ИНВАРИАНТНАЯ ЗАВИХРЕННОСТЬ И ТЕПЛОВОЕ СОСТОЯНИЕ ПОЛЗУЩЕГО ТЕЧЕНИЯ ЖИДКОСТИ СКВОЗЬ ПРОНИЦАЕМУЮ МЕМБРАНУ

О.Н. Шабловский¹

Представлен новый класс стационарных ползущих движений вязкой жидкости с учетом внешней силы сопротивления. Дан пример инвариантной завихренности течения жидкости сквозь проницаемую мембраннокапсульную систему. Изучено влияние морфологических свойств капсул на закономерности производства энтропии. Обнаружена важная роль корреляции «вихрь скорости – вязкая диссипация энергии» в формировании теплового поля жидкости.

Ключевые слова: ползущее течение; завихренность; вязкая диссипация энергии; производство энтропии; устойчивость.

Введение. Гидродинамика медленных («ползущих») течений вязкой жидкости имеет широкую область практических приложений [1]: химическая и мембранная технологии, фильтрация воды и нефти в грунтах, дисперсные системы и др. В теоретическом отношении наиболее полно изучены процессы медленного обтекания тел вращения, задачи о движении в жидкости групп из нескольких частиц, а также течение жидкости в пористой среде и вопросы гидродинамической теории смазки. Анализ современного состояния теории ползущих течений [2-5] показывает, что являются актуальными следующие вопросы: вихревые свойства течений при малых числах Рейнольдса, роль вязкой диссипации энергии в формировании структуры теплового поля жидкости, закономерности производства энтропии. Известно, что число Рейнольдса $\text{Re} = \rho u_b l / \mu$ представляет отношение сил инерции к силам вязкого трения и определяет интенсивность вынужденной конвекции. Здесь ρ – плотность жидкости; u_h – масштаб скорости; l – характерный линейный размер; *µ* – коэффициент динамической вязкости. Ползущее течение происходит при Re≪1, и это означает, что вязкость жидкости большая, а конвективное ускорение – малое. Следовательно, в уравнениях движения доминируют силы, зависящие от вязкости, и можно пренебречь инерционными членами. Движение жидкости мы рассматриваем с учетом внешней силы трения $\vec{F} = -\zeta \vec{V}$, которая моделирует сопротивление потоку на границах области течения (стенки трубы, дно кюветы, подстилающая поверхность и др.) [6]. Здесь ζ – коэффициент сопротивления;

 \vec{V} – вектор скорости жидкости. Следует отметить, что принятый в теории фильтрации закон Дарси можно интерпретировать как линейную зависимость силы сопротивления от скорости фильтрации [7]. Особенности влияния \vec{F} на структуру вязкого потока изложены в [8].

В настоящей статье изучаются гидродинамические и тепловые аспекты задачи о ползущем течении вязкой ньютоновской жидкости сквозь проницаемую мембрану. Цель работы: 1) получить новый класс двумерных стационарных ползущих течений вязкой жидкости с учетом внешней силы сопротивления; 2) построить в виде сильного гидродинамического разрыва математическую модель проницаемой мембранно-капсульной системы; 3) изучить вихревые, диссипативные и энтропийные свойства этого течения.

Точное решение. Стационарное ползущее течение жидкости определяется следующими уравнениями:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \qquad (1)$$

$$\mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial p}{\partial x} + \rho \zeta u, \tag{2}$$

¹ Шабловский Олег Никифорович – доктор физико-математических наук, профессор, кафедра технической механики, Гомельский государственный технический университет имени П.О. Сухого. E-mail: shablovsky-on@yandex.ru

$$\mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) = \frac{\partial p}{\partial x} + \rho \zeta v, \tag{3}$$

$$c\left(u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y}\right) = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + \Phi, \qquad (4)$$

$$\Phi = \mu \left[4 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 \right], \tag{5}$$

где x, y – прямоугольные декартовы координаты; p – давление жидкости; u, v – компоненты вектора скорости $\vec{V} = \vec{u} + \vec{v}$; T – температура; λ – коэффициент теплопроводности; $c = \rho c_p$ – объемная теплоемкость; Φ – диссипативная функция. Рассматриваем процессы, для которых $\rho, \mu, \zeta, \lambda, c$ – const, и динамическую задачу решаем отдельно от тепловой. Производство энтропии за счет внутренних необратимых процессов подсчитывается по формуле [9]:

$$\sigma = [(\vec{q} \cdot \vec{q})/(\lambda T^2)] + (\Phi/T), \qquad (6)$$

где \vec{q} – вектор удельного теплового потока, имеющий компоненты, $q_x = -\lambda \partial T / \partial x$, $q_y = -\lambda \partial T / \partial y$. Принцип минимума производства энтропии в стационарных состояниях (принцип Пригожина) выражается неравенством [10]:

$$\sigma_{stab} \le \sigma_{instab} \,, \tag{7}$$

где левая/правая части неравенства соответствуют производству энтропии в устойчивом/неустойчивом состояниях. Для неравновесного перехода термодинамической системы из старого в новое состояние принцип (7) означает следующее: новому устойчивому состоянию отвечает меньшее значение производства энтропии, чем производство энтропии старого, но продолженного в неустойчивую область состояния системы. Подробное изложение этого вопроса и библиография проблемы даны в [10].

Непосредственной подстановкой можно убедиться, что уравнения гидродинамики (1)–(3) имеют следующее точное решение:

$$u = \dot{\psi}\delta\eta, \quad v = -\dot{\psi}\delta\xi, \tag{8}$$

$$\xi = E \sin \delta y, \ \eta = E \cos \delta y, \ E = \exp \delta x, \tag{9}$$

$$\dot{\psi} \equiv d\psi/d\xi = \psi_1 + 3\psi_3\xi^2$$
, $\psi_1, \psi_3 - \text{const}$

где $\psi = \psi(\xi)$ – функция тока. Параметр решения δ удовлетворяет связи $\zeta = 8\delta^2 v$, $v = \mu/\rho$. Давление жидкости подсчитывается по формуле

$$\Pi \equiv p - p_0 = 2\mu\delta^2 E^2\eta\psi_3 - \rho\zeta(\psi_1\eta + \psi_3\xi^2\eta), \ p_0 \equiv \text{const}.$$
 (10)
Завихренность течения равна

$$\equiv (1/2)[(\partial \nu/\partial x) - (\partial u/\partial y)] = -\ddot{\psi}\delta^2 E^2/2, \quad \ddot{\psi} = 6\psi_3\xi, \quad (11)$$

где ψ_3 – свободный параметр. Компоненты девиатора тензора напряжений такие: $\tau_{xx} = -\tau_{yy} = 2\mu\partial u/\partial x$, $\tau_{xy} = \tau_{yx} = \mu[(\partial v/\partial x) + (\partial u/\partial y)]$. Диссипативная функция (5) имеет вид:

$$\Phi = 4\mu\delta^4 E^2 [9\psi_3^2 E^4 \sin^2 \delta y \cos^2 \delta y + (\psi_1 + 6\psi_3 E^2 \sin^2 \delta y)^2].$$
(12)

Плоскость течения разделена на две области. Область 1 – это правая полуплоскость $x \ge 0$, $\delta^{(1)} = \delta < 0$. Область 2 – это левая полуплоскость $x \le 0$, $\delta^{(2)} = -\delta^{(1)} = -\delta > 0$. Верхний индекс в скобках указывает номер области. Принимая во внимание структуру формул (8)–(10), берем $\psi_1^{(1)} = -\psi_1^{(2)} = \psi_1$, $\psi_3^{(1)} = -\psi_3^{(2)} = \psi_3$, $\rho^{(1)} = \rho^{(2)} = \rho$, $\zeta^{(1)} = \zeta^{(2)} = \zeta$, $\mu^{(1)} = \mu^{(2)} = \mu$, $p_0^{(1)} = p_0^{(2)} = p_0$, и тогда при одних и тех же значениях |x| получаем:

$$u(x \le 0, y) = u(x \ge 0, y); \quad v(x \le 0, y) = -v(x \ge 0, y);$$
(13)

$$\Pi(x \le 0, y) = -\Pi(x \ge 0, y); \quad \tau_{xx}(x \le 0, y) = -\tau_{xx}(x \ge 0, y);$$

$$\tau_{xy}(x \le 0, y) = \tau_{xy}(x \ge 0, y); \quad \omega(x \le 0, y) = \omega(x \ge 0, y),$$

где $y \in (-\infty, \infty)$. Из дальнейшего решения тепловой задачи будет ясно, что надо также взять $\lambda^{(1)} = \lambda^{(2)} = \lambda$, $c^{(1)} = c^{(2)} = c$.

Гидродинамическая интерпретация решения заключается в том, что проницаемую мембрану [линию x = 0] мы принимаем за неподвижный вдоль нормали \vec{n} сильный разрыв. На таком разрыве должны быть выполнены динамические условия совместности [11], являющиеся следствием интегральных законов сохранения массы, импульсов и энергии. В данном случае имеем при x = 0 следующие условия:

$$\rho^{(1)}u_1 = \rho^{(2)}u_2 = \rho u \,; \tag{14}$$

$$\vec{R} + \vec{p}_n^{(1)} - \rho^{(1)} \vec{V}_1 u_1 = \vec{p}_n^{(2)} - \rho^{(2)} \vec{V}_2 u_2; \qquad (15)$$

$$W + \vec{p}_n^{(1)} \cdot \vec{V}_1 - q_x^{(1)} - \rho^{(1)} u_1[(\vec{V}_1^2/2) + U_1] = \vec{p}_n^{(2)} \cdot \vec{V}_2 - q_x^{(2)} - \rho^{(2)} u_2[(\vec{V}_2^2/2) + U_2],$$
(16)

где \vec{p}_n – вектор поверхностных напряжений с компонентами $p_{nx} = -p + \tau_{xx}$, $p_{ny} = \tau_{xy}$; $\vec{R}(R_x, R_y)$ и W – поверхностные плотности распределения на разрыве внешних для жидкости возбуждающей силы и притока энергии. Индексами 1, 2 отмечены параметры течения справа (x = +0) и слева (x = -0) от разрыва. Далее все формулы записаны в терминах и обозначениях правой полуплоскости, $x \ge 0$.

Физические и физико-химические процессы на поверхности мембраны могут быть весьма разнообразными [12]. Источники импульсов \vec{R} и энергии W моделируют возбуждающее динамическое и тепловое воздействие мембраны x = 0 на жидкость. Из выражений (8)–(10) [см. также группу формул (13)] ясно, что при x = 0 *u*-компонента скорости непрерывна, а *v*-компонента меняет знак. Таким образом, при протекании через разрыв вектор скорости \vec{V} сохраняет свой модуль, но изменяет направление, т.к. поворачивается на некоторый угол. Вязкое касательное напряжение τ_{xy} и диссипативная функция Φ непрерывны при x=0. Отклонение давления $\Pi = p - p_0$ от его отсчетного значения p_0 имеет разные знаки по обе стороны ($x = \pm 0$) разрыва. Вся плоскость течения разделена на полосы линиями $\delta y = \pi n_0 [n_0 = 0, \pm 1, \pm 2, ... – любое целое число], вдоль которых <math>v = 0$, $u = \delta E \psi_1 (-1)^{n_0}$. Значит, $\delta y = \pi n_0 - 3$ то линии растекания потока (spread line), которые обладают еще и тем свойством, что вдоль них $\omega = 0$, см. (11). При переходе через линию растекания v-компонента скорости и завихренность ω меняют знаки. Характерные точки гидродинамического поля – это точки пересечения линии разрыва и линий растекания:

$$x = 0$$
, $\delta y = \pi n_0$, $v = 0$, $u = \psi_1 \delta(-1)^{n_0}$, $\Pi = (-1)^{n_0} \rho \zeta[(\psi_3 / 4) - \psi_1]$.

Для краткости называем каждую такую точку *s*-точкой. В *s*-точке скорость непрерывна, а скачок давления $[\Pi^{(1)} = -\Pi^{(2)}]$ обусловлен действием возбуждающей силы \vec{R} . Группа линий поворота

$$\delta y = 2\pi n_0 \pm (\pi/2), \ u = 0, \ v = -(\psi_1 + 3\psi_3 E^2)\delta(\pm E), \ p = p_0$$

представляет собой семейство изобар, и на каждой p_0 -изобаре происходит поворот вектора скорости, потому что *u*-компонента меняет знак при переходе через p_0 -изобару. Данное течение является периодическим по координате *y*, и наблюдается перемежаемость p_0 -изобар (линий поворота) и линий растекания потока. Обсудим два режима движения жидкости: безвихревое течение по обе стороны проницаемой мембраны и вихревое течение, содержащее мембраннокапсульную систему.

Безвихревое течение. При $\psi_3 = 0$ имеем нулевую завихренность $\omega \equiv 0$, см. (11). Схема расположения векторов скорости жидкости дана на рис. 1. В каждой полосе между линиями растекания доминирующее направление движения показано дуговыми стрелками. В центральной части рис. 1 (вблизи оси ординат δ_y) тонкими стрелками указано изменение направления вектора скорости, являющееся результатом натекания жидкости на сильный разрыв. Отдельный отрезок на разрыве, например [$-\pi$, 0], [0, π], [π , 2 π] и т.д. является звеном всей цепочки x = 0.

Механика

Из рис. 1 ясно, что каждое звено обтекается потоком жидкости и на краях звена, т.е. в *s*-точках, векторы скорости параллельны и противоположны друг другу. Из (15) находим:

$$x = 0, R_x = (9/4)\Pi, R_v = 2\rho u v,$$
 (17)

где $\Pi(x=0, y) = -8\delta\mu u(x=0, y)$. Для случая $\psi_3 = 0$ гидродинамическое поле (8)–(10) есть результат действия двумерного источника импульсов (17). На разрыве скорость и давление жидкости выражаются через компоненты возбуждающей силы следующим образом: $\Pi = (4/9)R_x$, $u^2v^2 = R_y^2/(4\rho^2)$, $u^2 + v^2 = \delta^2\psi_1^2$. Давление Π пропорционально поперечной к разрыву R_x компоненте. Продольная по отношению к разрыву R_y -компонента силы нелинейным образом проявляет себя при формировании двумерного гидродинамического поля, а именно: R_y мультипликативно связана со скоростями u, v.

Рис. 1. Схема течения жидкости по обе стороны сильного разрыва. Толстые стрелки – компоненты вектора скорости; тонкие стрелки – направление вектора скорости вблизи разрыва. Линия растекания – сплошная; линия поворота – пунктирная. Дуговая стрелка указывает направление движения жидкости в полосе между линиями растекания. Темные кружки – *s*-точки

Уравнение энергии (4) имеет точное решение:

$$T - T_0 = \theta_1 \xi - (\mu_1^2 \xi^2 / 2), \ \mu_1^2 = (4\mu / \lambda) \delta^2 \psi_1^2, \ \psi_3 = 0,$$
(18)

где θ_1 – произвольная постоянная; T_0 – отсчетное значение температуры. Безразмерный критерий $\mu_1^2/T_0 = 4 \Pr(u^2 + v^2)/(c_p T_0)$, x = 0 несет информацию о числе Прандтля $\Pr = c_p \mu/\lambda$ и об отношении двух характерных плотностей энергии: кинетической $\rho(u^2 + v^2)/2$ и тепловой $\rho c_p T_0$. Своеобразие решения (18) в том, что для него сумма конвективных членов в уравнении (4) обращается в нуль тождественно. Взяв $T_0^{(1)} = T_0^{(2)} = T_0$, $\theta_1^{(1)} = -\theta_1^{(2)} = \theta_1 > 0$, получаем, что при x = 0 непрерывны температура и касательная к разрыву составляющая теплового потока $q_y^{(1)} = q_y^{(2)}$; см. также (13). Нормальный к разрыву тепловой поток меняет знак при переходе через границу x = 0: $q_x^{(1)} = -q_x^{(2)}$. На основе соотношения (16) получаем:

$$W = -2\lambda\delta(T - T_0) - [5u^2/(u^2 + v^2)](\Phi/\delta), \ x = 0.$$
⁽¹⁹⁾

Это значит, что возбуждающий источник энергии W расщепляется аддитивно на два тепловых потока: первое слагаемое в правой части (19) ассоциируется с переносом энергии за счет теплопроводности, второе слагаемое относится к вязкой диссипации энергии. В *s*-точке имеем постоянную температуру $T = T_0$ и источник энергии $W = -5\lambda\delta\mu_1^2 > 0$; тепловой поток направлен вдоль линии разрыва: $q_x = 0$, $q_y = -\lambda\delta\theta_1(\pm 1)$; производство энтропии $\sigma = [\lambda\delta^2\theta_1^2/T_0^2] + (4\mu\delta^2u^2/T_0)$ экстремумов не имеет.

Точку пересечения линии разрыва x = 0 и изобары $p = p_0$ назовем p_0 -точкой. Здесь имеем два варианта: p_0^+ и p_0^- различаются знаками $\sin \delta y = \pm 1$. Тепловое состояние этих точек определяется выражениями:

$$T - T_0 = \pm \theta_1 - (\mu_1^2 / 2), W = -2\lambda \delta(T - T_0),$$

и так же, как в *s*-точке, производство энтропии обладает свойствами монотонности $\partial \sigma / \partial (\mu_1^2) > 0$, $\partial \sigma / \partial (\delta^2) > 0$. Для $\theta_1 > 0$ и $\theta_1 < 0$ решение имеет одно и то же физическое содержание. При $T = T_0 + \mu_1^2 + (\mu_1^4 / 4T_0)$ производство энтропии $\sigma = \sigma(\theta_1)$ достигает минимального значения $\sigma_{\min}(\theta_1)$. При положительном/отрицательном θ_1 этот минимум наблюдается в p_0^+ / p_0^- точке. Режим функционирования p_0^\pm -точки, соответствующий $\sigma_{\min}(\theta_1)$, осуществляется при $\varphi \equiv \lambda(T - T_0)\delta^2 / \Phi = 1 + (\mu_1^2 / 4T_0)$, т.е. в значительной степени зависит от числа Pr. Согласно (7), это значение φ определяет нижнюю границу производства энтропии для устойчивых течений.

Мембранно-капсульная система. Рассмотрим решение (8) – (10) при $\psi_3 > 0$, $\psi_1 < 0$ [напомним, что в левой полуплоскости нужно брать $\psi_3 < 0$, $\psi_1 > 0$]. В этом случае существует неподвижная непроницаемая граница $\xi_w^2 = -\psi_1/(3\psi_3) > 0$; $\xi_w^{(1)} = -\xi_w^{(2)} = \xi_w$. Линия $\xi = \xi_w$ определяет плоский двумерный контур капсулы $\exp \delta x = \xi_w / \sin \delta y$, причем в каждой полосе, ограниченной линиями растекания $\xi = 0$, следует брать ξ_w с тем же знаком, что и sin δy . Будем различать «большие» [$\xi_w^2 = \varepsilon \in (0, 1)$] и «малые» [$\xi_w^2 = 1 - \varepsilon > 0$] капсулы, где ε – малый положительный параметр. На линии поворота $\delta y = 2\pi n_0 \pm (\pi/2)$ имеем $\exp \delta x = |\xi_w|$, и поэтому малым, но конечным значениям ξ_w^2 соответствует «большая» капсула, вершина которой находится на большом, но конечном расстоянии от мембраны x = 0. Вместе с тем, чем меньше ξ_w^2 , тем ближе основание капсулы (x=0) к линиям растекания. Если $\xi_w^2 = 1 - \varepsilon$, то непроницаемая граница «малой» капсулы локализована в конечной окрестности p_0 -точки. Стыковка при x = 0 решений для левой и правой полуплоскостей дает излом линии контура капсулы (рис. 2). Точки излома – это точки соединения основания капсулы с мембраной. В итоге имеем мембранно-капсульную систему $(0 < \xi_w^2 < 1)$, в которой отдельные проницаемые участки мембраны соединены неподвижными непроницаемыми капсулами. Решение (8)-(10) имеет физический смысл во внешней для капсул плоской двумерной области: $0 \le \xi^2 \le \xi_w^2$. Схема течения показана на рис. 2. На стенках капсулы выполнены условия прилипания и непротекания.

Завихренность течения определяется формулой (11) и не зависит от константы ψ_1 , являющейся параметром формы капсулы. Значит, конечные возмущения скорости и давления, которые характеризуются слагаемыми, содержащими ψ_1 [см. (8)–(10)], оставляют без изменения вихрь скорости. Таким образом, в данном классе решений для данного типа конечных возмущений наблюдается инвариантная завихренность ползущего течения вязкой жидкости. Кривизна вершины капсулы равна $K = |\delta|$, т.е. коэффициент сопротивления можно записать в виде $\zeta = 8K^2v$. На вершине капсулы [sin $\delta y = 1$, $E = \xi_w$] имеем зависимости

$$\omega^2 = 9K^4 \psi_3^2 \xi_w^6, \ \Phi = 4\mu\omega^2,$$
(20)

которые указывают на важную роль кривизны К в формировании вихревого поля.

При решении тепловой задачи учитываем вязкую диссипацию энергии, а конвективными членами в левой части уравнения энергии (4) пренебрегаем, полагая, что $Pe = \text{Re} \operatorname{Pr} \ll 1$, где $Pe = lu_b / (\lambda/c)$ – число Пекле. Тепловое состояние жидкости определяется следующим выражением:

$$T - T_0 = \theta_0(\xi) + E^2 \theta_2(\xi) ,$$

$$\theta_0(\xi) = (\xi / \xi_w)(\theta_w + \mu_4^2) - (\mu_1^2 \xi^2 / 2) + \mu_{13} \xi^4 - \mu_3^2 \xi^3 [\xi_w^3 + (2\xi^3 / 5)] ,$$

Рис. 2. Схема течения жидкости сквозь мембранно-капсульную систему. Обозначения такие же, как на рис. 1

Линия растекания $\xi = 0$ имеет температуру $T = T_0 > 0$. Стенки капсул тоже изотермические: $\xi = \xi_w$, $T_w = T_0 + \theta_w > 0$. Выбор произвольной постоянной θ_w определяет температуру капсулы. Если $\theta_w > 0$, то $T_w > T_0$, и называем капсулу «горячей». Если $\theta_w < 0$, то $0 < T_w < T_0$, и называем капсулу «холодной». При протекании через мембрану температура жидкости непрерывна, а вектор теплового потока сохраняет свой модуль и поворачивается на некоторый угол, потому что меняет знак компонента $q_x = q_x^{(1)} = -q_x^{(2)}$. Вдоль линии растекания $q_x = 0$, и вектор \vec{q} ортогонален этой линии. На вершине капсулы тепловой поток ортогонален мембране: $q_y = 0$. На мембране возбуждающие источники импульсов и энергии имеют вид:

$$x = 0, \ R_x = D\Pi, \ R_y = 2\rho uv,$$

$$D = (2 + 27\xi_w^2 - 26\sin^2 \delta y) / (1 + 12\xi_w^2 - 4\sin^2 \delta y),$$

$$W = 2(\Pi u - \tau_{xx}u - \tau_{xy}v + q_x).$$
 (21)

Для «большой» капсулы получаем простую формулу $D \cong 2$, т.е. нормальной к разрыву компоненте $R_x \cong 2\Pi$ соответствует удвоенный перепад давления $\Pi = p - p_0$. Для «малой» капсулы вблизи ее основания $D \cong 1/3$, а в *s*-точках $D \cong 29/13 > 2$. Развернутая запись выражения W(y) не приводится. Отметим только, что у основания «большой» капсулы, т.е. вблизи *s*-точки, источник энергии генерирует завихренность: $W = [-\mu \omega^2 / (3\delta)] + O(\varepsilon)$. Для системы «малых» капсул источник энергии в *s*-точке генерирует кинетическую энергию на линии растекания: $W = (-64/3)\mu\delta^2u^2 + O(\varepsilon)$. Стенки «малой» капсулы располагаются в ε -окрестности p_0 -точки, и здесь источник энергии $W \cong 2q_x$ определяет нормальный к разрыву тепловой поток, а остальные слагаемые в (21) имеют по отношению к ε порядок малости не ниже первого.

Обсудим экстремальные свойства производства энтропии. Сначала рассмотрим σ_s -режим, который характеризуется тем, что в *s*-точке зависимость $\sigma(\xi_w^2)$ имеет минимум при условии, что

$$\varphi_{w} \equiv \frac{\lambda(T_{w} - T_{0})\delta^{2}}{\Phi} = \frac{1}{12} + \frac{29\xi_{w}^{2}}{45} \mp \left[\frac{1}{36}\left(1 + \frac{29\xi_{w}^{2}}{5}\right)^{2} + 2z\varphi_{0}\right]^{1/2}, \quad (22)$$

где $\Phi = 9\lambda \delta^2 \xi_w^4 \mu_3^2$, $\varphi_0 = \lambda T_0 \delta^2 / \Phi$, $T_w - T_0 = \theta_w$. Здесь учтено, что в *s*-точке $\vec{q} \cdot \vec{q} = \lambda^2 \delta^2 (A_1 + B_1)^2$, $A_1 \xi_w = \theta_w + \mu_4^2$, $B_1 = 3\mu_3^2 \xi_w^3 / 4$. (23) Знаки –/+ в (22) относится к «холодной»/«горячей» капсулам. Для «горячей» капсулы σ_s -режим существует при всех $T_0 > 0$, а для «холодной» стенки имеем ограничение $\varphi_0 > (12/5)$, $\xi_w^2 \in (0, 1)$. Если капсула «большая», то допустимы меньшие значения φ_0 . Например, при $\xi_w^2 = 1/100$ достаточно взять $\varphi_0 > 1/10$. Связь (22) определяет нижнюю границу производства энтропии в σ_s -режиме для устойчивых течений сквозь мембранно-капсульную систему.

Теплоизолированная *s* -точка ($\vec{q} = 0$) существует в режиме «холодной» стенки $\theta_w < 0$ (23) и при этом на вершине капсулы получаем $\partial(\omega^2)/\partial(\xi_w^2) > 0$. Значит, с ростом размера «холодной» капсулы [$\partial(\xi_w^2) < 0$] модуль завихренности на вершине убывает. Чем больше кривизна вершины, тем больше вязкая диссипация энергии $\Phi \sim \omega^2 \sim K^4$ (20).

Далее рассмотрим σ_K -режим, для которого на вершине «горячей» капсулы зависимость $\sigma = \sigma(K)$ имеет экстремум при условии, что

$$(\chi - 7)(21 - \chi) = 72\chi(T_w / \theta_w), \ 7 < \chi < 21.$$
 (24)

Безразмерный критерий $\chi = \lambda \theta_w / (\mu \psi_3^2 \xi_w^6 K^2)$ содержит параметр завихренности ψ_3^2 , а также параметры ξ_w^2 и *K*, определяющие морфологические свойства капсулы (размер и кривизну). Ясно, что $\chi = 36\varphi_w$, где $\varphi_w = \lambda (T_w - T_0)\delta^2 / \Phi$ вычисляется на вершине капсулы. Расчеты показывают, что существует пороговое значение $\chi_* = \sqrt{147}$, разделяющее интервал (7, 21) на две части, для которых σ_K -режим (24) обладает двумя типами экстремумов производства энтропии. Если $7 < \chi < \chi_*$, то существует нижняя граница $\sigma_{\min}(K)$. Если $\chi_* < \chi < 21$, то существует максимум $\sigma_{\max}(K)$ – верхняя граница производства энтропии для устойчивых течений. Нетрудно видеть, что в пороговом состоянии $\chi_* = \chi$ при заострении вершины капсулы нужно повышать температуру стенки T_w .

Заключение. Установлено, что существует класс стационарных ползущих течений, обладающих инвариантной завихренностью. А именно: указан определенный тип конечных возмущений скорости и давления, которые оставляют без изменения вихрь скорости. Обнаружена важная роль вязкой диссипации энергии при течении жидкости сквозь проницаемую мембраннокапсульную систему. Изучение σ_s и σ_K режимов [см. (22) и (24)] показало, что морфологические свойства капсулы оказывают значительное влияние на условия существования экстремумов производства энтропии.

Литература

1. Хаппель, Дж. Гидродинамика при малых числах Рейнольдса / Дж. Хаппель, Г. Бреннер. – М.: Мир, 1976. – 630 с.

2. Аристов, С.Н. Точные решения уравнений Навье–Стокса с линейной зависимостью компонент скорости от двух пространственных переменных / С.Н. Аристов, Д.В. Князев, А.Д. Полянин // Теоретические основы химической технологии. – 2009. – № 5. – С. 547–566.

3. Чернявский, В.М. Течение Стокса поршневого типа в прямоугольной области / В.М. Чернявский // Доклады РАН. – 2009. – Т. 425, № 3. – С. 334–337.

4. Любимова, Т.П. Течения, индуцируемые колебаниями нагретой сферы / Т.П. Любимова, А.А. Черепанова // Вычислительная механика сплошных сред. – 2011. – Т. 4, № 3. – С. 74–82.

5. Пономарева, М.А. Устойчивость плоской струи высоковязкой жидкости, натекающей на горизонтальную твердую плоскость / М.А. Пономарева, Г.Р. Шрагер, В.А. Якутенок // Механика жидкости и газа. – 2011. – Т. 46, № 1. – С. 53–61.

6. Гледзер, Е.Б. Системы гидродинамического типа и их применение / Е.Б. Гледзер, Ф.В. Должанский, А.М. Обухов. – М.: Наука, 1981. – 368 с.

7. Полубаринова-Кочина, П.Я. Теория движения грунтовых вод / П.Я. Полубаринова-Кочина. – М.: Наука, 1977. – 664 с.

8. Шабловский, О.Н. Тригонометрический профиль скорости сдвигового течения вязкой жидкости / О.Н. Шабловский // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». – 2011. – Вып. 5. – № 32(249). – С. 77–82.

Механика

9. Жоу, Д. Расширенная необратимая термодинамика / Д. Жоу, Х. Касас-Баскес, Дж. Лебон. – Москва–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2006. –528 с.

10. Климонтович, Ю.Л. Турбулентное движение и структура хаоса / Ю.Л. Климонтович. – М.: КомКнига, 2007. – 328 с.

11. Седов, Л.И. Механика сплошной среды / Л.И. Седов. – М.: Наука, 1973. – Т. 1. – 536 с.

12. Baker, R.W. Membrane Technology and Applications / R.W. Baker. – Wiley, 2004. – 538 p.

Поступила в редакцию 21 января 2013 г.

Bulletin of the South Ural State University Series "Mathematics. Mechanics. Physics" 2014, vol. 6, no. 1, pp. 59–66

INVARIANT VORTICITY AND THERMAL STATE OF THE CREEPING FLOW OF A FLUID THROUGH A PERMEABLE MEMBRANE

O.N. Shablovsky¹

A new class of stationary creeping flows of a viscous fluid is presented in compliance of external resistance force. An example of an invariant vorticity of a fluid flow is studied through the permeable membrane and capsular system. The influence of capsular morphology on the entropy production is mastered. An important role of the correlation "velocity vortex – viscous dissipation of energy" in forming the thermal field of a fluid is discovered.

Keywords: creeping flow, vorticity, viscosity dissipation of energy, entropy production, stability.

References

1. Khappel' Dzh., Brenner G. *Gidrodinamika pri malykh chislakh Reynol'dsa* (Hydrodynamics at Reynolds small numbers). Moscow: Mir, 1976. 630 p. (in Russ.). [Happel J., Brenner H. Low Reynolds number hydrodynamics. New Jersey: Prentice Hall, 1965. 553 p.]

2. Aristov S.N., Knyazev D.V., Polyanin A.D. *Teoreticheskie osnovy khimicheskoy tekhnologii*. 2009. no. 5. pp. 547–566. (in Russ.).

3. Chernyavskiy V.M. Doklady RAN. 2009. Vol. 425, no. 3. pp. 334–337. (in Russ.).

4. Lyubimova T.P., Cherepanova A.A. *Vychislitel'naya mekhanika sploshnykh sred.* 2011. Vol. 4, no. 3. pp. 74–82. (in Russ.).

5. Ponomareva M.A., Shrager G.R., Yakutenok V.A. *Mekhanika zhidkosti i gaza*. 2011. Vol. 46, no. 1. pp. 53–61. (in Russ.).

6. Gledzer E.B., Dolzhanskiy F.V., Obukhov A.M. *Sistemy gidrodinamicheskogo tipa i ikh primenenie* (Systems of hydrodynamic type and their application). Moscow: Nauka, 1981. 368 p. (in Russ.).

7. Polubarinova-Kochina P.Ya. *Teoriya dvizheniya gruntovykh vod* (Theory of ground water movement). Moscow: Nauka, 1977. 664 p. (in Russ.).

8. Shablovskiy O.N. Trigonometricheskiy profil' skorosti sdvigovogo techeniya vyazkoy zhidkosti (Trigonometrical profile of the velocity of the shear flow of the viscous fluid). *Vestnik YuUrGU. Seriya* «*Matematika. Mekhanika. Fizika*». 2011. Issue 5. no. 32(249). pp. 77–82. (in Russ.).

9. Zhou D., Kasas-Baskes Kh., Lebon Dzh. *Rasshirennaya neobratimaya termodinamika* (Extended irreversible thermodynamics). Moskva–Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika», 2006. 528 p. (in Russ.). [Jou D., Casas-Vázquez J., Lebon G. Extended Irreversible Thermodynamics. Berlin: Springer Verlag, 2012. 478 p.]

10. Klimontovich Yu.L. *Turbulentnoe dvizhenie i struktura khaosa* (Turbulent motion and the structure of chaos). Moscow: KomKniga, 2007. 328 p. (in Russ.).

11. Sedov L.I. *Mekhanika sploshnoy sredy* (Continuum Mechanics). Moscow: Nauka, 1973. Vol. 1. 536 p. (in Russ.).

12. Baker R.W. Membrane Technology and Applications. Wiley, 2004. 538 p.

Received 21 January 2013

¹ Shablovsky Oleg Nikiphorovich is Dr.Sc. (Physics and Mathematics), Technical Mechanics Department, Machine Building Faculty, Gomel State Technical University. E-mail: shablovsky-on@yandex.ru