ЯВНАЯ СХЕМА РЕШЕНИЯ ТРЕТЬЕЙ СМЕШАННОЙ ЗАДАЧИ ДЛЯ КВАЗИЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

М.З. Хайрисламов1, А.В. Геренштейн2

Предлагается численный метод решения третьей смешанной задачи для одномерного квазилинейного уравнения теплопроводности параболического типа, основанный на использовании явной разностной схемы. За
висимость коэффициентов уравнения от температуры предполагается введением новой искомой функции – первообразной теплопроводности. Предлагается тестовая задача с известным точным решением для численных расчетов.

Ключевые слова: теплопроводность, квазилинейное уравнение теплопро
водности, явные разностные схемы, аппроксимация.

В настоящей работе используются идеи, изложенные в работах [1, 2], в которых была предложена и обоснована явная устойчивая схема для линейного уравнения теплопроводности.

1. Численный метод

Рассмотрим следующую постановку третьей смешанной задачи для одномерного однородно
го квазилинейного уравнения [3]:

\[\begin{align*}
& c(u) \frac{du}{dt} = \frac{d}{dx} \left(q(u) \frac{du}{dx} \right), \quad 0 < t \leq T, \ 0 < x < L, \\
& u(x, 0) = \varphi(x), \\
& \left(q(u) \frac{du}{dx} \right)_{x=0} = \lambda_l(u(0, t))(\theta_l - u(0, t)) + Q_l, \\
& \left(q(u) \frac{du}{dx} \right)_{x=L} = \lambda_r(u(L, t))(\theta_r - u(L, t)) + Q_r,
\end{align*} \]

где \(u = u(x, t) \) – температура стержня; \(0 \leq x \leq L \) – координата; \(0 \leq t \leq T \) – время; \(L \) – длина стержня; \(T \) – конечный момент времени; \(c(u) \) – объемная теплоемкость материала стержня; \(q(u) \) – теплопроводность материала стержня; \(\varphi(x) \) – функция начального распределения температуры стержня; \(\lambda_l(u) \) – коэффициент теплоотдачи на левом конце стержня; \(\lambda_r(u) \) – коэффициент теплоотдачи на правом конце стержня; \(\theta_l \) – температура внешней среды на левом конце стержня; \(\theta_r \) – температура внешней среды на правом конце стержня; \(Q_l = Q_l(t) \) – мощность потока тепла на левом конце стержня; \(Q_r = Q_r(t) \) – мощность потока тепла на правом конце стержня. Функции \(c = c(u) \), \(q = q(u) \), \(\lambda_l = \lambda_l(u) \) и \(\lambda_r = \lambda_r(u) \) предполагаются непрерывными функциями температуры, заданными для всех значений температуры.

Замена искомой функции

Поскольку в уравнении присутствует член \(q(u) \frac{du}{dx} \), то удобно сделать замену

\[G(u) = \int_0^u q(\xi)d\xi. \]

Тогда для функции \(G \) получим уравнение

\[\frac{dG}{dt} = a^2(u) \frac{d^2G}{dx^2}, \quad \text{где} \quad a(u) = \sqrt{\frac{q(u)}{c(u)}}, \]

1 Хайрисламов Михаил Зияхуллаевич – аспирант, кафедра прикладной математики, Южно-Уральский государственный университет
E-mail: zmatimk@gmail.com
2 Геренштейн Аркадий Винчевич – кандидат физико-математических наук, доцент, кафедра прикладной математики, Южно-Уральский государственный университет

Вестник ЮУрГУ. Серия «Математика. Механика. Физика»
Шаблон схемы. Расчетные формулы

На плоскости \((x, t)\) используются равномерная сетка [2]

\[
\omega_{n} = \omega_{n} \times \omega_{\tau}, \quad \omega_{n} = \left\{ x_{i} = \left(i - \frac{1}{2}\right)h, \quad i = 1, 2, \ldots, N \right\}, \quad \omega_{\tau} = \{ t_{j} = j\tau, \quad j = 0, 1, \ldots \},
\]

где \(h = L/N\) — шаг по переменной \(x\), \(\tau = \) шаг по переменной \(t\). Шаблон предлагаемой схемы представлен на рис. 1. Для обозначения значений сеточной аппроксимации функции \(G\) на следующем временном слое используется верхний индекс (+1), на следующем полуколд временном слое — \(\left[\frac{1}{2}\right]\), а на предыдущем полуколд временном слое — \(\left[-\frac{1}{2}\right]\).

Используемая расчетная формула имеет вид

\[
G_{i}^{(t+1)} = (G_{i} - B)e^{-\frac{2a^{2}(u_{i})\tau}{h^{2}}} + A\tau + B,
\]

где

\[
A = \frac{1}{2\tau} \left(G_{i-1}^{\frac{1}{2}} - G_{i-1}^{\frac{1}{2}} + G_{i+1}^{\frac{1}{2}} - G_{i+1}^{\frac{1}{2}} \right), \quad B = \frac{G_{i-1} + G_{i+1}}{2} - A \cdot \frac{h^{2}}{2a^{2}(u_{i})}.
\]

Для расчета значений функции \(G\) на временном слое \(t = \tau\) также для вычисления значений функции в полуколосаах по времени используются формулы:

\[
G_{i} (\tau) = G_{i} e^{-\frac{2a^{2}(u_{i})\tau}{h^{2}}} + \left(1 - e^{-\frac{2a^{2}(u_{i})\tau}{h^{2}}} \right) \left(G_{i-1} + G_{i+1} \right), \quad G_{i}^{\frac{1}{2}} = G_{i}^{\frac{1}{2}} e^{-\frac{a^{2}(u_{i})\tau}{h^{2}}} + \left(1 - e^{-\frac{a^{2}(u_{i})\tau}{h^{2}}} \right) \left(G_{i-1} + G_{i+1} \right).
\]

Для выполнения краевых условий введены фиктивные узлы с номерами 0 и \(N+1\) (см. рис. 1): сначала рассчитывается значения искомой функции во внутренних точках, после чего, исходя из краевых условий, задаются ее значения в фиктивных узлах.

Используя следующие аппроксимации второго порядка точности

\[
\lambda_{i}(u(0, t)) = \left(\frac{\lambda_{i} - (\lambda_{i})_{2}}{2} \right), \quad q(u(0, t)) = \frac{3q_{1} - q_{2}}{2}, \quad \frac{\partial u(0, t)}{\partial x} = \frac{u_{1} - u_{2}}{h}, \quad u(0, t) = \frac{u_{0} + u_{1}}{2},
\]

иструдно получить формулу определения температуры в фиктивном узле 0:

\[
u_{0} = -\frac{u_{1} \left(\frac{3q_{1} - q_{2}}{h} - \frac{3(\lambda_{i})_{1} - (\lambda_{i})_{2}}{2} \right) + (3(\lambda_{i})_{1} - (\lambda_{i})_{2})\theta_{i} + 2Q_{i}}{\frac{3q_{1} - q_{2} + 3(\lambda_{i})_{1} - (\lambda_{i})_{2}}{2}}.
\]
Аналогичные рассуждения для правого конца приводят к расчетной формуле для узла $N + 1$

$$u_{N+1} = \frac{3q_N - q_{N-1} - \frac{3}{2}(\lambda_r)_N - (\lambda_r)_{N-1}}{h} + \frac{(3(\lambda_r)_N - (\lambda_r)_{N-1})\theta_r + 2Q_r}{3q_N - q_{N-1} + \frac{3}{2}(\lambda_r)_N - (\lambda_r)_{N-1}}.$$ (5)

2. Тестовая задача
С учетом конечности скорости распространения тепла в [4] были получены приближенные решения одномерной задачи нелинейной теплопроводности на полубесконечной прямой при заданном потоке в начале координат в виде степенной зависимости. В данной работе с использованием идей, изложенных в [4, 5], получено аналитическое решение следующей третий смешанной задачи на полубесконечной прямой для одномерного квазилинейного уравнения теплопроводности:

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(u^n \frac{\partial u}{\partial x} \right), \quad t > 0, \quad x > 0, \quad (6)$$
$$u(x, 0) = 0, \quad x \geq 0, \quad (7)$$
$$\left(u^n \frac{\partial u}{\partial x} \right)_{x=0}^1 = \lambda u_{t=0} - Q^n, \quad t > 0, \quad (8)$$

где $n > 0$ – показатель степени, характеризующий лучистую теплопроводность, $\lambda > 0$ – коэффициент теплоотдачи, $Q > 0$ – коэффициент, характеризующий мощность теплового потока в начале координат.

В частности, при $n = 2$ точное решение задачи (6)–(8) будет таким:

$$u(x, t) = \begin{cases} \sqrt{2\alpha(\alpha t - x)}, & x < \alpha t, \\ 0, & x \geq \alpha t, \end{cases} \quad (9)$$

где $\alpha = \frac{-\lambda + \sqrt{\lambda^2 + 2\sqrt{2Q}}}{2}$.

3. Результаты численных расчетов
Решалась задача (6)–(8) при $n = 2, \lambda = 1$ Дк/(м2×с×0 С), $Q = 5$ Дк/(м2×с). Шаг по координате h брался равным 1, шаг по времени τ брался равным 0.05. Сравнение численного и точного решений в моменты времени $t = 10, 20, 30$ с приведено на рис. 2. Сплошная кривая представляет точное решение.

![Рис. 2. Численное и точное решения задачи в разные моменты времени](image)

Полученные результаты позволяют говорить о хороших свойствах предложенного численного метода.
EXPICIT SCHEME FOR THE SOLUTION OF THIRD BOUNDARY VALUE PROBLEM FOR QUASI-LINEAR HEAT EQUATION

M.Z. Khayrislamov¹, A.W. Herreinstein²

In produced paper numerical method for the solution of third boundary value problem for one-dimensional quasi-linear heat equation grounded on the use of explicit finite-difference scheme is offered. The coefficients’ dependence on temperature is overcome by introducing the new unknown function – a primitive integral of conduction. Test problem with known exact solution for numerical calculations is proposed.

Keywords: thermal conductivity, quasi-linear heat equation, explicit finite-difference schemes, approximation.

References

¹Khayrislamov Mikhail Znatullaevich is Post-Graduate student, Applied Mathematics Department, South Ural State University
²Herreinstein Arcady Wasilevich is Cand Sc (Physics and Mathematics), Associate Professor, Applied Mathematics Department, South Ural State University

Postupila v redakciyu 6 martsa 2013 g.