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Аннотация. Исследуется установившееся течение вязкой несжимаемой 

жидкости в плоском канале с проницаемыми параллельными стенками. В 

отличие от классических постановок, на верхней границе задаются не толь-

ко значение скорости, но и её первые два пространственных градиента. Та-

кой подход позволяет моделировать течения с локальной неоднородностью 

вдоль канала. Нижняя стенка неподвижна и удовлетворяет условию при-

липания. Учитывается постоянный градиент давления произвольного зна-

ка и равномерный нормальный поток через обе границы. Задача решена 

аналитически в безразмерной форме, где определяющую роль играют число 

Рейнольдса, число Рейнольдса на основе скорости проницаемости и безраз-

мерный градиент давления. Проведён асимптотический анализ в предель-

ных случаях слабой и сильной проницаемости. На основе структуры точно-

го решения получена оценка толщины пограничного слоя при инжекции. 

Результаты подтверждены численным моделированием для реальных жид-

костей и демонстрируют переход от вязко-доминированного к конвективно-

доминированному режиму течения. 
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Введение 

Исследование ламинарных течений вязкой несжимаемой жидкости между параллельными 
пластинами служит классической моделью для изучения фундаментальных закономерностей 
гидродинамики. Такие эталонные решения, как течение Куэтта (сдвиговое течение, вызванное 
движением стенки) и течение Пуазейля (напорное течение, обусловленное градиентом давления) 
[1, 2], на протяжении более века используются для верификации численных методов и построе-
ния более сложных моделей. 

Однако в реальных технических и природных системах границы потока часто являются про-
ницаемыми [3–7]. В таких приложениях, как системы охлаждения с пористыми элементами, мик-
рофлюидные устройства для разделения компонентов или процессы фильтрации, сквозной поток 
через стенки играет ключевую роль в формировании структуры течения. Учет проницаемости 
качественно меняет картину течения: в отличие от чисто вязкого механизма переноса, характер-
ного для непроницаемых каналов, нормальный поток вносит конвективную составляющую. Это 
приводит к формированию тонких пограничных слоёв, резкой неоднородности полей скорости и 
открывает возможности для управления течением, что широко используется в технологиях ак-
тивного контроля пограничного слоя и тепломассообмена. 

Большинство существующих моделей течений в каналах с проницаемыми стенками опирает-
ся на простые граничные условия прилипания, что ограничивает их применимость случаями, ко-
гда граница движется как единое целое [3, 8]. В то же время, на практике часто возникают ситуа-
ции, требующие учета неоднородности профиля скорости на границе, например, при сопряжении 
с внешним потоком, имеющим поперечные градиенты, или при локальном изменении свойств 
поверхности. 
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В настоящей работе предлагается обобщенная постановка задачи, в которой на верхней про-
ницаемой границе задаются не только значение скорости, но и её первые два пространственных 
градиента [9–12]. Такой подход позволяет моделировать течения с локальной неоднородностью, 
не усложняя геометрию расчетной области. Нижняя стенка считается неподвижной и непроница-
емой (условие прилипания). Модель учитывает постоянный градиент давления произвольного 
знака и равномерный нормальный поток (инжекцию или отсос) через обе стенки. 

Целью работы является получение точного аналитического решения сформулированной кра-
евой задачи, выявление определяющих безразмерных параметров и анализ структуры течения. 
Особое внимание уделено асимптотическому поведению решения и количественной оценке тол-
щины пограничного слоя при интенсивной инжекции. 

Актуальность исследования обусловлена его приложениями в области микрофлюидики и 
теплообмена. Например, в биохимических анализаторах с полупроницаемыми мембранами или в 
системах охлаждения турбинных лопаток с пористыми покрытиями гидродинамическое поле 
существенно зависит от сквозного потока, и классические модели оказываются неприменимы. 

Таким образом, вклад данной работы заключается в построении замкнутого аналитического 
решения для обобщенной модели течения с проницаемыми границами, учитывающей неодно-
родные кинематические условия и градиент давления. В отличие от большинства известных ре-
шений, ограниченных однородными граничными условиями, предложенная постановка охваты-
вает более широкий класс практических задач. На основе решения строго выводятся ключевые 
безразмерные параметры подобия: число Рейнольдса Re, число Рейнольдса проницаемости Rew и 
безразмерный градиент давления S. Это позволяет провести универсальный анализ перехода от 
вязко-доминированного к конвективно-доминированному режиму течения. Полученные резуль-
таты могут служить как для верификации численных методов, так и для проектирования техни-
ческих систем с управляемыми проницаемыми поверхностями. 
 

Постановка задачи и аналитическое решение 
Рассматривается установившееся 

(стационарное) течение ньютоновской 
несжимаемой жидкости в плоском кана-
ле, образованном двумя бесконечными 
параллельными пластинами, располо-
женными на фиксированном расстоянии 
h друг от друга (рис. 1) [13, 14]. Пласти-
ны обладают свойством проницаемости, 
что означает возможность сквозного 
прохождения жидкости через них в 
направлении, нормальном к их поверх-
ности. Такая постановка широко ис-
пользуется в теории течений с инжекци-
ей или отсосом и находит применение в 
задачах охлаждения пористых поверх-
ностей, микрофлюидики и фильтрации. 

Вдоль канала, то есть в направлении 
оси x, поддерживается постоянный гра-
диент давления. Это означает, что дав-
ление p является линейной функцией 
координаты x: 

 
dp

G
dx

 ,             (1) 

где G – заданная константа, имеющая размерность паскаль на метр (Па/м). Важно подчеркнуть, 
что знак величины G не фиксирован априори. Если G < 0, то давление убывает вдоль направле-
ния течения, что соответствует благоприятному градиенту давления и способствует ускорению 
потока. Если же G > 0, то давление возрастает вдоль течения – это неблагоприятный градиент, 
который может приводить к замедлению потока, образованию зон обратного течения или даже к 

Рис. 1. Схема течения с проницаемыми границами 
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отрыву пограничного слоя при достаточной интенсивности. Случай G = 0 соответствует отсут-
ствию перепада давления, и движение обусловлено исключительно движением границ и прони-
цаемостью. 

Выбор системы координат осуществляется следующим образом: ось x направлена вдоль пла-
стин, совпадая с основным направлением течения; ось z направлена перпендикулярно пластинам, 
причем нижняя пластина расположена в плоскости z = 0, а верхняя – в плоскости z = h. Ось y вво-
дится для описания возможной слабой пространственной неоднородности течения вдоль канала; 
в рамках данного анализа она рассматривается как поперечная координата, отсчитываемая от не-
которого фиксированного продольного сечения. Таким образом, течение считается двумерным в 
плоскости (x, z), но продольная компонента скорости может иметь слабую зависимость от коор-
динаты y. 

Предполагается, что нормальная компонента скорости постоянна по всему объему: 
 Vz = Vw = const,                (2) 

где Vw – скорость проницаемости, имеющая размерность м/с. Положительное значение Vw > 0 со-
ответствует инжекции (втеканию жидкости в канал через обе пластины), отрицательное Vw < 0 – 
отсосу (вытеканию жидкости из канала). Поперечная компонента скорости отсутствует: 

Vy = 0.            (3) 
Продольная компонента скорости Vx представляется в виде разложения по степеням коорди-

наты y до второго порядка включительно: 
2

1 2( ) ( ) ( ).
2x

y
V U z yu z u z                  (4) 

Такая форма разложения является естественным обобщением одномерного профиля и позво-
ляет учесть линейные и квадратичные градиенты скорости вдоль канала. Функции U(z), u1(z) и 
u2(z) являются неизвестными и подлежат определению из уравнений движения и граничных 
условий. Размерности этих функций следующие: [U] = м/с, [u1] = с−1, [u2] = м−1⋅с−1, что обеспечи-
вает корректную размерность всех слагаемых в правой части уравнения (4). 

Граничные условия формулируются на основе физической постановки задачи. На нижней 
пластине (z = 0) предполагается, что жидкость полностью прилипает к неподвижной стенке. Это 
классическое условие прилипания (no-slip condition) означает, что продольная скорость обраща-
ется в нуль для любого значения y. Подстановка z = 0 в (4) и приравнивание нулю коэффициен-
тов при всех степенях y дает: 

 U(0) = 0, u1(0) = 0, u2(0) = 0. (5) 
На верхней пластине (z = h) задается конкретный профиль скорости, который не обязательно 

соответствует простому условию прилипания. Вместо этого предписываются значения самой 
скорости и ее первых двух градиентов по y. Это может моделировать, например, сопряжение с 
внешним течением, имеющим ненулевые поперечные градиенты, или движение стенки с про-
странственно изменяющейся скоростью. Математически это выражается в виде: 

 U(h) = W, u1(h) = A, u2(h) = B, (6) 
где W – характерная скорость (м/с), A – параметр линейного градиента (с−1), B – параметр квадра-
тичного градиента (м−1·с−1). В частном случае A = 0, B = 0 эти условия сводятся к классическому 
прилипанию на движущейся стенке со скоростью W. 

Уравнение неразрывности для несжимаемой жидкости имеет вид: 

 0yx z
VV V

x y z

 
  

  
.  (7) 

Подстановка предположений (2)–(4) в это уравнение показывает, что ∂Vz/∂z = 0 (поскольку Vz 
= const), ∂Vy/∂y = 0 (поскольку Vy = 0), и ∂Vx/∂x = 0 (поскольку в разложении (4) явная зависи-
мость от x отсутствует, а y рассматривается как локальный параметр). Следовательно, уравнение 
неразрывности выполняется тождественно во всем объеме канала. 

Уравнение движения вдоль оси x для стационарного течения вязкой несжимаемой жидкости 
(уравнение Навье–Стокса без временной производной) записывается как [15, 16]: 

 
2 2 2

2 2 2
x x x x x x

x y z

V V V V V Vp
V V V

x y z x x y z
 

       
                   

. (8) 
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С учетом предположений (2)–(4) и того, что ∂Vx/∂x = 0, Vy = 0, уравнение (8) существенно 
упрощается. Левая часть (инерционные члены) сводится к одному слагаемому: 

 ,x x
z w

V V
V V

z z
 

 


 
 (9) 

поскольку Vx зависит от z только через функции U(z), u1(z), u2(z). Правая часть уравнения (8) так-
же упрощается: вторая производная по x равна нулю, а производные по y и z легко вычисляются 
из разложения (4): 

 
2 2 2

2 1 22 2
( ), ( ) ( ) ( ),

2
x xV V y

u z U z yu z u z
y z

 
     

 
 (10) 

где штрихи обозначают дифференцирование по z. Градиент давления задан соотношением (1), 
поэтому −∂p/∂x = −G. 

Подставляя (9) и (10) в (8), получаем: 

 
2 2

1 2 1 2 2( ) ( ) ( ) ,
2 2w

y y
V U z yu z u z G U yu u u 

   
                  

   
. (11) 

Поскольку это равенство должно выполняться для любого y, приравняем коэффициенты при 
одинаковых степенях y в левой и правой частях. Приравнивая коэффициенты при y0, y1 и y2, по-
лучаем систему из трех независимых обыкновенных дифференциальных уравнений: 

при y0: 
 ρVwU′ = −G + μ(U′′+u2); (12) 
при y1: 
 ρVwu1′ = μu1′′; (13) 
при y2: 
 ρVwu2′ = μu2′′. (14) 
Эта система, дополненная граничными условиями (5) и (6), полностью определяет искомые 

функции U(z), u1(z) и u2(z). Уравнения (13) и (14) являются линейными однородными уравнения-
ми второго порядка с постоянными коэффициентами и имеют идентичную структуру. Уравнение 
(12) является линейным неоднородным, причем его правая часть зависит от функции u₂(z), кото-
рая находится из уравнения (14). 

Перейдем к решению системы уравнений (12)–(14) в безразмерной форме [17, 18]. Целью та-
кого перехода является выявление основных физических параметров, определяющих структуру 
течения, и приведение задачи к универсальному виду, не зависящему от конкретных размерных 
величин. Для этого вводится набор характерных масштабов, основанных на геометрии канала и 
кинематических условиях на верхней стенке. 

В качестве масштаба длины выбирается расстояние между пластинами h, в качестве масшта-
ба скорости – величина W, заданная в граничном условии (6). Масштаб давления естественным 
образом определяется из вязкого члена в уравнении Навье–Стокса и равен μW/h. На основе этих 
масштабов вводятся следующие безразмерные переменные: 

 
2

1 2
1 2, , ,

u h u hz U
U u u

h W W W
    ɶ ɶ ɶ .  (15) 

Безразмерная координата ζ изменяется в интервале от 0 до 1, что соответствует нижней и 
верхней пластинам соответственно. Введенные безразмерные функции ( )U ɶ , ( )u ɶ , 2 ( )u ɶ  те-

перь являются величинами порядка единицы, что удобно для численного анализа и физической 
интерпретации. 

Переход к безразмерным переменным в уравнениях (13) и (14) требует замены производных. 
Поскольку d/dz = (1/h)d/dζ, то ui′ = (W/(hi)) iu hɶ  = (W/(hi+1)) iuɶ  и ui′′ = (W/(hi+2)) iuɶ , где штрихи в 

правой части обозначают дифференцирование по ζ. Подстановка этих соотношений в уравнения 
(13) и (14) и сокращение общих множителей приводит к одинаковой безразмерной форме для 
обоих уравнений: 

 Re , 1,2,i w iu u i  ɶ ɶ  (16) 

где введено безразмерное число, играющее ключевую роль в задачах с проницаемыми граница-
ми. Это число Рейнольдса, основанное на скорости проницаемости: 
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 Re , .w
w

V h 


 
    (17) 

Здесь ν – кинематическая вязкость жидкости (м2 /с), а Rew  физически представляет собой 

отношение конвективного переноса импульса, обусловленного нормальным потоком через стен-
ки, к диффузионному переносу, обусловленному вязкостью. При Re 1w ≪  вязкие силы домини-

руют, и течение распределено по всему сечению канала. При | Re | 1w ≫  конвективный перенос 

локализует течение в тонких слоях вблизи границ. 
Граничные условия (5) и (6) в безразмерной форме принимают следующий вид. На нижней 

стенке (ζ = 0): 
 1 2(0) 0, (0) 0, (0) 0.U u u  ɶ ɶ ɶ   (18) 

На верхней стенке (ζ = 1) вводятся безразмерные параметры, характеризующие заданные 
градиенты скорости: 

 
2

, ,
Ah bh

a b
W W

   (19) 

что позволяет записать условия как: 
 1 2(1) 1, (1) , (1) .U u a u b  ɶ ɶ ɶ   (20) 

Параметры a  и b  являются безразмерными и описывают относительную интенсивность ли-
нейного и квадратичного градиентов скорости по сравнению с основной скоростью W. 

Рассмотрим теперь решение уравнения (16). Это линейное однородное дифференциальное 
уравнение второго порядка с постоянными коэффициентами. его характеристическое уравнение 
имеет корни r = 0 и r = Rew , поэтому общее решение записывается в виде: 

 Re( ) w
i i iu C D e

  ɶ ,  (21) 

где Ci и Di – константы интегрирования, подлежащие определению из граничных условий (18) и 
(20). 

Применяя условие (0) 0iu ɶ , получаем: 

 Ci = −Di.  (22) 
Подстановка этого результата в (21) дает: 

 Re( ) ( 1).w
i iu D e

  ɶ  (23) 

Далее, используя условие на верхней стенке (1)iuɶ  = Ki, где K1 = a  и K2 = b , находим: 

 
Re

.
1w

i
i

K
D

e



  (24) 

Окончательно, подставляя (24) в (23), получаем явные выражения для безразмерных профи-
лей: 

 
Re

1 Re

1
( ) ,

1

w

w

e
u a

e









ɶ   (25) 

 
Re

2 Re

1
( ) ,

1

w

w

e
u b

e









ɶ   (26) 

Эти формулы представляют собой точные аналитические решения для коэффициентов раз-
ложения продольной скорости. Их структура – экспоненциальная, что является прямым след-
ствием наличия нормального потока через проницаемые границы. В пределе Rew  → 0 с исполь-

зованием разложения ex ≈ 1 + x эти выражения переходят в линейные зависимости ( )iu ɶ  = Kiζ, 

что соответствует классическому случаю отсутствия проницаемости. При больших положитель-
ных значениях Rew  профили становятся резко неоднородными, концентрируясь вблизи верхней 

стенки. 
Для приведения уравнения (12) к безразмерному виду необходимо ввести еще один ключе-

вой безразмерный параметр, характеризующий влияние перепада давления. Из уравнения (12): 
ρVwU′ = −G + μ(U′′ + u2), 
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выразим все члены через безразмерные переменные (15). Учитывая, что U′ = (W/h)U ɶ  и 
U′′ = (W/h2)U ɶ , а также подставляя u2 = (W/h2) 2uɶ , получаем после деления всего уравнения на 

μW/h2: 
2

2.wV h Gh
U U u

W


 

     ɶɶɶ  

Первый коэффициент в левой части является числом Rew , определенным в (17). Второй ко-

эффициент в правой части – это безразмерный градиент давления, который удобно определить со 
знаком «минус», чтобы положительное значение параметра соответствовало движению, вызван-
ному падением давления вдоль течения. Таким образом, вводим: 

 
2

( ).
h

S G
W

    (27) 

Этот параметр S  является безразмерным и может принимать любые вещественные значения. 
При G < 0 (давление падает вдоль x) имеем S  > 0; при G > 0 (давление растет) – S  < 0; при от-
сутствии градиента давления (G = 0) – S  = 0. С учетом этого определения безразмерная форма 
уравнения (12) принимает окончательный вид: 

 2Re ( )wU U S u     ɶ ɶ ɶ .  (28) 

Правая часть этого уравнения полностью определена, поскольку функция 2u (ζ)ɶ  уже найдена 

и задается формулой (26). Для упрощения записи введем вспомогательную константу: 

 
Re 1w

b
C

e



, (29) 

что позволяет переписать (26) в компактной форме: 

 Re
2 ( ) ( 1)wu C e

  ɶ . (30) 

Подстановка (30) в правую часть уравнения (28) дает: 

    Re Re
2

w wS u S Ce C S C Ce
          ɶ . (31) 

Таким образом, уравнение (28) представляет собой линейное неоднородное дифференциаль-
ное уравнение второго порядка с постоянными коэффициентами и правой частью, состоящей из 
константы и экспоненциальной функции. Его общее решение строится как сумма общего реше-
ния однородного уравнения и частного решения неоднородного. 

Однородное уравнение, соответствующее (28), имеет вид Re 0wU U  ɶ ɶ  и, как и ранее, 

имеет общее решение: 

 Re
1 2( ) w

hU D D e
  ɶ , (32) 

где D1 и D2 – новые константы интегрирования. 
Для нахождения частного решения ( )pU ɶ  воспользуемся методом неопределенных коэффи-

циентов [19]. Правая часть (31) состоит из двух слагаемых: константы − ( S  − C) и экспоненты 

−C
Rewe

 . Для константного слагаемого частное решение ищем в виде линейной функции αζ, по-
скольку константа является решением однородного уравнения (корень r = 0). Подстановка αζ в 
левую часть (28) дает − Rew α, что должно равняться − ( S  − C). Отсюда: 

 
Rew

S C



 . (33) 

Для экспоненциального слагаемого −C wRe ζ
e  стандартный анзац β Rewe

  не подходит, так как 
Rewe

  также является решением однородного уравнения (корень r = Rew ). В этом случае частное 

решение следует искать в виде βζ Rewe
 . Вычислим его производные: 

 Re Re ReRew w w
w

d
e e e

d

     


  , 
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 
2

Re Re Re2
2

2 Re Rew w w
w w

d
e e e

d

     


  . 

Подстановка в левую часть (28): 

 Re Re Re Re Re2[2 Re Re ] Re [ Re ] Re .w w w w w
w w w w we e e e e

               

Это должно равняться −C
Rewe

 , откуда: 

 Rew C   ,   
Rew

C
   . (34) 

Собирая оба вклада, получаем частное решение: 

   Re

Re Re
w

p
w w

S C C
U e

  


 ɶ . (35) 

Полное общее решение уравнения (28) есть сумма (32) и (35): 

   Re Re
1 2 

Re Re
w w

w w

S C C
U D D e e

   


   ɶ . (36) 

Теперь необходимо определить константы D1 и D2 из граничных условий (18) и (20) для 
функции Uɶ . Первое условие Uɶ (0) = 0 дает: 

 D1 = −D2.  (37) 
Подставим это соотношение в (36): 

   Re Re
2 ( 1)

Re Re
w w

w w

S C C
U D e e

   


   ɶ . (38) 

Второе граничное условие  1 1U ɶ  приводит к уравнению: 

 Re Re
21 ( 1)

Re Re
w w

w w

S C C
D e e


    .  (39) 

Решая это уравнение относительно D2, получаем: 

 

Re Re

2 Re Re

1 1 ( 1)
Re Re Re Re

1 1

w w

w w

w w w w

S C C S C
e e

D
e e


    

 
 

. (40) 

Вспоминая определение константы C из (29), замечаем, что C( Rewe  − 1) = b . Это позволяет 
существенно упростить выражение (40): 

 2 Re Re

1 1
Re Re Re

1 1w w

w w w

S b S b

D
e e


  

 
 

. (41) 

Соответственно, из (37): 

 1 Re

1
Re

1w

w

S b

D
e







. (42) 

Таким образом, функция  U ζɶ  полностью определена формулами (36), (41) и (42). В сово-

купности с (25) и (26) это завершает построение полного аналитического решения задачи в без-
размерной форме. 

Проведем анализ полученного решения в предельных случаях. Начнем с предела малых чи-
сел Рейнольдса, Rew →0, который соответствует ситуации слабой проницаемости или высокой 

вязкости [20, 21]. В этом случае все экспоненциальные функции раскладываются в ряд Тейлора: 
2 3

Re 4(Re ) (Re )
1 Re (Re )

2 6
w w w

w we O
  

     , 

2 3
Re 4Re Re

1 Re (Re )
2 6

w w w
w we O     . 
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Подстановка этих разложений в (25) и (26) с точностью до первого порядка по Rew  дает: 

    2 2
1

Re
(Re )

2
w

wu a O    
     

ɶ ,  (43) 

    2 2
2

Re
(Re ) .

2
w

wu b O    
     

ɶ   (44) 

Для основного профиля  U ζɶ  в пределе Rew →0 уравнение (28) переходит в уравнение Пуа-

зейля с дополнительным источником: 
  0 .U S b    ɶ   (45) 

Двукратное интегрирование этого уравнения с учетом граничных условий  0 0 0U ɶ , 

 0 1 1U ɶ  приводит к полиномиальному решению третьей степени: 

   2 3
0 1 .

2 2 2 6

S b S b
U          

 
ɶ   (46) 

Этот результат полностью согласуется с классической теорией течения Куэтта–Пуазейля, 
обобщенной на случай квадратичной неоднородности на верхней стенке. 

Теперь рассмотрим противоположный предел больших положительных чисел Рейнольдса 

[22, 23], Rew  → +∞, который описывает режим сильной инжекции. В этом случае Re 1we ≫ , и 

для ζ < 1 справедливо приближение: 

 
Re Re

Re (1 )
Re Re

1

1

w w
w

w w

e e
e

e e

 
 

 


.  (47) 

Следовательно, профили (25) и (26) приобретают вид: 

   Re (1 )
1

wu ae
  ɶ ,     Re (1 )

2 .wu be
  ɶ   (48) 

Эти функции экспоненциально малы во всем объеме канала, за исключением тонкой области 
вблизи верхней стенки, где 1−ζ = O(1/ Rew ). Аналогичное поведение демонстрирует и профиль 

 U ζɶ , который стремится к нулю при ζ < 1 и быстро нарастает до единицы вблизи ζ = 1. 

Характерная толщина области, в которой происходит этот резкий переход, определяется из 
условия, что аргумент экспоненты в (47) имеет порядок единицы: 

 Rew (1−ζ) = O(1).  (49) 

Переходя к размерным переменным с помощью ζ = z/h, получаем: 

 Re (1)w

h z
O

h


 ,     

Rew

h
h z O

 
   

 
.  (50) 

Таким образом, толщина пограничного слоя у верхней стенки оценивается как: 

 ~ 
Rew

h
 .  (51) 

Эта оценка является прямым следствием структуры точного аналитического решения и не 
требует дополнительных гипотез. Она справедлива при Rew  ≫ 1 и описывает локализацию тече-

ния в тонком слое у верхней пластины в случае инжекции (Vw > 0). В случае отсоса (Vw < 0, Rew  

→ −∞) аналогичный пограничный слой формируется у нижней стенки, и его толщина также оце-
нивается как δ∼h/∣ Rew ∣. 

Полученное решение является строгим аналитическим результатом для поставленной крае-
вой задачи с учетом постоянного градиента давления произвольного знака, проницаемости гра-
ниц и неоднородных кинематических условий на верхней стенке. Оно применимо для анализа 
течений в каналах с проницаемыми поверхностями, возникающих в задачах фильтрации, тепло-
обмена и микрофлюидики. 
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Методика численного моделирования 

Численное моделирование выполнено на основе полученного аналитического решения [24, 
25]. Для верификации решения и визуализации пространственной структуры течения проведены 
расчеты для трех реальных ньютоновских жидкостей: воды, глицерина и этиленгликоля при тем-
пературе 20 °C. Физические свойства жидкостей (плотность ρ и динамическая вязкость μ) взяты 
из справочных данных. 

Геометрические и кинематические параметры задачи зафиксированы следующим образом: 
расстояние между пластинами h = 10 мм, скорость верхней стенки W = 0,5 см/с, параметры гра-
диента скорости A = 0,1 с−1 и B = 0,002 м−1·с−1, скорость проницаемости Vw = 0,2 см/с (инжекция), 
градиент давления G = –5 Па/м. 

 Расчетная область дискретизирована с использованием неравномерной сетки по координате 
z, сгущенной вблизи верхней стенки (z = h) для точного разрешения тонкого пограничного слоя 
при больших значениях wRe . По координате y использована равномерная сетка на интервале 

[−10, 10] см. Для каждой жидкости вычисляются безразмерные параметры Re = Wh/ν, wRe  = 

Vwh/ν, a = Ah/W, b = Bh2/W и S = h2(−G)/(μW). 
Поле продольной скорости Vx(y,z) вычисляется по формуле (4) с подстановкой аналитических 

выражений для U(z), u1(z) и u2(z). На основе этого поля численно определяются производные 
∂Vx/∂z и ∂Vx/∂y с использованием центральных разностей второго порядка точности, что позволя-
ет рассчитать поля завихренности и напряжений сдвига. Все вычисления выполнены в среде 
MATLAB R2023b с двойной точностью. Для предотвращения численной неустойчивости при 
∣ wRe ∣ < 10−12 используется предельный полиномиальный вариант решения (46) [26]. 

 
Результаты и их обсуждение 

Для верификации полученного аналитического решения и исследования влияния физических 
свойств жидкости на структуру течения был проведен расчетный эксперимент. Результаты де-
монстрируют качественно различное поведение течения в зависимости от соотношения между 
вязкостью жидкости и интенсивностью проницаемости.  

На рис. 2 представлены поля продольной компоненты скорости Vx для всех трех жидкостей. 
Несмотря на идентичные граничные условия и геометрию, профили существенно различаются. 
Вода, обладающая наименьшей вязкостью, демонстрирует наиболее выраженную неоднород-
ность вблизи верхней стенки, что является следствием высокого значения wRe  = 19,92. Напро-

тив, глицерин с его высокой вязкостью (μ = 1,49 Па·с) характеризуется почти линейным профи-
лем скорости по всему сечению канала ( wRe  = 0,027), что указывает на доминирование вязких 

сил. Этиленгликоль занимает промежуточное положение. Полученные результаты находятся в 
качественном соответствии с выводами асимптотического анализа. 

Структура течения более полно раскрывается при анализе поля завихренности ω = ∂Vx/∂z, 
представленного на рис. 3. Для воды наблюдается резкий пик завихренности в тонком слое у 

Рис. 3. Поля завихренности ω для различных  
жидкостей 

Рис. 2. Поля продольной компоненты  
скорости Vx для различных жидкостей 
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верхней стенки, что подтверждает наличие конвективно-доминированного пограничного слоя. У 
глицерина распределение завихренности практически однородно, что типично для течений, 
управляемых вязкостью. Этиленгликоль вновь демонстрирует переходный характер. Сравнение 
этих полей с профилями скорости позволяет сделать вывод о том, что именно градиент скорости, 
а не ее абсолютное значение, определяет локальную динамику вязкого трения. 

Этот вывод подтверждается и распределением напряжений сдвига τ = μ∂Vx/∂z, показанным на 
рис. 4. Несмотря на то, что градиент скорости у воды максимален, ее низкая вязкость приводит к 
умеренным напряжениям. В то же время, глицерин, несмотря на малый градиент скорости, со-
здает значительно более высокие напряжения сдвига из-за своей высокой вязкости. Это подчер-
кивает важность комплексного учета обоих факторов: как кинематики течения, так и реологиче-
ских свойств жидкости – при оценке сил трения в каналах с проницаемыми стенками. 

Полная картина течения, включающая вклад нормальной компоненты скорости Vz = Vw, от-

ражена в модулях полной скорости ∣V
�

∣, изображенных на рис. 5. Видно, что для всех жидкостей 

нормальная компонента вносит заметный вклад, 
особенно в области, удаленной от верхней стенки. 
Для воды, где продольная скорость в ядре канала 
мала, модуль полной скорости определяется в ос-
новном проницаемостью, что приводит к почти од-
нородному полю. Для глицерина, напротив, высокая 
продольная скорость в центре канала доминирует 
над нормальной компонентой. Это демонстрирует 
сложное взаимодействие между движением стенки, 
градиентом давления и проницаемостью. 

Для количественного сравнения профилей на 
рис. 6 приведены зависимости продольной скорости 
Vx от координаты z в центральном сечении канала (y 
= 0). Четко видна тенденция: с увеличением числа 
Рейнольдса Re профиль становится все более 
«наполненным», стремясь к равномерному распре-
делению. Глицерин (Re = 0,034) имеет почти треугольный профиль, характерный для чистого 
течения Куэтта, в то время как вода (Re = 49,8) демонстрирует почти плоский профиль в ядре 
потока с резким падением до нуля у нижней стенки. Этот переход от вязко-доминированного к 
конвективно-доминированному режиму является основной особенностью исследуемой задачи.  

Обобщенная картина режимов течения представлена на карте режимов на рис. 7, где по осям 
отложены числа Рейнольдса Re и Rew [29, 30]. Жидкости маркированы в соответствии с их физи-
ческими свойствами. Карта наглядно демонстрирует, что глицерин находится в области лами-
нарного, диффузионно-доминированного течения, в то время как вода расположена в зоне лами-

Рис. 6. Профили продольной скорости Vx 
(y = 0) для различных жидкостей 

Рис. 5. Поля модулей полной скорости ∣V∣ для раз-
личных жидкостей 

Рис. 4. Поля напряжений сдвига τ для различных 
жидкостей 
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нарного, но конвективно-доминированного режима. Эта визуализация подтверждает, что для 
полного описания течения в каналах с проницаемыми стенками недостаточно одного числа Рей-
нольдса; необходимо учитывать и число Rew, характеризующее интенсивность проницаемости. 

Для более глубокого анализа струк-
туры пограничного слоя были рассчита-
ны его интегральные характеристики: 
толщина вытеснения δ* и толщина им-
пульса θ. На рис. 8, а) (слева) показаны 
нормированные профили скорости, а на 
рис. 8, б) (справа) – соответствующие 
интегральные толщины. Форма профиля 
для глицерина близка к линейной, что 
дает высокое значение формы H = δ*/θ ≈ 
2,5, характерное для ламинарных течений 
с малым градиентом давления. Профиль 
для воды значительно более «наполнен-
ный», что приводит к снижению H до 
значения около 1,2, что типично для те-
чений с благоприятным градиентом давления или сильной инжекцией. 

Особое внимание было уделено верификации асимптотической оценки толщины погранич-
ного слоя δ ∼ h/Rew. На рис. 9 представлены результаты специализированного анализа для воды 

при различных значениях Rew. На рис. 9, а видно, как с ростом Rew профиль скорости все более 
локализуется вблизи верхней стенки. Рис. 9, б показывает, что численно определенная толщина 
слоя δ99 (расстояние, на котором скорость достигает 99 % своего максимума) с высокой точно-
стью следует асимптотической зависимости δ = 1/Rew. Рис. 9, в демонстрирует, что относитель-
ная ошибка этой оценки стремится к нулю при Rew → ∞, что является прямым подтверждением 
корректности проведенного асимптотического анализа. 

Таким образом, проведенный численный эксперимент полностью подтверждает все ключе-
вые положения аналитического решения [27, 28]. Полученные результаты демонстрируют, что 
структура течения в каналах с проницаемыми стенками определяется не только вязкостью и ско-
ростью движения границ, но и интенсивностью нормального потока, которая контролирует лока-
лизацию течения. Введение числа Рейнольдса Rew, основанного на скорости проницаемости, ока-
зывается необходимым для описания перехода от диффузионного к конвективному режиму. Эти 
выводы имеют важное значение для прикладных задач в области микрофлюидики, фильтрации и 

Рис. 8. Нормированные профили скорости и интегральные толщины пограничного слоя для 
различных жидкостей 

Рис. 7. Карта режимов течения в координатах Re и Rew  
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тепломассообмена, где управление течением через проницаемые поверхности является ключе-
вым технологическим приемом. 

 

 
Заключение 

В настоящей работе предложена и исследована модель установившегося течения вязкой не-
сжимаемой жидкости в плоском канале с проницаемыми стенками, учитывающая одновременное 
влияние движения границ, нормального сквозного потока и постоянного градиента давления. В 
отличие от классических постановок, на верхней границе задан не только профиль скорости, но и 
его первые два пространственных градиента, что позволяет описывать более широкий класс 
практических течений, включая сопряжение с внешними потоками или локальные неоднородно-
сти. 

Аналитическое решение задачи получено в замкнутой форме и выражено через три безраз-
мерных параметра: число Рейнольдса Re, число Рейнольдса на основе скорости проницаемости 
Rew и безразмерный градиент давления S. Такая параметризация позволяет единообразно описы-
вать как вязко-доминированные, так и конвективно-доминированные режимы. Особое внимание 
уделено асимптотическому поведению решения: в пределе слабой проницаемости восстанавли-
вается полиномиальный профиль, характерный для обобщенного течения Куэтта–Пуазейля, то-
гда как при сильной инжекции течение локализуется в тонком пограничном слое у верхней стен-
ки. 

На основе структуры точного решения строго выведена оценка толщины этого слоя, пропор-
циональная h/Rew, что подтверждено численным анализом для реальных жидкостей. Полученные 
результаты демонстрируют, что для адекватного описания течений в каналах с проницаемыми 
поверхностями недостаточно традиционного числа Рейнольдса; необходимо дополнительно учи-
тывать интенсивность нормального потока через параметр Rew. Данная модель может служить 
теоретической основой для проектирования и оптимизации технических систем, где управление 
течением осуществляется именно через проницаемые границы. 
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Abstract. The paper investigates steady flow of a viscous incompressible fluid in a plane channel 

with permeable parallel walls. In contrast to classical formulations, not only the velocity value but also 
its first two spatial gradients are specified at the upper boundary. This approach enables modeling flows 
with local inhomogeneity along the channel. The lower wall is stationary and satisfies the no-slip condi-
tion. A constant pressure gradient of arbitrary sign and a uniform normal flow through both boundaries 
are taken into account. The problem is solved analytically in dimensionless form, where the Reynolds 
number, the permeability-based Reynolds number, and the dimensionless pressure gradient play the de-
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termining role. Asymptotic analysis is carried out for the limiting cases of weak and strong permeability. 
Based on the structure of the exact solution, an estimate for the boundary layer thickness under injection 
is derived. The results are verified by numerical simulations for real fluids and demonstrate the transi-
tion from a viscosity-dominated to a convection-dominated flow regime. 

Keywords: Couette–Poiseuille flow; permeable boundaries, analytical solution; Reynolds number; 

boundary layer; pressure gradient, normal flow; inhomogeneous boundary conditions. 
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