проведения численного расчета представим уравнение совместности деформаций (2) в 

интегральной форме, выражая окружную деформацию Генки с учетом граничного условия (8): 
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где 0R  – начальный радиус наружной поверхности оболочки. 

Подставим в соотношение (10) физические уравнения (3) для ρρe  и θθe .  Тогда, выразив ок-

ружное напряжение, интегральное уравнение совместности деформаций Генки, представленное в 

напряжениях для несжимаемой толстостенной цилиндрической оболочки с закрытыми концами, 

примет вид: 
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Численный расчет системы уравнений (1)–(11) проводился на основании метода переменных 

параметров упругости с использованием методики решения серий обратных задач [17–20], кото-

рая строилась на смещении наружного края оболочки на малую величину согласно соотношению 

0R R R   и расчете напряженно-деформированного состояния, при котором произошло данное 

смещение. Таким образом, для численного расчета напряженного состояния оболочки итераци-

онная система уравнений согласно соотношениям (1), (3), (4), (11) принимала  вид: 
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где k  – номер итерации. 

Деформированное состояние оболочки определялось согласно уравнениям (3), (5) на теку-

щей итерации: 
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На основании соотношения (6), описывающего диаграмму деформирования материала,  оп-

ределялся переменный параметр упругости: 
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    где   – 

заданная точность. Расчет внутренней границы определялся согласно схеме 
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    – условие окончания процесса, r  – заданная точность. 

Затем приложенное давление p  определялось согласно граничному условию (8).  
 

Результаты исследования 

Для оценки напряженного состояния толстостенной цилиндрической оболочки с закрытыми 

концами, находящейся под внутренним давлением, были проведены серии численных расчетов 
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при следующих относительных толщинах стенки:  0/ 0,1; 0,2; 0,3; 0,4; 0,5 ,R   где    – тол-

щина оболочки, наружный радиус принимал фиксированное значение 0 100R   мм. В качестве 

материала оболочки использовалась сталь марки 30XГCH2A ( 195E   ГПа, т   1110 МПа) [21]. 

Диаграмма деформирования стали 30XГCH2A описывалась линейно-степенной аппроксимацией 

( 4623, 0,276A n  ). Для того чтобы оценить распределение напряжений в упругопластической 

стадии деформирования, внутреннее давление для оболочки каждой толщины подбиралось таким 

образом, чтобы цилиндрическая поверхность, разделяющая область пластических и упругих де-

формаций 
тт i    , совпадала со срединной поверхностью   / 2R r   . В этом случае 

внутреннее давление для оболочек различной толщины принималось 

 т/ 0,119; 0,248; 0,394; 0,563; 0,775 .p    Результаты расчета напряженного состояния оболочки 

при упругопластическом деформировании с учетом степенного деформационного закона упроч-

нения представлены на рис. 1–4. 

 
Рис. 1. Распределение интенсивностей напряжений 

по толщине оболочки при   / 2т R r   :  

1 – / 0,1,R   2 – / 0,2,R   3 – / 0,3,R    

4 – / 0,4,R   5 – / 0,5R   

 Рис. 2. Распределение радиальных напряжений  

по толщине оболочки при   / 2т R r   :  

1 – / 0,1,R   2 – / 0,2,R   3 – / 0,3,R    

4 – / 0,4,R   5 – / 0,5R   

 
Рис. 3. Распределение окружных напряжений по 

толщине оболочки при   / 2т R r   : 1 – / 0,1,R   

2 – / 0,2,R   3 – / 0,3,R   4 – / 0,4,R    

5 – / 0,5R   

 Рис. 4. Распределение осевых напряжений по тол-

щине оболочки при   / 2т R r   : 1 – / 0,1,R    

2 – / 0,2,R   3 – / 0,3,R   4 – / 0,4,R    

5 – / 0,5R   
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Обсуждение результатов 
Согласно полученным результатам численных расчетов, с увеличением относительной тол-

щины стенки оболочки радиальные сжимающие напряжения, при которых половина толщины 

стенки переходит в стадию пластического деформирования, возрастают по абсолютной величине, 

достигая наибольшее значение на внутренней границе оболочки. Окружные растягивающие на-

пряжения, при которых половина толщины стенки оболочки переходит в стадию пластического 

деформирования, с увеличением относительной толщины стенки уменьшаются. При этом по 

толщине стенки окружные напряжения изменяются по нелинейному закону в упругопластиче-

ской стадии, достигая максимум в срединном сечении стенки оболочки, соответствующем пере-

ходу упругих деформаций в пластические. В упругой стадии окружные напряжения уменьшают-

ся, а в пластической стадии – увеличиваются. Осевые напряжения в пределах пластических де-

формаций возрастают по толщине стенки оболочки, а в пределах упругих деформаций остаются 

постоянными. С увеличением относительной толщины стенки оболочки осевые напряжения, при 

которых половина толщины стенки переходит в стадию пластического деформирования, умень-

шаются. В пластической стадии деформирования интенсивности напряжений, при которых поло-

вина толщины стенки переходит в стадию пластического деформирования, возрастают с увели-

чением относительной толщины стенки оболочки, а в упругой стадии – с уменьшением относи-

тельной толщины стенки.  

 

Заключение 

Полученные в рамках данного исследования результаты позволяют рассчитать напряженно-

деформированное состояние толстостенной стесненной цилиндрической оболочки из несжимае-

мого материала, находящейся под действием внутреннего давления, в том случае, если диаграм-

ма деформирования материала в пластической стадии описывается  нелинейным законом дефор-

мационного упрочнения. Построенные графические зависимости позволяют оценить в зависимо-

сти от изменения относительной толщины стенки оболочки характер изменения окружных, ради-

альных и осевых напряжений, возникающих при упругопластическом деформировании, когда 

пластическая зона охватывает половину толщины стенки оболочки, что может быть использова-

но в задачах автофретирования. 

Исследование выполнено за счет гранта Российского научного фонда №25-79-10135, 

https://rscf.ru/project/25-79-10135/. 
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AXISYMMETRIC DEFORMATION OF A THICK-WALLED CONSTRAINED SHELL 
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Abstract. The study considers axisymmetric elastoplastic deformation of a thick-walled constrained 

shell made of incompressible material subjected to internal pressure. The problem is solved using the 

method of variable elasticity parameters, taking into account the nonlinear law of deformation harden-

ing. Based on the calculation results, the paper presents the distribution of radial, circumferential, and 

axial stresses for various relative shell wall thicknesses when the boundary of the plastic zone passes 

through the median surface of the shell. 

Keywords: elastoplastic strain; nonlinear hardening law; thick-walled shell; axial symmetry. 
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