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Аннотация. При математическом моделировании процессов переноса в 

электромембранных системах в виде краевых задач для систем уравнений 

Нернста–Планка–Пуассона возникают задачи, содержащие малый пара-

метр при старшей производной, то есть сингулярно-возмущенные задачи. 

При малых плотностях тока эти задачи можно решать различными мето-

дами, например, методом погранслойных функций. Однако при больших 

плотностях тока известные методы асимптотического решения необходимо 

модифицировать, так как решение вырожденной задачи не существует на 

всем интервале. Для выявления структуры асимптотического решения, 

например, асимптотической шкалы, в таких случаях используют модель-

ные задачи, допускающие точные аналитические решения. Кроме того, 

точное решение служит тестом для приближенных аналитических решений, 

например, асимптотических, а также численных решений. Точное решение 

дифференциальных уравнений имеет важное значение, так как позволяет 

исследовать задачу с исчерпывающей полнотой. Наиболее эффективным 

методом решения нелинейных уравнений высокого порядка является метод 

понижения порядка, позволяющее находить частное решение. В работе 

предлагается метод понижения порядка для некоторого класса нелинейных 

обыкновенных дифференциальных уравнений. Приведены примеры кон-

кретных нелинейных уравнений и их точных решений. 

Ключевые слова: нелинейные дифференциальные уравнения; точное 

решение; понижение порядка. 
 

Введение 

Для глубокого понимания качественных характеристик различных природных явлений и 

процессов используют точные решения нелинейных дифференциальных уравнений. Они позво-

ляют иллюстрировать сложные нелинейные эффекты, помогая раскрыть их механизмы [1]. Также 

частные точные решения широко используются для проверки корректности и точности числен-

ных, асимптотических и приближенных аналитических методов [1, 2]. Кроме того, точные реше-

ния являются основой для проверки и улучшения специализированных компьютерных программ, 

таких как Mathematica, Maple и др.  

Нелинейные дифференциальные уравнения редко разрешимы в элементарных функциях, и 

их анализ требует специальных методов. Не существуют общих методов для нахождения точных 

решений, поэтому каждый раз используются уникальные способы, которые имеют малую об-

ласть использования [3–7]. Наиболее эффективным методом решения нелинейных уравнений вы-

сокого порядка является метод понижения порядка, позволяющее находить частное решение. В 

данной работе описаны точные решения некоторого класса нелинейных дифференциальных 

уравнений, которые не допускают понижения порядка уравнения с использованием известных 

методов, например, таких которые путем замены понижают порядок в уравнениях, не содержа-

щих независимой переменной х или не содержащих искомой функции y, в однородных уравнения 

(обобщенная однородность) или в уравнениях, допускающие понижение порядка специальной 

подстановкой. Аналогичные уравнения встречаются в электрохимии. Так, например, при анали-

тическом решении модельной задачи стационарного переноса ионов соли для 1:1 электролита в 

сечение канала обессоливания с учетом пространственного заряда и реакции диссоциа-

ции/рекомбинации с учетом зависимости коэффициента равновесия от величины пространствен-

ного заряда [8], которая описывается расширенной системой уравнений Нернста–Планка–

Пуассона, в области погранслоя у анионообменной мембраны  приходим к решению уравнения 

для безразмерного потенциала электрического поля  : 
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где

 

0   – малый параметр, 
0wk  – коэффициент равновесия реакции диссоциации молекул воды, 

0,a b  – безразмерные параметры, 1 2 3, ,    –  константы интегрирования [9].

 

Обобщение уравне-

ния такого типа рассматриваются в данной работе. 

 

Методы и результаты 

Рассмотрим нелинейное обыкновенное дифференциальное уравнение 
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Где u  непрерывно дифференцируемая функция, в общем случае, зависящая от x  и  . 

Не сложно видеть, что любое гладкое решение уравнения  
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является решением уравнения (1). 

Действительно, продифференцируем уравнения (2) по х, тогда получим 
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ч. т. д. 

Рассмотрим некоторые частные случаи. 

1. Пусть в уравнении (1) n = 3 

а) ( )u x  гладкая функция, например, 
2( )

2

A
u x x Cx D   . Рассмотрим уравнение типа (1) 
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Из первого утверждения следует, что любое решение следующего нелинейного уравнения 

второго порядка: 
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                                                   (4) 

является решением уравнения (3). 

Можно показать, что уравнение (4) допускает точное решение с использованием функций 

Эйри [8]. Действительно, сделаем в уравнении (4) замену 2ln   , тогда 
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Таким образом, получаем линейное дифференциальное уравнение с переменными коэффи-

циентами 
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Это уравнение приводится к уравнению Вебера–Эрмита, которое имеет решение с использо-

ванием функций параболического цилиндра. В частности, если 0А  ,
 
то решение уравнение вы-

ражается через функции Эйри 1 22/3 2/3
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где ( )Ai x  и ( )Bi x  функ-

ции Эйри соответственно первого и второго рода. 

б) пусть теперь u  гладкая функция, зависящая от x  и неизвестной функции  , например, 

2( )
2

A
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Из утверждения выше следует, что любое решение следующего нелинейного уравнения вто-

рого порядка: 
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является решением уравнения (5). 

Пусть
 

0, 0A B  , тогда уравнение (6) имеет частное решение вида 2x x     
. 

Для 

нахождения коэффициентов
 
подставим функцию  2x x       в исходное уравнение. 
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Упростив и приравняв коэффициенты при одинаковых степенях
  

x , получим систему уравнений
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б) при условии 2 4 0B A   получим два решения для  :
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Подставим их во второе уравнение системы и найдем  : 
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И из третьего найдем
 
 : 
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Подставляя найденные коэффициенты в 2x x       получим частное решение. 

В случае, когда в уравнении (6) А =0 и С = 0 уравнение имеет вид  
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и допускает еще одно понижение порядка заменой ( )
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или 

2
dy

y B
d



  ,                                                                 (7) 

где 2( ) ( ) 2y z D   . 

Решая линейное уравнение (7) получим: 2 2y B B Ce    ɶ . 

Вернемся к замене

 

2 ( ) 2 2 2z D B B Ce      ɶ , то есть получим уравнение первого порядка
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Замечание 1. Очевидно, уравнение (4) в отличие от уравнения (5) допускает понижение по-

рядка также и заменой ( )
d

z
dx


 . 

2. Пусть в уравнение (1) 2n  , тогда уравнение (1) имеет вид 
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И, соответственно, уравнение (2)  
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Если 
2( )

2

A
u x x Cx D   , то уравнение (2) сводится к уравнению Эйри [10]. 

Если 
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A
u x x Cx D B    , то уравнение (2) имеет различные решение в соответствии со 

значениями коэффициентов, наиболее сложный случай, где все коэффициенты не равны нулю, 

можно свести к уравнению Риккати. 

Произведем сравнение графиков решений ис-

ходной и упрощенной задачи, полагая
 4, 2, 1A С D   , то есть уравнение (8) примет вид 
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причем

 
для это-

го уравнения ставится задача Коши с условиями
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нения (10) 
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условием (0) 2  . Графики решений даны на ри-

сунке.  

 

Заключение 

В работе найдены точные решения некоторых классов нелинейных обыкновенных диффе-

ренциальных уравнений, к которым не применимы известные методы понижения порядка, при-

ведены конкретные примеры дифференциальных уравнений и их точных решений, которые по-

лезны для теоретического анализа и понимания поведения решения. Предложенные точные ре-

шения могут быть использованы в качестве тестов при численном решение краевых задач для 

нелинейных уравнений, а также служить основой для приближенных аналитических решений. 

Уравнения данного вида встречаются при аналитическом решении математических моделей в 

электрохимии, что и привело к необходимости исследования данных уравнений.  

Работа выполнена при финансовой поддержке РНФ, проект № 24-19-00648. 

Сравнение графиков решений ( )x  исход-

ной задачи: сплошная линия – численное 
решение уравнения (9), пунктирная линия  – 

аналитическое решение уравнения (10) 
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Abstract. Various boundary value problems with a small parameter at the highest derivative, i.e. 

singularly perturbed boundary value problems, arise in the mathematical modeling of transfer processes 

in electromembrane systems in the form of boundary value problems for systems of Nernst–Planck–
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Poisson equations. At low current densities, these problems can be solved by various order reduction 

methods for a certain class of nonlinear ordinary differential equations. In some cases, general solutions 

to the equations can be found or they can be reduced using certain methods, for example, the boundary 

layer function method. However, at high current densities, the known methods of asymptotic solution 

should be modified, as the solution to the degenerate problem does not exist on the entire interval. To 

address this issue, model problems that admit exact analytical solutions are used to identify the structure 

of the asymptotic solution, i. e. the asymptotic scale and other parameters. Besides, the exact solution of 

differential equations is crucial, as it allows for a thorough and complete analysis of the problem. The 

exact solution also acts as a benchmark for methods of approximate analytical solutions, for example, 

asymptotic, as well as numerical methods of solutions. The most effective method for solving high-order 

nonlinear equations is the order reduction method, which allows finding a particular solution. This paper 

proposes a method of order reduction for a specific class of nonlinear ordinary differential equations and 

gives examples of specific nonlinear equations and their exact solutions. 

Keywords: nonlinear differential equations; exact solution; order reduction. 
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