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Аннотация. Исследуется многокритериальная задача оптимизации па-

раметров процесса полимеризации, математическая модель которого опи-

сывается бесконечной системой обыкновенных дифференциальных урав-

нений. Для её решения предложен генетический алгоритм, основанный на 

принципе Парето-доминирования. Ключевой особенностью алгоритма яв-

ляется процедура редукции бесконечной системы уравнений к конечному 

виду с помощью метода моментов. Приведены результаты вычислительно-

го эксперимента для процесса полимеризации бутадиена на неодимсодер-

жащей каталитической системе. В ходе эксперимента определены такие па-

раметры, как продолжительность синтеза и начальные концентрации мо-

номера и алюминийорганического соединения, которые обеспечивают мак-

симальную конверсию мономера при заданном значении индекса полидис-

персности конечного продукта. 

Ключевые слова: многоцелевая оптимизация; процесс полимеризации; гене-

тический алгоритм; метод моментов. 

 

Введение 

Математическое моделирование процессов синтеза полимеров является важным инструмен-

том для оптимизации условий их протекания, позволяющим повысить эффективность процессов 

и качество получаемых продуктов. Сложность математического описания процесса полимериза-

ции обусловлена тем, что реакционная система содержит неограниченное количество компонен-

тов. Поэтому математическая модель полимеризационного процесса представляет собой беско-

нечномерную систему дифференциальных уравнений [1]. При определении оптимальных значе-

ний параметров полимеризационных процессов часто возникает необходимость одновременно 

учитывать не один, а несколько критериев оптимальности, выражающих заранее заданные свой-

ства полимеров. Высокая размерность математической модели процесса и нелинейность его ди-

намики создают трудности при поиске решения задачи многоцелевой оптимизации и требуют 

разработки специальных алгоритмов.  

Одним из направлений решения многокритериальных задач является применение методов 

скаляризации, в которых осуществляется переход от нескольких критериев оптимальности к од-

ному критерию [2, 3]. Наиболее распространенным среди них методом является метод взвешен-

ной суммы [4, 5]. Данный метод основан на сведении многокритериальной задачи к однокрите-

риальной путем введения обобщенного критерия, представленного в виде суммы исходных кри-

териев, взвешенных коэффициентами. Весовые коэффициенты выражают степень значимости 

каждого критерия оптимизации. Метод взвешенной суммы эффективно применяется для реше-

ния задач с выпуклым целевым множеством. При решении задач оптимизации технологических 

процессов часто приходится сталкиваться с невыпуклой и овражной структурой минимизируе-

мых функционалов. Поэтому для решения задач многоцелевой процессов синтеза полимеров 

применимость метода взвешенной суммы ограничена. 

К методам скаляризациий относится также метод главного критерия [6]. Суть метода заклю-

чается в том, что в качестве оптимизируемой функции выбирается лишь один из критериев оп-

тимизации, а остальные критерии рассматриваются в качестве ограничений задачи. Метод при-

меним для решения многоцелевых задач, в которых можно четко выделить главный критерий. В 
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общем случае при применении метода главного критерия можно потерять эффект взаимного вли-

яния второстепенных критериев, а также возникают трудности вычислительного характера в слу-

чае нелинейных функций-ограничений. 

К другому классу методов решения задач многокритериального выбора относятся методы, 

основанные на концепции Парето-доминирования, в частности, генетические алгоритмы [7–10]. 

Различие в работе алгоритмов состоит в определении пригодности особей в качестве решения и в 

механизме селекции [11]. Генетические алгоритмы применяются, в основном, для решения мно-

гокритериальных задач оптимизации функций или динамических процессов, которые описыва-

ются конечными системами дифференциальных уравнений. Поэтому предлагается расширить 

область их применения для оптимизации параметров процессов синтеза полимеров, математиче-

ское описание которых представляется бесконечными системами дифференциальных уравнений. 

Целью работы является разработка генетического алгоритма для решения задачи многокри-

териальной оптимизации процесса синтеза полимеров на основе его математической модели. 

 

Постановка задачи 

Пусть математическое описание полимеризационного процесса представляется системой 

дифференциальных уравнений [1]: 

1 , 1

, 1 ,l
li i lij i j

i i j

dR
a R b R R  l

dt

 

 

           (1) 

c начальными условиями 
0(0) ,l lR R          (2) 

где Rl – компонент реакционной смеси (инициатор I, свободный радикал R, мономер M, активные 

центры P1, активная Pi и неактивная Qi цепи полимера длиной i), [0, ]t   – время, ali, blij – кон-

станты скорости реакции. 

В качестве оптимизируемых параметров рассмотрим начальные концентрации k веществ 

R1(0), …, Rk(0), и продолжительность процесса τ, для которых область допустимых значений Ω 

задается неравенствами: 
min max(0) ,i i iR R R   1, ,i k          (3) 

min max .                (4) 

Пусть задан вектор критериев оптимизации: 

      1 1 1 1(0),..., (0), (0),..., (0), ,..., (0),..., (0), .k k m kJ R R J R R J R R     (5) 

Необходимо определить начальные концентрации реагентов R1(0), …, Rk(0) и продолжитель-

ность процесса τ с учетом ограничений (3) и (4),  при которых каждый критерий оптимизации 

достигает своего минимального значения: 

1( (0),..., (0), ) min,s kJ R R   1, .s m               (6) 

 

Алгоритм многоцелевой оптимизации процесса полимеризации 

Сформулируем численный алгоритм многоцелевой оптимизации условий протекания поли-

меризационного процесса на основе метода FFGA (Fonseca and Fleming’s Multiobjective Genetic 

Algorithm) [8], в котором поиск решения осуществляется путем ранжирования особей с примене-

нием принципов Парето-доминирования. 

Основная идея Парето-оптимальности заключается в том, что невозможно улучшить реше-

ние по одному из показателей, не ухудшив, при этом, по другому [12]. 

Пусть 1( (0),..., (0), ) ,kx R R    1( (0),..., (0), ) .ky R R    

Решение x  называется эффективным (недоминируемым), если в Ω не существует реше-

ния y, которое по критериям оптимизации было бы не хуже, чем x ( ( ) ( )l lJ y J x ), и по крайней 

мере по одному s-му критерию было бы строго лучше, чем x ( ( ) ( )).s sJ y J x  

Решение x доминирует решение y, если J(x) < J(y). 

Если решение x недоминируемо относительно Ω, то оно называется Парето-оптимальным. 
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Множество всех эффективных точек называется множеством Парето в пространстве пере-

менных, а их образ в пространстве целевых функций – фронтом Парето [11]. 

Пусть в качестве популяции выступает наборов оптимизируемых параметров процесса: 

1 1( ,..., ) ( (0),..., (0), ),i i ir ku u u R R    

где iu  – особь, iju  – j-й ген i-й особи, 1, ,i P  P – размер популяции, 1.r k   

Каждой i-й особи поставим в соответствие ранг rangi [13]:  

1 ,irang g                     (7) 

где g – количества доминирующих решений. Качество особи ui определяется ее рангом: чем 

меньше ранг rangi, тем приспособленность особи выше, и, следовательно, она больше подходит в 

качестве решения оптимизационной задачи, чем особи с меньшей приспособленностью (боль-

шим рангом). 

Поскольку система дифференциальных уравнений (1) является незамкнутой, применим ме-

тод моментов для ее преобразования к конечному виду [14]. Получив численное решение конеч-

ной системы дифференциальных уравнений, можно вычислить значения целевых функционалов 

(6), и определить приспособленность каждой особи путем вычисления ее ранга.  

Алгоритм многоцелевой оптимизации процесса полимеризации состоит из следующих ша-

гов. 

Шаг 1. Заполнить начальную популяцию оптимизируемых параметров процесса полимери-

зации случайными значениями из области Ω: 
0 min max min( ),ij j j j ju R R R    1, 1,j r   

0 min max min( ),ij ju        ,j r  

где [0,1]j   – случайное число, 1, .i P  

Шаг 2. Преобразовать систему (1) к конечному виду, подставив в нее выражения для момен-

тов цепей полимера и их производных: 

2

,n
n i

i

i P




  
2

,n
n i

i

i Q




  
2

,nn i

i

d dP
i

dt dt

 



  
2

,nn i

i

d dM
i

dt dt

 



          (8) 

где μn, ηn – моменты n-го порядка активных и неактивных цепей полимера Pi, Qi соответственно 

[1]. 

Шаг 3. Решить полученную систему дифференциальных уравнений с начальными условиями 
0 0
1 1( ,..., ),i i ru u   0[0, ],irt u  1, .i P  Для каждого набора оптимизируемых параметров вычислить 

значения целевых функционалов 0( ),s iJ u  1, .s m  

Шаг 4. Определить приспособленность особей начальной популяции. Для этого вычислить 

ранг rangi каждой особи 0 ,iu  1, .i P   

Шаг 5. Установить счетчик итераций равным 1: iter = 1. 

Шаг 6. Выполнить процедуру селекции. Из наиболее приспособленных особей выбрать слу-

чайны образом две особи-родителя 
1,ru  2.ru   

Шаг 7. Выполнить процедуру кроссовера. Сгенерировать три особи-потомка 
1,pu  

2 ,pu  3 :pu   
1 2

1 ,
2

r r
p u u

u


  
1 2

2 3
,

2

r r
p u u

u


  
2 1

3 3
.

2

r r
p u u

u


  

Шаг 8. Выполнить процедуру мутации для потомков 
1,pu  

2 ,pu  
3 ,pu  в результате которой 

сформировать три особи-мутанта 
1,mu  

2 ,mu  3.mu  Для этого случайным образом выбрать l-й ген 

каждого из потомков. Если {1,..., 1},l r   то заменить его случайным значением из диапазона (3). 

Если ген соответствует продолжительности процесса τ ( ),l r  то заменить его случайным значе-

нием из промежутка (4). 



Математика 

Bulletin of the South Ural State University 
Ser. Mathematics. Mechanics. Physics, 2026, vol. 18, no. 1, pp. 5–14 

8 

Шаг 9. Вычислить приспособленность особей 
1,mu  

2 ,mu  3mu  путем вычисления рангов. Для 

этого решить систему, полученную на шаге 2, с начальными условиями 1 2 1( , ,..., ),mj mj mj
i i i ru u u   

[0, ],mj
irt u  1, ,i P  1,2,3.j   

Шаг 10. Сформировать множество наименее приспособленных особей ,bad
lu  1, .l q  

Шаг 11. Выбрать из 
1,mu  

2 ,mu  3mu  наиболее приспособленную особь и заменить ею случай-

но выбранную особь из множества ,bad
lu  1, .l q  

Шаг 12 Объединить множество ,bad
lu  1,l q  с остальной частью популяции. 

Шаг 13. Если iter N  (N – заданное количество итераций), то iter = iter + 1 и перейти на шаг 

6. Иначе выбрать множество особей с наименьшим рангом, которое является приближенным ре-

шением задачи многоцелевой оптимизации процесса полимеризации. 

 

Вычислительный эксперимент 

С помощью сформулированного алгоритма найдем приближенное решение задачи многоце-

левой оптимизации для процесса полимеризации бутадиена на неодимсодержащей каталитиче-

ской системе. Кинетическая схема данного процесса состоит из следующих стадий [15]: 

1) рост цепи: 

1, 0 ,Pk
i iP M P  i      

2) передача цепи на мономер: 

1,Mk
i iP M Q P    

3) передача цепи на алюминийорганическое соединение (АОС): 

1,Ak
i iP A Q P    

где Pi, Qi – активные и неактивные цепи полимера длиной i соответственно, М – мономер, А – 

АОС, kP, kM, kA – константы скоростей реакций роста цепи, передачи цепи на мономер и передачи 

цепи на АОС соответственно. 

Математическое описание процесса полимеризации бутадиена представляется бесконечно-

мерной системой дифференциальных уравнений: 

 1
1

2

1
1 1

1

( ),

,

,

,

( ) , 2,

, 2,

a P M

A a

P M A i

i

M A

i
P i i M i A i

i
M i A i

dM
MC k k

dt

dA
k AC

dt

dP
k MP k M k A P

dt

dQ
k MP k AP

dt

dP
k M P P k MP k AP i

dt

dQ
k MP k AP i

dt







  

 

   

 

    

  


       (9) 

с начальными условиями: 

M(0) = M0, A(0) = A0, P1(0) = Ca, Q1(0) = 0, Pi(0) = Qi(0) = 0, i ≥ 2,        (10) 

где 
1

( )a i

i

C P t




  – концентрация активных центров. 

С помощью формул (8) приведем систему (9) к конечной системе дифференциальных урав-

нений  
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 

 

 

 
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1 0

1 0

1
1 0

1
1 1

0
1 0

0
0

1
1 0 1

1
1

2
1 0 1
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,

2 ,

,

4 2

P M P M

A A

P M A

M A

P M A

M A

P P M A

M A

P P P M A

dM
MP k k M k k

dt

dA
k AP k A

dt

dP
k MP k M k A

dt

dQ
k MP k AP

dt

d
k MP k M k A

dt

d
k M k A

dt

d
k MP k M k M k A

dt

d
k M k A

dt

d
k MP k M k M k M k A

dt


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2
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3
3

,

,

8 3 ,

,

M A

P P P M A

M A

d
k M k A

dt

d
k MP k M k M k M k A

dt

d
k M k A

dt





   




 

     

 

      (11) 

с начальными условиями 
0 0

1 1(0) , (0) , (0) , (0) 0, (0) (0) 0, 0,3.a n nM M  A A  P C  Q   n          (12) 

Численное решение системы (11) позволяет определить средние молекулярные характери-

стики молекулярно-массового распределения полимеров: 

1) среднечисленную молекулярную массу 

1 1
0

0 0

;nM m
 
 





 

2) среднемассовую молекулярную массу 

2 2
0

1 1

,wM m
 
 





 

где m0 – молекулярная масса бутадиена. 

Одним из показателей физико-химических свойств полимера является его полидисперсность 

Pd, характеризующая неоднородность макромолекул по структуре и размерам: 

.w

n

M
Pd

M
  

Если индекс полидисперсности равен 2, то есть среднемассовая молекулярная масса в 2 раза 

больше среднечисленной молекулярной массы, то в полимерах присутствует значительное коли-

чество молекул с различными молекулярными массами, что свидетельствует о широком распре-

делении молекулярных масс. 

Пусть оптимизируемыми параметрами процесса полимеризации бутадиена являются началь-

ные концентрации мономера M(0) и алюминийорганического соединения A(0), на значения кото-

рых наложены ограничения (моль/л): 

0,5 ≤ M(0) ≤ 8,       (13) 

0,00001 ≤ A(0) ≤ 0,05.           (14) 
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Также варьируемым параметром является время контакта веществ τ, допустимые значения 

которого задаются в виде неравенства (мин): 

10 ≤ τ ≤ 100.               (15) 

Требуется определить продолжительность процесса полимеризации τ, начальные концентра-

ции мономера M(0) и АОС A(0), при которых достигается максимальная конверсия мономера, и 

значение индекса полидисперсности полимеров равно 2, то есть  

1

( )
( (0), (0), ) 1 100% max,

(0)

M
J M A

M




 
    
 

          (16) 

2 ( (0), (0), ) 2 min.J M A Pd                 (17) 

Задача (9)–(17) решена с помощью программы, написанной на языке Delphi, с параметрами 

алгоритма: P = 50, N = 100. Поиск численного решения системы дифференциальных уравнений 

(11) с начальными условиями (12) осуществлялся с помощью предиктор-корректорного метода 

Адамса второго порядка. 

Результаты решения задачи (9)–(17) приведены на рис. 1, 2. Для обеспечения максимальной 

конверсии мономера и полидисперсности получаемых полимеров нужно придерживаться одного 

из десяти режимов протекания процесса полимеризации бутадиена (табл. 1).  

  
Рис. 1. Аппроксимация множества Парето Рис. 2. Аппроксимация фронта Парето 

 
Таблица 1  

Оптимальные условия протекания процесса полимеризации бутадиена 

М(0), моль/л А(0), моль/л τ, мин Конверсия мо-

номера, % 

Pd 

3,854 0,033 85 69,13 2,0003 

4,112 0,03 88 70,38 2,0013 

4,989 0,028 90 71,19 2,002 

6,508 0,02 94 72,74 1,996 

5,211 0,026 95 73,11 2,005 

7,044 0,017 96 73,48 1,994 

3,556 0,023 97 73,85 1,992 

5,627 0,017 98 74,20 1,991 

4,015 0,019 99 74,56 1,988 

7,045 0,011 100 74,91 1,986 

 

Также решены задачи однокритериальной оптимизации процесса полимеризации бутадиена 

по каждому из критериев (16), (17). Расчет проведены с помощью разработанной авторами про-

граммы на языке Delphi, реализующей генетический алгоритм с вещественным кодированием 

[16]. Полученные результаты вычислений представлены в табл. 2. 

Значение наибольшей конверсии мономера, найденной в результате расчетов с помощью ал-

горитма многоцелевой оптимизации, равно 74,91 % (последняя строка табл. 1), при этом 

Pd = 1,986. При решении однокритериальной задачи максимизации конверсии мономера получе-
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но значение индекса полидисперсности полимеров, равное 1,713 (первая строка табл. 2). Отсюда 

видно, что применение алгоритма многоцелевой оптимизации позволило уменьшить отклонение 

значения Pd от целевого значения, равного 2, с 14,35% до 0,7%. 
Таблица 2 

Результаты решения задач однокритериальной оптимизации процесса полимеризации бутадиена 

Критерий оптимизации M(0), 

моль/л 

А(0), 

моль/л 

τ, мин Конверсия 

мономера, % 

Полидис-

персность 

1( (0), (0), ) minJ M A    1,7 0,0017 99 74,56 1,713 

2 ( (0), (0), ) minJ M A    4,47 0,045 68 60,94 1,992 

 

Аналогично, при решении многокритериальной задачи (9)–(17) увеличено наибольшее зна-

чение конверсии мономеров на 13,44 % (значение конверсии 69,13 % при наименьшем отклоне-

нии полидисперсности от значения 2), по сравнению с решением задачи оптимизации с одним 

критерием (17) (значение конверсии 60,94 %). Поэтому для одновременного поиска наибольших 

значений критериев оптимизации (16), (17) целесообразно применять разработанный алгоритм.  

 

Заключение 

Разработанный алгоритм решения задачи многоцелевой оптимизации можно использовать 

для определения оптимальных значений параметров процесса синтеза полимеров, математиче-

ская модель которого может быть представлена бесконечной системой обыкновенных диффе-

ренциальных уравнений. Алгоритм, сформулированный на основе метода FFGA, включает в себя 

процедуру преобразования бесконечной системы дифференциальных уравнений к конечному ви-

ду. Преимуществом алгоритма является отсутствие необходимости задавать приоритеты критери-

ям оптимизации. 

Алгоритм реализован в виде программы на языке Delphi для промышленно значимого про-

цесса полимеризации бутадиена. Сформулирована задача многоцелевой оптимизации процесса, в 

которой варьируемыми параметрами являются время контакта веществ, начальные концентрации 

мономера и алюминийорганического соединения. В качестве критериев оптимальности заданы 

максимальная конверсия мономера и достижение показателя полидисперсности полимеров за-

данного значения, который определяет молекулярные характеристики конечного продукта. В ре-

зультате работы алгоритма получено множество Парето-оптимальных решений рассматриваемой 

многокритериальной задачи. Сравнение решения задачи многоцелевой оптимизации процесса 

полимеризации бутадиена с решениями, полученными в результате минимизации каждого крите-

рия по отдельности, показало, что применение разработанного алгоритма позволяет существенно 

улучшить показатели наибольшей конверсии мономера и индекса полидисперсности полимеров. 

Исследование выполнено в рамках государственного задания Министерства науки и высше-

го образования Российской Федерации (код научной темы FRRR-2026-0007). 
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Abstract. This article investigates the multi-objective problem of optimizing polymerization process 

parameters. The complexity of the mathematical description of the polymerization process stems from 

the fact that the reaction system contains an unlimited number of components. Therefore, the mathemat-

ical model of the polymerization process is an infinite-dimensional system of differential equations. To 

solve this multi-objective problem of polymerization process optimization, the article proposes a genetic 

algorithm based on the Pareto dominance principle. A key feature of the algorithm is the procedure for 

reducing the infinite system of equations to a final form using the moment method. An advantage of the 

algorithm is the absence of the need to prioritize the optimization criteria. The article presents the results 

of a computational experiment on the polymerization of butadiene on a neodymium-containing catalytic 

system. The experiment allowed determining such parameters as the synthesis duration and the initial 

concentrations of the monomer and organoaluminum compound that ensure maximum monomer con-

version at a given polydispersity index of the final product. The solution to the problem of the multi-

objective optimization of the butadiene polymerization process was compared to the solutions obtained 

by minimizing each criterion separately. It was found that the use of the developed algorithm allows for 

a significant improvement in the indicators of the highest monomer conversion and the polydispersity 

index of polymers. 

Keywords: multi-objective optimization; polymerization process; genetic algorithm; moment method. 
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