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Аннотация. Представлена модель сети в виде графа, весами ре-

бер которого являются подмножества из целых чисел. Данные веса 

характеризуют пропускную способность и ограничивают потоки 

через ребра. Между вершинами s и t данной сети необходимо сфор-

мировать особый вид потока, к которому предъявляются дополни-

тельные требования: в каждом ребре маршрута от s к t необходимо 

выделить одинаковое подмножество смежных упорядоченных эле-

ментов, количество которых определяет величину потока. Интерес 

представляет задача поиска подмножества таких потоков, которые 

не имеют общих элементов и могут быть одновременно реализова-

ны, а сумма их величин максимальна для данной сети. Модель и 

метод на основе целочисленного линейного программирования, 

представленные в данной статье, могут быть использованы для 

анализа пропускной способности графов с множественными весами 

ребер.  

Ключевые слова: структурированный поток; множественные веса 

ребер; пропускная способность сети. 

 
Введение 

Теория графов является мощным, проверенным инструментарием для решения потоковых 
задач, возникающих в различных областях человеческой деятельности. Представление реальных 
систем в виде графов, где вершины являют собой узлы системы (города, узлы связи, заводы), а 
ребра – каналы, по которым осуществляется передача потока (дороги, каналы, сетевые соедине-
ния, трубы), позволяет осуществлять моделирование и оптимизацию потока через сеть, под кото-
рым могут пониматься трафик на дорогах, информационные данные, некая жидкость и т.д.  

В данной работе уделяется внимание особому виду потока, обладающему определённой 
структурой и отвечающему дополнительным требованиям, обусловленным его природой. Так, 
например, ребра в графе могут представлять собой линии связи, а веса – частоты, на которых 
возможна передача сигналов в данных линиях. Любой диапазон частот, доступных для передачи 
сигналов, может быть представлен в виде подмножества частотных интервалов, пронумерован-
ных целыми числами. Тогда веса ребер являют собой подмножества целых чисел, характеризу-
ющие их пропускную способность.  

Ребра в графе могут представлять собой дороги, а целочисленные компоненты множествен-
ных весов – пронумерованные полосы движения в этих дорогах. 

Задача заключается в нахождении такой последовательности ребер между вершинами графа, 
что в каждом ребре последовательности существует одинаковое подмножество смежных цело-
численных компонентов. Физически это может означать передачу сигнала по составной линии 
связи на одних и тех же частотах, или перемещение транспортного средства по маршруту в пре-
делах полосы движения. При этом и сигнал, и транспортное средство могут занимать как одну, 
так и несколько частот (полос движения) подряд. 

Для получения научно-обоснованных решений, а также проведения исследований и экспе-
риментов по распределению описанных потоков в сетях с множественными весами ребер, необ-
ходима разработка их математических моделей. 
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1. Модель структурированного потока 

Пусть ( , )G V E  – неориентированный граф без петель и кратных ребер с множеством вер-

шин   1, 1,iV v i N   и множеством рёбер ,E V V   таким, что если вершины iv  и jv  соедине-

ны ребром, то .ije E  Зафиксируем две вершины графа ,s t V , образующие соответственно ис-

ток и сток. Тогда граф ( , )G V E  представляет собой двухполюсную сеть c полюсами s и t. Каж-

дому ребру ije E  поставим в соответствие некоторое множество  21, ,..., Z,ij n n NC c c c   

2N    называемое пропускной способностью ребра .ije  Тогда будем полагать, что ( , )G V E  – 

граф сети с множественными весами рёбер. 
Определение 1. Припишем каждому ребру ije E  некоторый вес в виде упорядоченного 

множества  31 3 2, ,..., ,ij n h n h N ijF c c c C h N N       такого, что 1 31| 1, 1.n nc c n N       Будем 

называть ijF  структурированным потоком по ребру, соединяющему вершины iv  и .jv   

Обозначим через ,s t  маршрут из s  в ,t  представляющий собой упорядоченную 

последовательность ребер ( , ,..., ),
i i j zsv v v v te e e  начинающуюся в вершине ,s  заканчивающуюся в 

вершине t  и не проходящую через одну и ту же вершину дважды, причем каждые два соседних 
ребра имеют общую вершину. Будем описывать маршрут перечнем ребер его образующих, т. е. 

, ( , ,..., ).
i i j zs t sv v v v te e e   

Определение 2. Если функция :стрf E R  удовлетворяет условиям: 

1

1

1

1. , , | ;

2. ;

, , 1, ,

3. 0, , 1, , , ,

, 1, , ;

4. ... ;
i i j z

ij ij ij

ij ji

ij

ij

ij

sv v v v t

F C i j e E

F F

F i s j N

F i j N i s j t

F i N j t

F F F

  

 

  

   


  
  



 
то стрf  называется структурированным потоком из s в t в сети с множественными весами рёбер 

( , ).G V E  Условие 1 представляет собой модифицированный вариант условия, отражающего тот 

факт, что поток через любое ребро сети не должен превышать его пропускной способности. 
Применительно к сети с множественными весами ребер данное условие означает, что ijF  должно 

быть упорядоченным подмножеством, состоящим из элементов множества .ijC  Условие 2 опре-

деляет знак потока по отношению к вершине, в зависимости от того восходит он к ней или исхо-
дит. Условие 3 выражает факт сохранения потока во всех вершинах, за исключением s и t. Дан-
ные условия являются традиционными при определении потоков в сетях [1–3], за исключением 
некоторых дополнений в условие 1 и условия 4, отражающих новизну понятия структурирован-

ный поток. Их суть заключается в необходимости формирования одинаковых структурированных 
потоков во всех ребрах маршрута от s к t.  

Значение ...
i i j z

стр
sv v v v tf F F F     называется величиной структурированного потока. 

Структурированный поток считается максимальным, если его величина максимальна из всех воз-
можных структурированных потоков.  
 
2. Метод поиска максимального структурированного потока 

Задачу поиска максимального структурированного потока max
стрf  можно свести к задаче поис-

ка маршрута с максимальной пропускной способностью.  
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Определение 3. Под пропускной способностью маршрута , ( , ,..., ),
i i j zs t sv v v v te e e   понимает-

ся пересечение множеств, характеризующих пропускные способности образующих его ребер: 

,( ) ... .
i i j zs t sv v v v tC C C C  ∩ ∩ ∩  (1)

Тогда величина максимального структурированного потока max ,стрf  определяется как: 

, ,

max ,max ( ) ,
i
s t s t

стр i
s t

M

f C








 
где ,s tM  множество всех маршрутов из s в t. 

Пример 1. Пусть в графе ( , ),G V E  изображенном на рис. 1, каждому ребру из множества 

 12 23 36 14 45 56 25, , , , , ,E e e e e e e e  присвоен вес в виде множества из целых чисел: 

 12 1,2,3,4,5,6 ,C    23 1,2,3,4,5,6,7,8,9,10 ,C    36 1,2,3,4,5,6,7,8 ,C   С14 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 

10},  45 1,2,3,4,5,6,7,8,9,10 ,C   56 5,6,7,8,9,10 ,C    25 1,2,3,4,5,6,7,8,9,10 .C   Вершины 1v  и 

6v  образуют полюса, между которыми необходимо найти максимальный структурированный по-

ток. С помощью известных алгоритмов [4] найдём множество всех маршрутов между вершинами 

1v  и 6 :v  1
1,6 12 23 36( , , ),e e e   2

1,6 12 25 56( , , ),e e e   3
1,6 14 45 56( , , ),e e e   4

16 14 45 52 23 36( , , , , ).e e e e e   Про-

пускная способность маршрута 1
1,6( )C   определяется как 12 23 36 ,C C C∩ ∩  и представляет 

 1
1,6( ) 1,2,3,4,5,6 .C    По аналогии определяются пропускные способности остальных маршрутов: 

 2
1,6( ) 5,6 ,C     3

1,6( ) 5,6,7,8,9,10 ,C     4
1,6( ) 1,2,3,4,5,6,7,8 .C    Наибольшей мощностью об-

ладает множество 4
1,6( ) 8.C    Соответственно максимальный поток между вершинами 1v  и 6v  

представлен множествами:  14 45 52 23 36 1,2,3,4,5,6,7,8F F F F F      и его величина составля-

ет max 8.стрf   

 
Рис. 1. Граф сети с множественными весами ребер 

 
В общем случае, между узлами s и t в сети ( , )G V E  можно сформировать множество струк-

турированных потоков различной величины  стр
mf . Два структурированных потока считаются 

одновременно реализуемыми, если маршруты, на основе которых они формируются не имеют 
общих рёбер или имеют общие ребра, но образующие их структурированные потоки по общим 
ребрам не имеют общих элементов. 

Особый интерес представляет задача поиска такого множества одновременно реализуемых 
структурированных потоков, сумма величин которых является максимальной для данного графа 
сети с множественными весами ребер. 
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Определение 4. Пусть   – множество всех возможных структурированных потоков между 
узлами s и t в сети ( , ),G V E  а F   – некоторое подмножество структурированных потоков, 

которые могут быть реализованы одновременно. Максимальным суммарным структурированным 

потоком maxF  будем называть такое подмножество одновременно реализуемых 

структурированных потоков, что сумма их величин является максимальной: 

max max .
стр
m

стр
m

F
f F

F f




 
 

Предлагаемый в данной статье метод поиска maxF  основан на решении задачи целочислен-

ного линейного программирования (ЦЛП) и включает в себя следующие действия. 
1. Поиск ,s tM   множества всех маршрутов из s в t. Для этого могут быть использованы как 

традиционные известные алгоритмы обхода в глубину или в ширину, так и модифицированные: 
алгоритм Йена в совокупности с алгоритмами Дейкстры или A* (A «со звездочкой») [5].  

2. Определение пропускной способности каждого маршрута , ,
k
s t s tM   

с использованием выражения (1) и формирование множества пропускных способностей всех 
маршрутов из s в t: 

 , , , ,( ) ( ) | .k k
s t s t s t s tC M C M    

3. Поиск всех возможных структурированных потоков на основе каждого маршрута 

, ,
k
s t s tM   и формирование множества  .стр

mf  

Утверждение 1. Пусть ,( )k
s tC   – пропускная способность маршрута , .k

s t  Если все элементы 

множества ,( )k
s tC   можно упорядочить таким образом, чтобы 1 1 ,1, | , ( ),k

n n n n s tc c n c c C       

то на основе маршрута ,
k
s t  можно сформировать 

, ,
5

( ) ( ( ) 1)

2

k k
s t s tC C

N
  

  структурированных 

потоков величины ,1 ( ).стр k
s tf C    Данное утверждение основано на решении известной ком-

бинаторной задачи о количестве отрезков в последовательности (подсчет подотрезков) [6].  
Пример 2. Пусть пропускная способность маршрута ,

k
s t  определяется множеством 

 ,( ) 1,2,3,4 .k
s tC    На его основе возможна реализация 5 10N  потоков:  1 ,   2 ,   3 ,   4 ,  

 1,2 ,   2,3 ,   3,4 ,   1,2,3 ,   2,3,4 ,   1,2,3,4 .  

4. Формирование системы ограничений на одновременную реализацию структурированных 
потоков. 

Определим, что переменная mx  равна 1, если m й  структурированный поток реализуется в 

сети, и 0 в противном случае. 
Система ограничений на переменные mx  формируется исходя из условия, что суммарная ве-

личина структурированных потоков через ребра не должна превышать их пропускной способно-
сти, а сами структурированные потоки не должны иметь общих элементов.  

Тогда система ограничений на одновременную реализацию структурированных потоков на 
основе маршрута ,

k
s t  имеет вид: 

 .
A x 1 ,

k
s t

T

C 
 

 
где: 

51 2x ( ... )T
Nx x x  – вектор, элементами которого являются двоичные переменные ,mx  

   . .
1 21 1 1 ... 1

k k
s t s t

T

C C 

 
   
 

 – вектор из единиц, A  – матрица размерности  5 .
k
s tN C  , 

строки которой соответствуют m-м потокам, а столбцы – соответствуют элементам пропускной 
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способности маршрута  .
k

d s tc C  . Элементы mna  матрицы A  принимают значения 1 в том 

случае, если для реализации m-го потока используется n-й элемент. Все остальные элементы мат-
рицы A  равны 0. 

Пример 3. Для маршрута с пропускной способностью из примера 2 вектор xT  состоит из 10 
элементов, а матрица A  имеет вид: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0
A .

0 1 1 0

0 0 1 1

1 1 1 0

0 1 1 1

1 1 1 1

 
 
 
 
 
 
 

  
 
 
 
 
 
 
    

После перемножения матрицы AT  и вектора x,  система ограничений на одновременную ре-
ализацию структурированных потоков в пределах маршрута представляет собой: 

 .

1 5 8 10

2 5 6 8 9 10

3 6 7 8 9 10

4 7 9 10

1

1
A x 1 .

1

1

k
s t

T

C

x x x x

x x x x x x

x x x x x x

x x x x



   
      

   
     

      
Для каждого маршрута ,

k
s t  необходимо сформировать матрицу A .k  Если маршруты имеют 

общие ребра то, система ограничений формируется с учётом дополнительных неравенств, обуслов-
ленных наличием общих элементов пропускной способности ребра, и матрицы Ak  маршрутов объ-

единяются в одну матрицу. Пусть маршруты 1
,s t  и 2

,s t  с пропускными способностями 1
,( )s tС   и 

2
,( )s tС   соответственно, имеют общее ребро ije E  с пропускной способностью ijС  (рис. 2). 

Тогда матрицы 1A  и 2A  для формирования ограничений на переменные 1
mx  и 2

mx  объеди-

няются в матрицу ограничений A  следующим образом: 
1) матрицы 1A  и 2A  дополняются столбцами из нулей справа и слева соответственно так, 

чтобы количество столбцов в обеих матрицах было равно 1 2
, ,( ) ( ) :s t s tС С ∪  

 1 1

1 ... 0 0 0 ... 0

0 ... 0 0 0 ... 0
A A 0 ,

1 ... 1 1 0 ... 0

 
 
   
 
 
 

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
 

 2 2

0 ... 0 1 ... 0 0

0 ... 0 0 ... 0 0
A 0 A ;

0 ... 0 1 ... 1 1

 
 
   
 
 
 

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
  

2) матрицы 1A  и 2A  объединяются по строкам (вертикальная конкатенация): 

1

2

A
A .

A

 
   
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Рис. 2. Маршруты с общим ребром 

 

Векторы переменных  1 1 1 1
1 2x ...

T

mx x x  и  2 2 2 2
1 2x ...

T

mx x x  также объединяются 

по строкам: 

 
1

1 1 1 2 2 2
1 2 1 22

x
x ... ... ,

x

T

m mx x x x x x
 

  
 
 

 

и система ограничений, порождаемая общим ребром ,ije E  приобретает вид: A x 1.T     

5. Формирование целевой функции и решение задачи целочисленного линейного программи-
рования (ЦЛП). 

Целевая функция задачи имеет вид: 
4

0
1

( ) max,
N

стр
m m

m

f x x f


    

где 4N  – количество всех возможных структурированных потоков. 

Система ограничений для задачи ЦЛП формируется исходя из ограничений на одновремен-
ную реализацию структурированных потоков в сети и ограничений на целочисленность перемен-
ных: 

A x 1,T    0 x 1,   
где 0  и 1 – векторы размерности x  из 0 и 1 соответственно. 

Пример 4. Найдем максимальный суммарный структурированный поток maxF  между 

вершинами s и t в графе, представленном на рис. 1. На основе маршрута 1
1,6  с пропускной 

способностью  1
1,6( ) 1,2,3,4,5,6C    возможно сформировать 

1 1
1,6 1,6( ) ( ( ) 1)

21
2

C C  
  

структурированных потока величиной от 1 до 6 и вектор переменных mx  имеет 

вид:  1 1 1 1
1 2 21x ... .

T

x x x  Аналогично, на основе маршрутов 2
1,6 ,  3

1,6 ,  и 4
1,6  (  2

1,6( ) 5,6 ,C    

 3
1,6( ) 5,6,7,8,9,10 ,C     4

1,6( ) 1,2,3,4,5,6,7,8C   ) возможно формирование 3, 21 и 36 
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структурированных потоков соответственно. Тогда векторы переменных mx  имеют вид: 

 2 2 2
1 2x ,

T

x x   3 3 3 3
1 2 21x ... ,

T

x x x   4 4 4 4
1 2 36x ... .

T

x x x  На рис. 3 изображены воз-

можные структурированные потоки и их величины для маршрута 1
1,6 .  

 
Рис. 3. Формирование структурированных потоков на основе маршрута 

1
1,6  

 
Матрицы 1A ,  2A ,  3A  и 4A  для маршрутов 1

1,6 ,  2
1,6 ,  3

1,6 ,  и 4
1,6  соответственно равны: 

1 2

1 0 0 0 0 0
1 0

0 1 0 0 0 0
A , A 0 1 ,

1 1
1 1 1 1 1 1

 
  
      
    

 

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
 

3 4

1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0
A , A .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

   
   
    
   
   
   

⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
 

Маршруты 1
1,6  и 2

1,6  имеют общее ребро 12 .e  Тогда матрицы 1A  и 2A  объединяются: 

 
1

2

1 0 0 0 0 0

0 1 0 0 0 0

A
.1 1 1 1 1 1

0 A
0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 1

 
 
 
 

   
   

   
 
 
 
 

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

 

Маршруты 1
1,6  и 4

1,6  имеют общие ребра 23e  и 36.e  Тогда матрицы 1A  и 4A  объединяются: 
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 1

4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0A 0
.

1 0 0 0 0 0 0 0A

0 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1

 
 
 
 
 

         
 
 
 
  

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

 

Аналогично объединяются матрицы: 2A  и 3A ,  2A  и 4A ,  3A  и 4A .  В итоге формируется 

матрица A  из 21 3 21 36 81     строки и 8 столбцов, а векторы 1x ,  2x  3x  и 4x  объединяются 
в вектор x  из 81 элемента: 

1

2

3

4

x

x
x .

x

x

 
 
 
 
 
 

 

Целевая функция задачи в матричной форме имеет вид: 

0 ( ) x f max,T стрf x     

при условии, что: 

81x A 1 ,T    

 0,1 ,mx   

где 1 2 81f ( ... )стр стр стрстр Tf f f  – вектор, элементы которого представлены величинами 

структурированных потоков.  
В данной постановке, с использованием известных методов, разработанных для решения за-

дач целочисленного линейного программирования [7–8], может быть получено множество нераз-
личимых решений, доставляющих максимальное значение целевой функции 0 ( ).f x  Так, напри-

мер, решение данного примера составляет 0 ( ) 12,f x   и может быть получено в результате мно-

жества комбинаций, например: 1
21 1,x   3

21 1,x   все остальные двоичные переменные равны 0. То-

гда, 0 ( ) 1 6 1 6 12,f x       что соответствует одновременной передачи в сети двух структуриро-

ванных потоков величины  1,2,3,4,5,6  и  5,6,7,8,9,10  по ребрам маршрутов 1
1,6  и 3

1,6  соот-

ветственно. Очевидно, что точно такое же значение целевой функции можно получить при одновре-

менной реализации в сети структурированных потоков  1,2,3  и  4,5,6  по ребрам маршрута 1
1,6  и, 

например, структурированных потоков  5,6,7,8  и  9,10  по ребрам маршрута 3
1,6 .  Таким образом, 

решения данной задачи будут лежать в некоторой гиперплоскости и представлять собой неразличимые 
альтернативы доставляющие значения целевой функции 0 ( ) 12.f x   

 
3. Асимптотический анализ метода 

Нахождение всех маршрутов между двумя вершинами неориентированного графа в общем 
случае является NP-полной задачей. Указанные ранее алгоритмы поиска в глубину и в ширину 
могут иметь сложность ( )O V E  для каждого найденного маршрута, количество которых мо-

жет расти экспоненциально с увеличением размера графа и в худшем случае (например полно-
связный граф) сложность будет ( !).O V  Таким образом, в общем случае для графов большой 

размерности поиск всех маршрутов является невозможен и необходимо использовать эвристики 
или дополнительные ограничения, например поиск некоторого   количества маршрутов опреде-
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ленной длины с помощью алгоритма Йена, сложность которого составляет 
( ( log ) ),O V E V V        где ( log )V E V V      – сложность алгоритма Дейкстры для по-

иска кратчайшего пути. 
Определение пропускной способности каждого маршрута предполагает выполнение пересе-

чения нескольких множеств, характеризующих пропускные способности ребер. Если маршрут 

,
k
s t  содержит в себе   ребер, и пропускная способность каждого ребра описывается множеством 

элементов ijC , то в худшем случае (если все множества ijC  для каждого ребра ije  маршрута ,
k
s t  

одинаковые и после каждого пересечения размер ,| k
ij ij s t

ij

C e ∩  не уменьшается) метод последо-

вательного пересечения дает сложность ( )ijO C   при условии, что проверка принадлежности 

элемента множеству занимает (1).O  Для отдельного маршрута задача определения его пропуск-

ной способности относится к классу P. Однако, для всей сети в худшем случае сложность будет 

составлять ,( ),s t ijO M C   ɶ  где ,s tM  – количество маршрутов из s в t, ɶ  – средняя длина марш-

рутов из ,s tM . Таким образом, как и в случае с поиском всех маршрутов, сложность вычисления 

их пропускных способностей зависит от размера графа и мощности множеств, характеризующих 
пропускные способности ребер. Задача определения пропускных способностей всех маршрутов 
является NP-полной. 

Задача поиска всех возможных структурированных потоков  стр
mf  предполагает решение 

задачи о количестве отрезков для каждого маршрута. Для одного маршрута при использовании 
наивного подхода (простой перебор) сложность составляет (1).O  Однако, необходимость выпол-

нения данной операции для каждого маршрута, также, как и в случае с поиском всех маршрутов, 
определяется их количеством. 

При формировании системы ограничений на одновременную реализацию структурирован-
ных потоков необходимо выполнить конкатенацию матриц. Сложность данной операции для 
двух матриц является линейной, а для общей задачи определяется количеством матриц Ak  (рав-

ных количеству маршрутов) и количеством ребер в графе. Таким образом, в наихудшем случае, 

когда все маршруты отличаются только одним ребром, сложность составляет  ,( 1)s tO M E   и 

позволяет отнести задачу к классу NP-полных. 
Наконец решение задачи ЦЛП известными методами, например, методом ветвей и границ, 

зависит от  стр
mf  и в худшем случае имеет экспоненциальную сложность 

 
2

стр
mf

O
 
  
 

 и отно-

сится к классу NP-трудных. Количество возможных структурированных потоков определяется 
количеством маршрутов и их пропускной способностью. Таким образом для неориентированных 

графов с большими значениями ,V  E  и ijC  решение данным методом не может быть гаранти-

ровано за полиномиальное время. 

Несмотря на это, ряд признаков, таких как целочисленность вектора f стр  и возможность 
приведения матрицы ограничений A  к унимодулярному виду, вселяют определенную надежду 
на возможность релаксации данной задачи и сведению её к задаче линейного программирования. 
Несмотря на это, основой метода является поиск всех маршрутов в графе, что в настоящее время 
не позволяет уменьшить сложность данного метода. 
 
Заключение 

Задача поиска максимального потока является классической оптимизационной задачей на 
графах и её решению посвящено множество работ [1–3]. Несмотря на это, особенности весов ре-
бер, представленных в виде множеств с целочисленными элементами, а также дополнительные 
ограничения, обусловленные наличием у потока определённой структуры, не позволяют исполь-
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зовать традиционные алгоритмы для поиска максимального структурированного потока и мак-
симального суммарного потока в графе с множественными весами ребер.  

Представленные в работе математическая модель структурированного потока и задача поис-
ка максимального суммарного потока, сформулированная в форме целочисленного линейного 
программирования, хоть и выглядят довольно громоздко, однако позволяют находить строгие 
решения. Кроме того, корректно сформулированная задача позволяет осуществлять проверку 
решений, получаемых с помощью специальных алгоритмов для решения потоковых задач и их 
модификаций с учетом дополнительных ограничений, представленных в статье. 

Известно, что многие графовые задачи могут быть сформулированы в форме задач целочис-
ленного линейного программирования. Однако специфика структуры потоковых моделей позво-
ляет находить более эффективные алгоритмы, на разработку которых направлены дальнейшие 
усилия авторского коллектива статьи. 
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A MODEL AND METHOD FOR FINDING THE MAXIMUM STRUCTURED FLOW  
IN A GRAPH WITH MULTIPLE EDGE WEIGHTS 
 
A.P. Boyko1, A.D. Lunev2 
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2 B.N. Yeltsin Ural Federal University, Yekaterinburg, Russian Federation 

 
Abstract. This article presents a network model in the form of a graph, where the edge weights are 

subsets of integers that characterize the throughput and constrain the flows through the edges. A special 
type of flow should be formed between s and t nodes in this network. This flow is subject to additional 
requirements: each edge along the route from s to t should have an identical subset of adjacent ordered 
elements, the number of which determines the magnitude of the flow. We are interested in finding a sub-
set of such flows that have no common elements and can be simultaneously implemented, with the sum 
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of their magnitudes being maximal for a given network. The presented model and method based on inte-
ger linear programming can be used to analyze the throughput of graphs with multiple edge weights. 

Keywords: structured flow; multiple edge weights; network throughput. 
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