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Аннотация. Задачи оптимального управления для эллиптических 

уравнений при классических граничных условиях изучены достаточно 

полно. Однако эти задачи при условиях периодичности исследованы суще-

ственно слабее. В настоящей статье рассматривается задача оптимального 

управления для эллиптического уравнения с условиями периодичности. 

Управляющая функция является коэффициент при решения эллиптиче-

ского уравнения и принадлежит пространству Лебега с конечным индексом 

суммируемости. Решение краевой задачи для эллиптического уравнения 

определяется как обобщенное решение из пространства Соболева. Исследо-

ваны вопросы корректности рассматриваемой задачи оптимального управ-

ления, получена формула для градиента целевого функционала и установ-

лено необходимое условие для оптимальности управления. 

Ключевые слова: оптимальное управление; эллиптическое уравнение; 
условие периодичности; корректность задачи; необходимое условие 
оптимальности. 

 

Введение 

Задачи оптимального управления для эллиптических уравнений при классических граничных 

условиях изучены в работах [1–6] и др. Однако эти задачи при граничных условиях периодично-

сти исследованы существенно слабее [7, 8]. Задачи оптимального управления для эллиптических 

уравнений с периодическими краевыми условиями встречаются в различных областях, таких как 

инженерия, физика, медицина и другие. Эти задачи обычно связаны с управлением или оптими-

зацией физических процессов, и периодические краевые условия используются для моделирова-

ния повторяющихся процессов или условий. Они также находят применение в обратных задачах, 

например, медицинской визуализации и геофизической разведке, а также в оптимальном проек-

тировании форм и управлении распределением нагрузок. [9, 10]. 

В настоящей работе изучается задача оптимального управления для эллиптического уравне-

ния с условиями периодичности. Исследованы вопросы корректности постановки рассматривае-

мой задачи, получена формула для градиента целевого функционала и установлено необходимое 

условие оптимальности. 

 

1. Постановка задачи и его корректность 

Пусть  1( ,..., ) : 0 , ( 1, )n
n i ix x x R x l i n       -параллелепипед в nR . Рассмотрим следу-

ющую задачу оптимального управления для эллиптического уравнения: требуется минимизиро-

вать функционал 
2

0( ) ( , ) ( )J v u x v u x dx


                                                          (1) 

на множестве 

 1 2( ) ( ) : ( ) . .sV v v x L v x п в на                                               (2) 

при условиях, что ( ) ( , )u u x u x v   является решением краевой задачи 

1

( ) ( ) ( ), ,
n

i ii

u
k x v x u f x x

x x

  
    
  
                                             (3) 

0
, 1, ,

i i ix x l
u u i n
 
                                                           (4) 
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0

( ) ( ) , 1, .

i i i
i ix x l

u u
k x k x i n

x x
 

 
 

 
                                                 (5) 

Здесь 2s   при 2n   и s n  при 1 23, , 0n     - заданные числа, 0( ), ( ), ( )k x f x u x  заданные 

измеримые функции удовлетворяющие следующие условия:  

 0 20 ( ) , , ( ), ( ) ,k x x f x u x L                                              (6) 

где , 0    заданные числа. 

Обозначения используемых в работе функциональных пространств соответствуют принятым 

в [11, с. 23]. Ниже положительные постоянные, не зависящие от оцениваемых величин, обозна-

чим через M. 

Обозначим через  1
2Ŵ   подпространство пространства  1

2W  , состоящее из элементов 

 1
2W   удовлетворяющих условия периодичности (4). Пусть ( )v v x V   фиксированное управ-

ление. Обобщённым решением из  1
2W   краевой задачи (3)–(5) назовем функцию ( ) ( , )u x u x v  

из  1
2Ŵ  , удовлетворяющую интегральному тождеству 

1

( ) ( ) ( )
n

i ii

u
k x v x u dx f x dx

x x


 

 

  
  

  
                                            (7) 

при  1
2

ˆ( )x W     . 

Теорема 1. Краевая задача (3)–(5) при каждом заданном ( )v v x V  однозначно разрешима в 

 1
2W   и верна априорная оценка 

(1)

2,
,u M f


                                                                  (8) 

где 0M   не зависит от f . 

Доказательство. Введем в  1
2Ŵ   новое скалярное произведение 

 
1

, ( ) ( ) .
n

i ii

u w
u w k x v x uw dx

x x

  
  

  
                                              (9) 

В силу предположения 0 ( ) ,k x    1 20 ( ) , ,v x x      
норма  

1
, .u u u  эквива-

лентна исходной норме 
(1)

2,
u


 пространства  1

2Ŵ   
[12, с.149]. Поэтому тождество (7) можно 

переписать в виде 

 , ( , ).u f                                                                  (10) 

При фиксированном f  из  2L   выражение ( , )f   определяет линейный функционал 

по на  1
2

ˆ .W   Кроме того, так как  

1
( , ) ,f f M f   

 
то этот функционал ограничен и его норма не превосходит ,M f  где постоянна 0M   не зави-

сит от f и  . Тогда, по теореме Рисса [12, с.75], существует единственная функция  1
2

ˆF W   

для которого    , ,u F 
 

при всех  1
2

ˆ ,W   и эта функция удовлетворяет неравенству 

(1)

2,
.F M f




 
Следовательно, в  1

2Ŵ   существует единственная функция ,u F  удовлетво-

ряющая тождеству (10) или (7). Теорема 1 доказана. 

Теорема 2. Пусть выполнены условия (6). Тогда задача  (1)–(5) корректно поставлена в сла-

бой топологии пространства ( ),sL   т. е. множество оптимальных управлений 

  * * *: ( ) inf ( ) :V v V J v J v v V     не пусто и любая минимизирующая последователь-

ность mv V  функционала ( )J v  слабо в ( )sL   сходится к множеству *.V   
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Доказательство. Покажем, что функционал ( )J v  слабо в ( )sL  непрерывен на множестве 

.V  Пусть последовательная  mv V такова что 

mv v  слабо в  ( )sL  ,                                                         (11) 

где v V  фиксированный элемент. 

Обозначим ( ) ( , ).m m m mu u x u x v   Тогда, из оценки (8) при mu u , следует, что последова-

тельность  mu  равномерно ограничена в  1
2 .W   B силу теоремы 

вложения [11, с.83], не ограничивая общности, можно считать, что  

mu u  слабо в  1
2W  и сильно в ( )sL  ,                                      (12) 

где ( )u u x  – некоторая функция из  1
2 .W   

Полагая в (7) ,m mv v u u   получим тождества 

1

( ) ( ) ( ) ,
n

m
m m

i ii

u
k x v x u dx f x dx

x x


 

 

  
  

  
 

 
1
2

ˆ( 1,2,...), ( ) ( ).m x W                                                     (13)   

Нетрудно видеть, что  

( ) ( )m m m m mv u dx vu dx v u u dx v v u dx   
   

         2 ( ) .m mu u v v u dx  


     (14) 

Используя теоремы вложения [11, с.83] и условия 2s   при 2,n s n   при 3n   можно по-

казать, что /( 1) ( ).s su L    Тогда из (11), (12), (14) следует что,  

0,m mv u dx vu dx 
 

    при    .m                                        (15) 

Теперь переходя к пределу в (13) и учтя соотношения (11), (12), (15) получаем, что функция 

( )u x  удовлетворяет тождеству (7), т. е. ( ) ( , ).u x u x v  

Таким образом, соотношение (12) справедливо с функцией ( , )u u x v  и в частности 

( , ) ( , )mu x v u x v
 
сильно в ( )sL  .                                           (16) 

Тогда из (1) и (16) следует, что ( ) ( )mJ v J v  при m  т.е. функционал ( )J v  слабо непре-

рывен на .V  Кроме того, так как множество V определяемое равенством (2) замкнуто, ограниче-

но и выпукло на рефлексивном банаховом пространстве ( )sL   оно слабо компактно [13, с.51]. 

Поэтому, утверждения теоремы 2 следует из теоремы Вейерштрасса [13, с. 49]. Теорема 2 дока-

зана. 

 

3. Дифференцируемость целевого функционала и необходимое условие оптимальности. 

Пусть 1
2

ˆ( ) ( , ) ( )x x v W   
 
является обобщенным решением из  1

2W   сопряженной крае-

вой задачи: 

 0

1

( ) ( ) 2 ( , ) ( ) , ,
n

i ii

k x v x u x v u x x
x x






  
     
  
                                (17) 

0
, 1, ,

i i ix x l
i n 

 
                                                    (18) 

0

( ) ( ) , 1, ,

i i i
i ix x l

k x k x i n
x x

 

 

 
 

 
                                            (19) 

Обобщенное решение задачи (17)–(19) удовлетворяет интегральному тождеству 

   1
0 2

1

ˆ( ) ( ) 2 ( , ) ( ) , ( ) .
n

i ii

k x v x dx u x v u x dx x W
x x

 
   

 

  
       

  
              (20) 
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В силу теоремы 1 краевая задача (17)–(19) однозначно разрешима в  1
2W   

и справедлива 

оценка 
(1)

02,
2 ( , ) ( ) .M u x v u x


 

 
Отсюда и из (8) следует, что 

 (1)

02,
2 ( ) .M M f u x


                                                     (21) 

Теорема 3. Пусть выполнены условия теоремы 2. Тогда функционал (1) непрерывно диффе-

ренцируем на множестве V по норме ( )sL   и его градиент в точке v V  имеет вид 

'( ) ( , ) ( , ), .J v u x v x v x                                                     (22) 

Доказательство. Пусть v V  – фиксированное управление, ( )sv L    – eгo приращение 

такое, что .v v V  
 

Обозначим ( ) ( , ) ( , ), .u u x u x v v u x v x         Из (7) следует, что 

функция  1
2

ˆu W    удовлетворяет интегральному тождеству 

 1
2

1

ˆ( ) ( ( ) ( )) ( ) , ( ) .
n

i ii

u
k x v x v x u v x u dx x W

x x


   

 

  
           

  
     (23) 

Кроме того, в силу (8) для u  верна оценка: 
(1)

2,
.u M vu


  

 

Тогда, используя неравенство (1.7 ' ) из [14, с.75] и ограниченность вложения 
1
2 2 /( 2)( ) ( )s sW L     получаем 

(1) (1)
2

2, , , , 2,
2

.s
s s

s

u M v u M v u
    


                                         (24) 

Приращение ( ) ( ) ( )J v J v v J v      функционала (1) представим в виде 

  2

0( ) 2 ( , ) ( ) ( ) .J v u x v u x u x dx u


                                            (25) 

В тождестве (20) положим ,u    в (23) ,  вычтем полученные равенства и придем к равен-

ству 

   02 ( , ) ( ) ( ) .u x v u x u x dx u u vdx 
 

      
 

Отсюда и из (25), получим 

( ) ,J v u vdx R


                                                             (26) 

где 
2

R u u vdx


     .                                                        (27) 

Используя неравенство (1.8) из [14, с.75], ограниченность вложения 
1
2 2 /( 1)( ) s sW L     и 

оценки (24), имеем  

 2(1) (1) (1) (1)
2 2

, , , 2, 2, , 2, 2, ,
1 1

.s s
s s s

s s

u vdx u v M u v M u v   
        

 

              (28) 

Кроме того, используя неравенство Коши–Буняковского и оценки (24), имеем   

  2(1) (1) (1)

2, 2, 2, ,
.

s
R M u M u v

   
                                          (29) 

Тогда из (26), (29) следует, что функционал ( )J v  (5) дифференцируем и его градиент имеет 

вид (22). 

Покажем, что отображение ' ( )v J v  непрерывно действует из V  в ' ( ),sL   где ' ( )sL   – со-

пряженное пространство к ( ), ' / ( 1).sL s s s    Пусть 
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( , ) ( , ), ( ) ( , ).x v v x v x x v             

Из (17)–(19) следует, что  является обобщенным решением из  1
2W   краевой задачи 

1

( ) ( ) 2 ( , ), ,
n

i ii

k x v v u x v x
x x






  
        
  
                                (30) 

0
, 1, ,

i i ix x l
i n 

 
                                                (31) 

0

( ) ( ) , 1, ,

i i i
i ix x l

k x k x i n
x x

 

 

 
 

 
                                       (32) 

Рассуждая аналогично выводу оценки (21) и используя оценки (24), можно показать, что для 

решения задачи (30)–(32) верна оценка 
(1) (1)2

2, , 2,
2 .

s
M v u

  
                                                   (33) 

Используя неравенство (1.7 ' ) из [14, с.75] и оценки (24), (33), и рассуждая аналогично работе 

[15] можно показать, что 

'

(1) (1)' '

2, 2, , ,,
( ) ( ) .

s ss
J v v J v M u v v

   
        
 

 Отсюда следует, что ' ( )v J v  есть непрерывное отображение из V  в ' ( ).sL   Теорема 2 до-

казана. 

С помощью формулы градиента (22) и теоремы 5 из [13, с. 28] можно установить необходи-

мое условие оптимальности управления в задаче. 

Теорема 4. Пусть выполнены условия теоремы 2 и * *( )v v x V  - решение задачи (1)–(6), 

т. е. оптимальное управление. Тогда выполняется неравенство 

 * * *( , ) ( , ) ( ) ( ) 0,u x v x v v x v x dx


   ( ) .v v x V  
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Abstract. Optimal control problems for elliptic equations with classical boundary conditions have 

been thoroughly studied. However, these problems with periodicity conditions are less well-researched. 

This paper focuses on the optimal control problem for an elliptic equation with periodicity conditions. 

The control function is the quotient at the solution to the elliptic equation and belongs to the Lebesgue 

space with a finite summability index. The solution to the boundary value problem for the elliptic equa-

tion is defined as a generalized solution from the Sobolev space. The paper examines the correctness of 

the considered optimal control problem, derives a formula for the gradient of the target functional, and 

determines a necessary condition for control optimality.  

Keywords: optimal control; elliptic equation; periodicity condition; correctness of the problem; 
necessary condition of optimality. 
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