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Аннотация. На плоскости с декартовыми координатами (х,у) рассмат-

ривается однопараметрическое семейство кусочно-гладких векторных по-

лей, инвариантных при отражении от оси х. Через начало координат О про-

ходит линия переключения, трансверсально оси х. Пусть при нулевом зна-

чении параметра векторное поле семейства в левой полуокрестности линии 

переключения совпадает с гладким векторным полем, имеющим точку О 

грубым устойчивым узлом, а в ее правой полуокрестности совпадает с 

гладким векторным полем без особых точек. Пусть также это поле имеет на 

оси х грубое седло S, для которого открытая дуга оси х между точками О и S 

является входящей сепаратрисой седла, а две симметричные выходящие 

сепаратрисы седла не содержат особых точек и идут в точку О. В работе по-

казано, что если при положительных значениях параметра в левой полу-

окрестности линии переключения нет особой точки, то из каждого из двух 

симметричных контуров, образованных сепаратрисами, рождается устой-

чивая, периодическая траектория. При дополнительных условиях рожда-

ющаяся периодическая траектория является единственной и гиперболиче-

ской. 
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Введение. Предварительные сведения. Бифуркации динамических систем, задаваемыми 
кусочно-гладкими векторными полями изучаются уже давно и описаны, по крайней мере, для 
случая систем на плоскости достаточно полно (см. напр., [1–5]). Изучались и бифуркации глад-
ких динамических систем, инвариантных относительно разных групп преобразований фазового 
пространства [6–11]. В работе [12] исследован ряд бифуркаций в типичных семействах кусочно-
гладких векторных полей на плоскости, инвариантных относительно центральной симметрии.  

В настоящей заметке описаны бифуркации в типичном однопараметрическом семействе ку-
сочно-гладких векторных полей на плоскости, инвариантных при отражении относительно пря-
мой, в которых рождается пара симметричных устойчивых предельных циклов. 

Пусть D  – разбиение 2
R  на множества kD , {1,2,..., }k n  с C -гладкими границами kD , 

такие, что их пересечения i jD D  , i j , совпадают с i jD D  , а kX  – векторные поля класса 

rC  на kD . Кусочно-гладким  векторным полем на плоскости 2
R , задаваемым полями kX , назы-

вается класс всех векторных полей Xɶ  на 2
R  таких, что в точках  int kz D  ( ) ( )kX z X zɶ . Будем 

его обозначать 1 2( , ,..., )nX X X X . Траектории векторных полей Xɶ  будем задавать, используя 

выпуклое доопределение в точках линий переключения i jD D   [1]. Они не зависят от выбора 

представителя класса и потому их можно называть траекториями поля X . 
Пусть отображение 2 2:I R R , ( , ) : ( , )I x y x y   сохраняет разбиение D , то есть  
{1,2,..., }k n   {1,2,..., }l n  ( )k lI D D , а  границы множеств kD  не касаются множества непо-

движных точек инволюции I  – оси x . Кусочно-гладкое векторное поле 1 2( , ,..., )nX X X X  

назовем инвариантным относительно I , если {1,2,..., }k n  kz D   ( ) ( )k lI X z X I z , где 

( )l kD I D . Множество таких полей обозначим Vec ( , )r D I . 

Предположим, что 0(0,0) : L RO D D D     при некоторых , {1,2,..., }L R n .  Тогда 

( )L LI D D ,  ( )R RI D D ,  0 0( )I D D  и  в достаточно малой окрестности точки  O   0G  задается  
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уравнением 1 2( )z g z , где g  – четная C -гладкая функция. Перейдем к этой окрестности к ко-

ординатам 1 2( )x z g z  , 2y z . Инволюция I  переводит точку с координатами ( , )x y  в точку с 

координатами ( , )x y . В окрестности  ( )V O  точки  O , задаваемой в координатах ( , )x y  нера-

венствами x  , | |y  , где   – достаточно малое положительное число, 0D  имеет уравнение 

0x   и можно считать, что ( ) LV O D   ( ( ) RV O D  )  дается  неравенством  0x   ( 0x  ).  Далее 

будем отождествлять точку из ( )V O  с ее координатной строкой ( , )x y . 

2. Условия и результаты. Пусть разбиение D  такое, как описано выше. Рассмотрим одно-

параметрическое семейство векторных полей 1( ,..., ) Vec ( , )n rX X X D I    , 0 0( , )    , такое, 

что векторы  ( )kX z , {1,2,..., }k m , rC -гладко зависят от  0 0( , ) ( , )kz G     , 3r  .   

Векторное поле ( ) L

L
V O DX
   можно продолжить до rC -векторного поля LX  на ( )V O , ин-

вариантного относительно I  так, что вектор ( )LX z  rC -гладко зависит  от  

0 0( , ) ( ) ( , )z V O      [13, с. 587].   Пусть в координатах  ( , )x y   

( ) ( , , ) / ( , , ) /LX z P x y x Q x y y        . 

Вследствие инвариантности поля LX   

( , , ) ( , , )P x y P x y   , ( , , ) ( , , )Q x y Q x y    .                                      (1) 

Пусть O  – особая точка поля 0
L

X ,  то есть  

(0,0,0) (0,0,0) 0P Q  .                                                            (2) 

Ввиду (1) (0,0,0) (0,0,0) 0y xP Q    и потому  0
1 : (0,0,0)xP   и 0

2 : (0,0,0)yQ   – собственные 

значения матрицы линейной части в точке O . Они не зависят от произвола в выборе векторных 

полей LX . Предположим, что 0 0k   ( 1,2k  ) , то есть точка O  – грубый устойчивый узел поля 

0
L

X , Знак (0,0,0)P  зависит только от векторных полей LX . Потребуем, чтобы  (0,0,0) 0P  . 

Без ограничения общности можно считать 
(0,0,0) 0P  ,                                                                    (3) 

поскольку случай (0,0,0) 0P   сводится к случаю (0,0,0) 0P   заменой   на  . 

Пусть точка  0
0 1( ,0) int

SkS x G  ( {1,2,..., }Sk m ) является грубым седлом векторного поля 

0
Sk

X  с характеристическими показателями 10 0S   и  20 0S  ,  открытая дуга 0
in

L  оси x  между 

точками O  и 0S  не содержит особых точек поля  0X  и является входящей сепаратрисой седла 

0S , а выходящие сепаратрисы 0L
   и 0 0( )L I L

 
  точки 0S , лежащие, соответственно, в верхней и 

нижней полуплоскостях, не содержат особых  точек поля  0X  и  -предельны к O  (рис. 1). 

Сепаратрисные контуры  0 0 0 0: { , }in
L L O S

 
     симметричны: 0 0( )I


  

∓ ,  и образуют по-

лицикл 0 0 0:  
    . 

Будем рассматривать два варианта:  
(А) Выполняется условие (0,0,0) 0yyP  . 

(Б) Ось x  – ведущее направление узла O , то есть 
0 0
2 1  . 

Сепаратрисы 0L


 и 0L


 входят в O  по ведущему направлению. 

Седловой индекс 0 20 10: / 1S S     . 

Теорема. В случаях (А) и (Б) найдутся число 0(0, ]   и 

окрестность U  полицикла 0 , ( )I U U , со следующими свой-

ствами:  

 
Рис. 1. Полицикл 0 0 0:       
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1) Для любого (0, )   векторное поле X   имеет в U  две орбитно устойчивые   периоди-

ческие траектории:  
 , лежащую в верхней полуплоскости, и ( )I 

    , лежащую в нижней 

полуплоскости, а их топологические пределы 0
0

lt 


 

 
   .  В случае (Б)  

   и  
  являются 

гиперболическими периодическим траекториями, а в U нет других периодических траекторий. 

2) При ( ,0]    у векторного поля X  в U  нет периодических траекторий.  

Доказательство теоремы приведено в разделах 3–4. 
3. Случай (А). По теореме о неявной функции из (1)–(3) следует, что при некотором 1 0   

для всех 1 1( , )     векторное поле LX  имеет грубый устойчивый узел O  с координатами 

( )x   , 0y  , где  

( ) r
C   ,   sgn ( ) sgn   ,                                                          (4) 

с матрицей линейной части поля в точке O  равной 1 2diag ( ( ), ( ))    , где 1 ( ) : ( ( ),0, )xP      

и 2 ( ) : ( ( ),0, )yQ     .  

Ввиду (1) ( ,0, ) 0Q x   , и потому 2 1( , , ) ( ( ) ( ( ), , ))Q x y y r x y        , где 1
1r C , 

1(0,0, ) 0r   . Следовательно, числа  (0, ]d  , 2 1(0, ]    можно выбрать так, что 

 0
2( , , ) ( / 2)Q x y y   при x d , 0 y d  , 2 2( , )    .                                        (5) 

Линейная часть функции ( , ,0)P x y  равна 0
1 x . Поэтому можно считать, что   ( , ,0) 0P d y   

при всех [ , ]y d d  . Фиксировав d , мы можем выбрать  3 2(0, ]    так, что  

( , , ) 0P d y    при всех [ , ]y d d  , 3 3( , )    .                                                 (6) 

Вследствие (1) (0, , )P   – четная функция, и потому  
2(0, , ) (0,0, ) [ (0,0,0) ( , )]yyP y P y P R y     ,                                       (7) 

где 1R C , (0,0) 0R  . Отсюда, из (2) и (3) следует, что уравнение  (0, , ) 0P y    имеет решения 

только при 0  . При 0y   оно равносильно уравнению (0,0,0) ( , ) (0,0, )yyy P R y P    . 

Перепишем его в виде 

1(0,0,0) (0,0,0) ( , ) 0yyy P P R y     ,                                          (8) 

где   , а 1( , )R y   – 1C -функция, определенная в некоторой окрестности точки (0,0) , 

1 1 1(0,0) ( ) (0,0) ( ) (0,0) 0yR R R     . По теореме о неявной функции найдутся такое число 

4 3(0, ]  , что для любого 4 4( , )     уравнение (8) имеет решение  

ˆ( ) (0,0,0) / (0,0,0) ( )yyy y P P o       . 

Выбрав 4  достаточно малым, получим  

ˆ0 ( ) / 2y K d     при 4(0, )  ,                                           (9) 

где 2 (0,0,0) / (0,0,0)yyK P P   . Следовательно, при 4[0, )    ˆ( )y   – решение уравнения 

(0, , ) 0P y   . Ввиду (2) и (7) можно считать (0, , ) 0yP y    при (0, ]y d , 4[0, )  . Поэтому 

ˆsgn (0, , ) sgn( ( ) )P y y y    при всех (0, ]y d , 4[0, )  .                             (10) 

Пусть 1/ 2d d d  . Обозначим множество точек из ( ) LV O G   с координатами 

1( , ) [ ,0] (0, ]x y d d    символом  , с координатами 1( , ) ( ,0) { }x y d d    символом 1l  и  с коор-
динатами   1( , ) { } (0, )x y d d    символом 2l . Ввиду (5) и (6) 1d  можно считать выбранным так, 

что траектория  0L
  пересекает  границу   в единственной точке, принадлежащей одной из дуг   

1l  или  2l , трансверсально этой дуге. Для определенности, пусть эта точка принадлежит 1l  и име-
ет координаты 0x u , 1y d . Случай, когда точка принадлежит 2l , рассматривается аналогично.  
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При достаточно малом 4  поле  Sk
X , 4 4( , )    , имеет грубое седло ( )S   с координата-

ми 2 0x  , 1 1̂( )x x  , 1̂( ) r
x C  , 1 0ˆ (0)x x  и характеристическими показателями 1 ( ) 0S    

и 2 ( ) 0S   , 1rC  -гладко зависящими от  . 

Пусть 0
G – дуга  0

G , задаваемая в координатах ( , )x y  неравенством 0 y   .  Поскольку  

сепаратриса 0L
  не содержит особых точек, то из [14, п. 13.8] следует, что при достаточно малых 

  и 4  траектория поля X , 4 4( , )    ,  начинающаяся в точке 0
G  с координатой 

(0, ]y v   , пересекает дугу 1l  в точке с координатой ( , )x v  ,  где 

 ( )ˆ( , ) ( ) ( ) ( , )x v u c v v
          ,                                          (11) 

1ˆ( ), ( )u c C   , 0ˆ(0)u u , 2

1

( )
( ) 0

( )

S

S

 
 

 
   , ( ) ( ) 1| ( , ) | , ( , )vv v v v            , 0 1  . (12) 

Доопределим ( , )v   при 0v  , положив ˆ(0, ) : ( )u   . Из (11) и (12) получаем, что   и  

4(0, ]   можно выбрать столь малыми, что 

 ( , ) ( ,0)v d     для всех [0, ]v  , ( , )    .                                    (13) 

Из (5), (6), (10), (9) и свойств функции соответствия по траекториям между дугами без кон-

такта [15, c. 81] следует, что положительная полутраектория поля LX , 4(0, )  ,  начинающая-

ся в точке дуги  1l  с координатами ( ,0)x u d   , 1y d  трансверсально пересекает дугу 0x   в 

точке с координатой  ( , )y u  , где r
C ,  ( , ) 0u u   , ˆ0 ( , ) ( )u K       . 

Выберем  2 20 / K   . Тогда  

0 ( , )u      при всех ( ,0)u d  , (0, )  .                                  (14) 

Из (13) и (14) получаем, что при (0, )   определена функция ( , ) : ( ( , ), )f        , отоб-

ражающая  [0, ]  в (0, ) . Она имеет хотя бы одну устойчивую неподвижную точку  

0 ( ) (0, ) (0, )v K    .                                                         (15) 

Поскольку ( , )f v    при  (0, )v   является функцией последования по траекториям поля X  на 

0
G , то через точку 0

G  с координатой 0 ( )y v   проходит единственная траектория 
 , причем 

она орбитно устойчива.  Поскольку число   можно выбрать произвольно, то из (14) следует, что 

0
0

lt 


 

 
   . 

При ( ,0]    из (4) вытекает, что поле X  имеет в   особую точку O , к которой  -

предельны все траектории, начинающиеся в  . 

Построим простые замкнутые кривые 
 , 

  и ext
 , 

( , )    , следующим образом. Кривая  
  состоит из дуги тра-

ектории поля X  между точками 0
1A G

  с координатой    и 

точкой  2 1A l

 , а также дуги  между этими точками (рис. 2). 

Кривая ( )I    .  Мы можем выбрать точки  1B
  в верхней полу-

плоскости и  точку  0
1B  на оси x  так, чтобы отрезок 0

1 1[ ]B B
  был 

трансверсален траекториям векторных полей SX  при всех 

( , )    , а  положительные полутраектории поля X , начинающиеся в точках 0 0
1 1 1[ ] \B B B

 , 

пересекали трансверсально дугу 1l . Пусть 
�

1 2B B   – дуга полутраектории траектории, начинаю-

 
Рис. 2. Окрестность U  
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щейся в точке 1B
 , с концом 2 1B l


 . Составим  ext

  из дуг 0
1 1[ ]B B

 ,  0 0
1 1 1 1[ ] [ ]B B I B B

 
 , 

� �
1 2 1 2( )B B I B B    , а также из дуги границы ( )I   между точками 2B

  и  2 2( )B I B
 
 .  

Множество  ext
        является границей U  области U . Область 0U  является 

окрестностью полицикла 0 . Расстояние между 0  и 0U  – положительная величина, которую 

обозначим 0 . Считая   достаточно малым, будем иметь расстояние между U   и 0  боль-

шим 0 / 2  при всех  ( , )    . Но тогда  U  – окрестность 0 . 

Пусть U  – 0 / 2 -окрестность 0 . Она содержится в U , ( , )    . При ( ,0]    все 

положительные полутраектории, начинающиеся в U , отличные от седла ( )S  ,  -предельны к 

O  и потому  в U  нет периодических траекторий векторных полей X , ( ,0]   . Поскольку 

0
0

lt 


 

 
   , то можно считать, что при выбранном    U

   для (0, )  . Других периоди-

ческих траекторий в  U  , а потому и в U  нет.  

4. Случай (Б).  Как и в случае (А) векторное поле LX , 1(0, )   имеет грубый устойчивый 

узел O  с координатами ( ) 0x    , 0y  . Для  (0, )d   определено множество  

: {( , ) ( ) : ( ), 0 ( ) }dK x y V O d x y x
            . 

Поскольку 1 2diag( ( ), ( ))     – матрица линейной части поля в точке O ,  а  по условию (Б) 
0

2 2
0

1 1

(0)
1

(0)

 

 
  , то, выбрав достаточно малые 2 1(0, ]   и d ,  можно считать, что при 2(0, )   

( , , ) 0P x y    для  ( , ) dx y K  ,  ( , , ) / ( , , ) 1Q x y P x y     для  ( , ) dx y K  , ( )y x   .   (16) 

Рассмотрим в  dK   дифференциальное уравнение  

( , , )y R x y   , где ( , , ) : ( , , ) / ( , , )R x y Q x y P x y   . 

Ввиду (16) оно имеет решение ( , , )Y x u  , ( )d x     , удовлетворяющее начальному усло-

вию ( , , )Y d u v  . Вследствие (1) ( ,0, ) 0Y d   .  Дуга  ( , , )y Y x u  , 0d x    – пересечение 

с dK    траектории поля LX .  Поэтому ( , ) : (0, , )Y      является функцией соответствия по тра-

екториям векторных полей LX  и X  между дугами  : {( , ) : }dl x y K x d 
      и 

0 : {( , ) : 0, 0 ( )}dl x y K x y        .  

Ввиду (3) найдутся числа L  и R  такие, что 

 0 0
2 11 /L R      ,  0(1 )L R    .                                           (17) 

Аналогично лемме из [5] доказывается, что 2  и d  можно считать столь малыми, что для 

всех 0d x   , 2(0, )  . 

( , ) [ ( )] Ru
    ,[ ( )] ( , ) [ ( )]R L

u u
        .                  (18) 

Как и в случае (А) при достаточно малом 3 2(0, ]   поле  Sk
X  , 3 3( , )    ,  имеет грубое  

седло ( )S   с  характеристическими показателями 1 ( ) 0S    и 2 ( ) 0S   , 1rC  -гладко завися-

щими от  . 

Поскольку сепаратриса 0L
  входит в точку O  по направлению оси x , то число d можно счи-

тать выбранным так, что 0L
  пересекает дугу 0

l  в ее внутренней точке. Так как 0L
  не содержит 

особых точек, то числа 0   и  4 3(0, ]   можно выбрать так, что траектория поля X , 
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4(0, )  , начинающаяся в точке  дуги  0l
  с координатой (0, ( )]y v     пересекает дугу l


  в 

точке с координатой ( , )x v  , где  удовлетворяет условиям (11) и (12).  

Для любого 4(0, )   определена функция последования ( , ) : ( ( , ), )f         и функция 

расхождения ( , ) : ( , )d v f v v   , производная которой   

( , ) ( ( , ), ) ( , ) 1v u vd v v v          .                                              (19) 

Из  (11) получаем 
( ) 1( , ) ( ) ( ) ( , )v vv v c v
          .                                            (20) 

По условию (Б) 0(0) 1   . Если (0) 1  , то  из (20) и (12) следует, что 4  можно считать 

столь малым, что 0 ( , ) 1v v    для всех 4(0, )  , (0, ( )]v   . Отсюда, из (18), (4) и (19)  по-

лучаем, что при некотором  4(0, ]   ( , ) 0vd v     для всех   (0, )  , (0, ( )]v   . Поскольку 

(0, ) 0d   , ( ( ), ) 0d     , то ( , )d   имеет единственный нуль 0 ( ) (0, ( ))v    . Соответствен-

но, дугу 0l
   пересекает единственная периодическая траектория 

 ; она устойчивая и гипербо-

лическая. 
В случае (0) 1  , выбрав 4  достаточно малым, при 4(0, )   будем иметь 0 1 ( ) 1     

и 

1

1 ( ) 1 ( )( ) : (2 (0)) [ ( )] (0, ( ))
L

v c



        
   . Из (17)–(20) получаем, что при некотором 

4(0, ]    

1 ( )( , ) [ ( )] [ ( )] 0
L

Rd v



           для всех (0, ( )]v v  , (0, )  . 
( ) 1( , ) [ ( )] 2 (0) (0)( ( )) 1 (0) 1 0L

vd v c v
       


        для всех [ ( ), ( ))v v    , (0, )  . 

Из этих неравенств следует, что ( , )d   имеет единственный нуль 0 ( )v  ; он принадлежит интер-

валу ( ( ), ( ))v    и 0( ( ), ) 0vd v    . Тем самым, дугу 0l
   пересекает единственная периодиче-

ская траектория 
 ; она устойчивая и гиперболическая. 

Окрестность U  выбирается так же, как и в случае (А).  
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ON BIFURCATIONS OF CERTAIN SEPARATRIX CONTOURS  
OF A PIECEWISE-SMOOTH DYNAMICAL SYSTEM WITH SYMMETRY 
 

V.Sh. Roitenberg 
Yaroslavl State Technical University, Yaroslavl, Russian Federation 
E-mail: vroitenberg@mail.ru 
 

Abstract. This article considers a one-parameter family of piecewise-smooth vector fields that are 
invariant under reflection from the x-axis on a plane with Cartesian coordinates (x, y). The switching line 
passes through the origin O, transversally to the x-axis. For a zero value of the parameter, let the vector 
field of the family in the left half-neighborhood of the switching line coincide with a smooth vector field 
that has the O point as a rough stable node, and in its right half-neighborhood it coincides with a smooth 
vector field without singular points. Let this field also have a rough saddle S on the x-axis such that the 
open arc of the x-axis between the O and S points is an incoming separatrix of the saddle, and the two 
symmetric outgoing separatrices of the saddle do not contain any singular points and lead to the O point. 
The article demonstrates that if there is no singular point in the left semi-neighborhood of the switching 
line for the positive values of the parameter, then a unique, stable, periodic trajectory arises from each of 
the two symmetrical contours formed by the separatrices. Under certain additional conditions, the 
emerging periodic trajectory is unique and hyperbolic. 

Keywords: piecewise-smooth vector field; symmetry; invariance; singular point; separatrix con-

tour; bifurcation, periodic trajectory. 
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