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SOME SOBOLEV SPACES AS PONTRYAGIN SPACES'

V.A. Strauss?, C. Trunk®

We show that well known Sobolev spaces can quite naturally be treated as
Pontryagin spaces. This point of view gives a possibility to obtain new properties
for some traditional objects such as simplest differential operators.
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operators

Introduction
Let 'H be a separable Hilbert space with a scalar product (-,-). H is said to be an indefinite metric

space if it is equipped by a sesquilinear continuous Hermitian form (indefinite inner product) [-.-] such
that the corresponding quadratic form has indefinite sign (i.e. [x,x] takes positive, negative and zero
values). The indefinite inner product can be represented in the form [-,-]=[G,-], where G is a so-called

Gram operator. The operator G is bounded and self-adjoint. If the Gram operator for an indefinite met-
ric space is boundedly invertible and its invariant subspace corresponding to the negative spectrum of G
is finite-dimensional, lets say & -dimensional, the space is called a Pontryagin space with & negative
squares. There are a lot of problems in different areas of mathematics. mechanics or physics that can be
naturally considered as problems in terms of Operator Theory in Pontryagin spaces. We have no aim to
give here an overview on this theory and its application. We refer only to the standard text books [1, 2,
10] and to [14] for a brief introduction.

Our scope is a modest illustration of some singular situations that shows an essential difference be-
tween Operator Theory in Hilbert spaces and in Pontryagin spaces. For this goal we use Sobolev spaces
that represents a new approach.

1. Preliminaries
A Krein space (K,[-,-]) is a linear space K which is equipped with an (indefinite) inner product

(i.e., a hermitian sesquilinear form) [-,-] such that KU can be written as
K=6.[+G (1
where (G, ,%[,]) are Hilbert spaces and + means that the sum of G, and G is direct and [G,,G ]=0.

The norm topology on a Krein space K is the norm topology of the orthogonal sum of the Hilbert
spaces G, . It can be shown that this norm topology is independent of the particular decomposition (1);

all topological notions in X refer to this norm topology and ||-|| denotes any of the equivalent norms.
Krein spaces often arise as follows: In a given Hilbert space (G,(-,-)), every bounded self-adjoint opera-
tor G in § with O p(G) induces an inner product

[x,y]=(Gx,p), x,ye G, )
such that (G,[-,-]) becomes a Krein space; here, in the decomposition (1), we can choose §, as the spec-
tral subspace of G corresponding to the positive spectrum of G and G_ as the spectral subspace of G

corresponding to the negative spectrum of G . A subspace £ of a linear space K with inner product
[.-] is called non-degenerated if there exists no xe £,x# 0, such that [x,£]=0, otherwise L is called
degenerated; note that a Krein space K is always non-degenerated, but it may have degenerated sub-
spaces. An element xe K is called positive (non-negative, negative, non-positive, neutral, respectively)
if [x,x]>0 (20, <0, <0, =0, respectively); a subspace of X is called positive (non-negative, etc.,
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respectively), if all its nonzero elements are positive (non-negative, etc., respectively). For the definition
and simple properties of Krein spaces and linear operators therein we refer to [2], [13] and [1].
If in some decomposition (1) one of the components G, is of finite dimension, it is of the same di-

mension in all such decompositions, and the Krein space (A ,[,-]) is called a Pontryagin space. For the
Pontryagin spaces K occurring in this paper, the negative component G _ is of finite dimension, say « ;

in this case, KC is called a Pontryagin space with x negative squares. If K arises from a Hilbert space
G by means of a self-adjoint operator G with inner product (2). then K is a Pontryagin space with x
negative squares if and only if the negative spectrum of the invertible operator G consists of exactly x
eigenvalues, counted according to their multiplicities. In a Pontryagin space K with & negative squares
each non-positive subspace is of dimension < x, and a non-positive subspace is maximal non-positive
(that is, it is not properly contained in another non-positive subspace) if and only if it is of dimension x .
If £ is a non-degenerated linear space with inner product [-,-] such that for a x -dimensional subspace

£ we have
[x.x]<0, xe L ,x#0
but there is no (x +1) -dimensional subspace with this property, then there exists a Pontryagin space &

with x negative squares such that £ is a dense subset of K. This means that £ can be completed to a
Pontryagin space in a similar way as a pre-Hilbert space can be completed to a Hilbert space. The spec-
trum of a selfadjoint operator 4 in a Pontryagin space with x negative squares is real with the possible

exception of at most x non-real pairs of eigenvalues X, X\ of finite type. We denote by L, (4) the al-
gebraic eigenspace of 4 at X\. Then dim L, (4)=dim £ (4) and the Jordan structure of 4 in L, (A4)
and in L5 (A) is the same. Further the relation
K= Y KD+ D dimL(4)
reoyniR reo(HNCT

holds, where o, denotes the set of all eigenvalues of 4 with a nonpositive eigenvector and x; (A) de-
notes the maximal dimension of a nonpositive subspace of £, (4).

Moreover, according to a theorem of Pontryagin, 4 has a x -dimensional invariant non-positive
subspace L™ . If g denotes the minimal polynomial of the restriction A|L"*, then the polynomial

q g, where g (2)=¢(Z), is independent of the particular choice of £"* and one can show that

[¢ (A q(A)x,x]>0 for xe D(A"). As a consequence, a selfadjoint operator in a Pontryagin space pos-

sesses a spectral function with possible critical points. For details we refer to [11, 13].
The linear space of bounded linear operators defined on a Pontryagin or Krein space K with values

in a Pontryagin or Krein space K, is denoted by L(K,K,). If K=K, =K, we write L(K). We study
linear relations in K, that is, linear subspaces of K*. The set of all closed linear relations in K is de-

noted by C(K). Linear operators are viewed as linear relations via their graphs. For the usual definitions
of the linear operations with relations and the inverse we refer to [7, 8, 9]. We recall only that the multi-

valued part mulS' of a linear relation S is defined by mul§ ={y t (2 )e S} .

Let S be a closed linear relation in K. The resolvent set p(S) of S is defined as the set of all
e C such that (S —X\)"e L£(K). The spectrum o(S) of S is the complement of p(S) in C. The
extended spectrum &(S) of § is defined by 6(5)=0(S) if Se L(K) and 6(S)=06(S)U {eo} other-
wise. We set p(S) = C\G(S). The adjoint ST of S is defined as

st ::{(Z,)‘[f’,h]:[f,h’] for all (/) S}.

S is said to be symmetric (selfadjoint) if S = §* (resp. S=87).

For the description of the selfadjoint extensions of closed symmetric relations we use the so-called
boundary value spaces (for the first time the corresponding approach was applied in fact by A.V. Strauss
[15, 16] without employing the term “boundary value space”).
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Definition 1. Let 4 be a closed symmetric relation in the Krein space (K,[,,]). We say that
{G.T,.I',} is a boundary value space for A" if (G,(--)) is a Hilbert space and there exist linear map-

pings [;.I',: 4" — G such that T'= ( F'I’ ) : AT — G xG is surjective, and the relation

(£, g]l=1/-& 1= ([ f.T08) ~ (T, f.T,8) 3)

holds for all f:(;) g}:( »)e A.

If a closed symmetric relation A has a selfadjoint extension 4 in K with p(;l) # O, then there ex-

ists a boundary value space {G,[,,I';} for 4" such that A coincides with ker I'y (see [4]).

For basic facts on boundary value spaces and further references see e.g. [3, 4, 5] and [6]. We recall
only a few important consequences. For the rest of this section let 4 be a closed symmetric relation and

assume that there exists a boundary value space {G,I",,I';} for 47. Then
Ay :=kerl'y and A, =kerl, @

are selfadjoint extensions of 4. The mapping I' = ( R' ) induces, via
4o =T0={fe 4" |Tfc 0}, 0cC0),

a bijective correspondence O > 4y between C(G) and the set of closed extensions Ag = AT of A, In
particular (5) gives a one-to-one correspondence between the closed symmetric (selfadjoint) extensions
of A and the closed symmetric (resp. selfadjoint) relations in G . Moreover, A is an operator if and

only if
emr{(g)ihe 1nuEA+}={O}. (6)
If © is a closed operator in G, then the corresponding extension Ag of A is determined by
Ag =ker (I —OT ). 7
Let NV, = ker(AT =X\)=ran(4— X)[“ be the defect subspace of 4 and set
Ny :={(>{f )Ife J\/'x} .
Now we assume that the selfadjoint relation 4, in (4) has a nonempty resolvent set. For each \e p(4,)

the relation A4” can be written as a direct sum of (the subspaces) A, and N. y (see [4]). Denote by 7;

the orthogonal projection onto the first component of K2. The functions

N A =2,(Ty [N e £G.K). Ne p(Ay)
and
N> M\ =TT | V)7 e L(G) . Ne p(4y) (8)
are defined and holomorphic on p(4,) and are called the ~ -field and the Weyl function corresponding
to 4 and {G, Ty, T} . For \,Ce p(4,) the relation (3) implies M()\)' =M ()\) and

AQ =1+ =N =0 V) 9)
and
MO\ =M©Q) == Q)T v\ (10)

hold (see [4]). Moreover, by [4], we have the following connection between the spectra of extensions of
A and the Weyl function.

Lemma 2. If ©< C(G) and Ag is the corresponding extension of A4 then a point e p(4,) be-
longs to p(Ag) if and only if 0 belongs to p(©—M(X\)). A point Ne p(A,) belongs to 7,(Ay) if and
only if 0 belongs to 0,(@-M(X\)), i=p,c,r.

For e p(4g) N p(A4,) the well-known resolvent formula
16 BectHuk IOYpI'Y, Ne 11, 2012
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(Ao =27 = (A =N 0O = MO ) (n
holds (for a proof see e.g. [4]).
Recall, that \,e C is called the eigenvalue of the operator pencil L(X\), if there is a vector

hye G (hy #0) such that L{\;)h, =0. The vector ;€ G is called the eigenvector of the operator pen-
cil L(N). A system hy,#,,..., 1, , is called a Jordan chain for L(\), if

LNy
> LN, =0, for m=0.1...k. (12)
;=0 /-

2. The Underlying Space
Let H]‘Z(O,l) be the Sobolev space of all absolutely continuous functions f with f’e L2(0,1). Let

k be a positive real number, k > 0. We define for f,ge H'2o.n!
/-8l = k(58 2, = 8) oy (13)
If £ is an arbitrary subset of H2(0,1) we set
£ ={xe H'2(0.1):[x,y), =0 forallye £}
Then we have the following.

Proposition 3. For the space (HI"Z(O, 1), [-,-]k) we have the following properties.

(1) If k£ equals == for some ne N, then the function ge H! 2(0,1), defined by g(x)=cos(nrx)

2.2
nrx

belongs to the isotropic part of (Hl’Z(O,l), [ ) , that is

[f.gl, =0 forall fe H“(0,1).
(2)If k>-L, then (H 20,1, [',']k) is a Pontryagin space with one negative square.
3

(3)YIf k<L and k#—'= forall ne N, then (HI’Z(O,I), [-,~]k) is a Pontryagin space with a finite
F

2 nr-
number of negative squares. Set

H_ ::span{f/ |k < j;;rz’je N},

where f, € HI’Z(O,]) is defined by f,(x)=sin(jzx). Then the number k_ of negative squares of
(Hl‘z(O,l), [ ], ) satisfies

kK =dimH_+1.

Proof: Assertion (1) is an easy calculation. We assume k 2 —— for ne N all. Define the operator

noTT
A4, by

Dldy={ge HZ (O] g'e H(O.1) and g(0)=g(h)=0}.
Ayg =—g" for ge D(4,).
Let us note that the functions f,(x)=sin(;7x), j=12... are eigen functions of 4.
For ge D(A4,)N Ht , where H* denotes the orthogonal complement with respect to the usual sca-

lar product ('”')12(0 ) but within the Hilbert space H"2(0,1), we have also that (f.2) =0 for all

1 (0.1

f € H_.Thus, g has the representation g = ZZ i @, f, . This implies that there exists an £>0 with
Jk

' Let us note that the expression A{ t'(t))z -1 (t)l with ¢ as the time 1s (up to a constant) the Lagrangian for free small oscillations 1n one di-
mension (see [12, p 58] for details) From this point of view the correspondmg integral represents the action
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A,2.8) - S(E+e)g. g) for all ge D(A,)VH'. Therefore, there exists constants ¢,é >0

with

£7(0.1)

[2.8) >c(A08-8) 20y T E(8:8) 204y 7 E(8:8) 12y
for ge ’D(Ao)ﬂ HE , 80 D(AHN H isa uniformly positive. [t is easy to see that for fe H_ we have
[f.f1i <0. This shows that the closure of D(A,) with with respect to the usual scalar product in the
Hilbert space H“*(0,1) is a Pontryagin space where the number of negative squares equals dimH_. We
define h,he H"3(0,1) by
- -1 -1 oy
hy =sin (\ﬁ(‘ !x) +cos(\//: x) and /4, =sin (\/Z x) - cos(\/—l; x) .
We have
-1 —1\2 -1 -1\2

(i, = -2k (sin\/i ) and [h.hy ], = 2k (sinﬁ ) .

and
(D(AN e =spihy.h},
This proves (3). If k>, then H_ ={0} and the above considerations imply (2). [
i

3. A Symmetric Operator Associated to the Second Derivative of Defect Four

For the rest of this paper, we assume that k& is such, that
sinvk | #0.
Then, according to Proposition 3, the space (H L2001, [-,-]k) is a Pontryagin space. We consider the
following operator A, defined by
D(4)={ge H(0,1)| g’.g"e H"?(0,1) with g(0)=g()=g'(0)=g(1)=g"(0)=g"(1)=0]

and
Ag=-g" for ge D(A).

Lemma 4. Then A is a closed symmetric operator in (H 1‘2(0,1), [] k) .

Proof: Obviously, 4 is symmetric. The best way to show the closedness is via the calculation of 4% .
We leave it to the reader. | |

As
mul 4™ = (D4 W = {xe H"(0,1)|[x,y], =0 for all ye D(A)},

we have ge mul 4™ if and only if for all f e D(A)
0=[/.gl, =—(f.kg"+2)

The set D(A) is dense in L2(0,1) and this implies
1nulA+:sp{f1,f2}, (14)

12 (01) '

where 7, f, are defined by

-1 -1
fi=sinvk x and f, =cosvk x.

An easy calculation (more detailed?) shows that

A" :{(‘i”)Jr(angﬂ/z)

Let (‘f’ﬂlﬁ//ﬁﬁu f:) and (7g.+{12g/1+ﬁ2/2) be elements from 4" with f,ge D(A4) and o, 5,5, C.

Then we have
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[—f"+en i+ Bifo gl 1S =g " +ou fi + B foli =
=—f2 1o +fElo —K Tl +E Iy V(e fs — BAE o~k fs = Bofi) |-
We define mappings 'y.I,: 47 — C? by

FO)+H7(0)
r ( . f' ) _ f()+k7(1)
O\ ="+ i+ fr £(0)
S
~1(0)
. (1
/ _ ' / +
I (—.f'”ﬂllfl +B.12 ) o —Jk for (*f”“)’l.fi*/”l,/i )G A

\[IZ((ZI cos«/ﬂil—/}l s1nﬁ_l)

Theorem 5. The triplet {I';,[;} is a boundary value space for A" . In particular 4, :=ker[, is an
operator and a selfadjoint extension of 4, i.e.
D(Al)::{ge H'2(0,1)| g’ g"e H“(0,1) with g’(()):g’(l):o}
and
Moreover, for e p(A4,), the Weyl function is given by
I G N G S | g
RN tan Y% tan\/zi1 1=k sin VX sm\/z‘1 \/;tan\/zﬂl \/Esm\/z_]

1[\/K+\/E_lj 1(&_«/E'IJ 1 1
tan /X lt:a.n\/E-1 \/Zsin\/z_] \//;tanx/z_l

MOy =| TR @ i) TR
1 1 JE 2N 1=k
\/l;tanxfzyl \/Esin\/E_] \/Etanx/z_1 ﬂsin«/z_l
~1 | 1=kXN N 7 3N
\/Zsinﬁﬁl \/'l;tanxfz_l \/Esin\/;_l x/Etans/ITl_

Proof: The above calculations imply that {T".T';} is a boundary value space for 4*. Let A\e C\R.
Define g,,g,€ H"(0,1) by

Jed :cos(\/ix) and g, =sin (\/ix) (15)
Then we have

ker(A* —N)=sp{g. g2, /1. fo} -
Let f=ag +Bg,+7f,+6f, forsome «,f,y,6e C. Then

a(l—=kN)
r ‘ f (x(l‘k>\)c05\/§+ﬂ(l—kk)sm\/§
O(V)‘ O =" +rO-DA+tsO-Df | a+d
(Icos\/i+/35in\/§+}/sin\/?+c§'cosx/;_l
and
—p-r
r ( f)_ —ardNsindt BN cos N+ Tk cosvE =8k sink
v RO

PEO=DcosVE 0V (A~ DsinvVE
Now, by (8), it is follows that M is of the above form. | |
Now, via (5) we can parameterize all selfadjoint extensions of A4 via all selfadjoint relations © in
ot
Theorem 6. Let O be a selfadjoint relation in C*. Then Ag is a selfadjoint extension of A. If for all
o, e C
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0
0
(, & mul©\ {0} (16)
[J‘sin\/z_]“acosﬁil
holds, then 4 is an operator. If, in particular, © is a selfadjoint matrix, then A4 is a selfadjoint opera-

tor and an extension of 4 with domain
J ~2(0) 2(0)+kg"(0)
D(Ag)=1ge H'? (00| g’ g"e H(0,1), [g'(l) J_ g(l):kgr (H
1 0 P
Proof: Relation (16) follows from (6), (14) and the definitions of I'; and I';. If © is a matrix, (16) is

satisfied and the description of D(A4g) follows from (7). « |

4. A Symmetric Operator Associated to the Second Derivative of Defect Two

We start this Section opposite to Section 3. For this we put
'D(A);:{ge H(0,1)| g',g"€ H'*(0.D)] (17)

and
Ag=—-g", ge D(4).

Thus, the operator A corresponds to the same formal differential expression as the operator considered
in the previous section, but with a different domain which is in some sense maximal. Let us calculate

A" For f.ge D(A) we have
(4.8l =k [ 7 0g" @i + [ £ (020 =
1
0
==(k" D+ £ (1)) M+ £/ (1) kg (D) +g(1)) ~ £(0)(kg"(0) + g(0)) + (K "(0) + £(0)) g"(0) +[ £, 4g],
Note that the maps f(t) > (7" + f(1)), SO~ ), f(O)- (O + £(0)) and f(0)— f7(0)

represent unbounded linear functionals on H 12(0,1). Thus, the expression [Af, g], gives a continuous

n, T I N VPN VRN ‘:—1 1 T 1 W
= k(" 080~ rOg D) +(r 080~ FOFD) ~k [ £ O e+ [ rorg e =

linear  functional (with respect to ) on H'(0,1) if  and only if
g (=(kg"(D+gM)=(kg"(0)+ g(0)) = g’(0) =0 and by the definition of the adjoint operator the latter
conditions restrict the domain of A" . For brevity below we set 4:= A". Thus, we have the following
operator A4, defined by
D(A) = { ge H2(0,1)| g’,g"e H"2(0,1) with g'(0) = g’(1)=0, g(0) + kg"(0) = 0 and g(1)+ kg" (1) = 0}
and
Ag=—-g", ge D(4).
Then A4 is a closed symmetric operator in (H 120,10, [] X ) , which is, in contrast to Section 3, densely

defined. In particular
A =a={(£)1g87e H20)]
is an operator and therefore all selfadjoint extensions of A4 are operators.
We define mappings [,,[,: 4" — C? by

Fo{-r)= (i) ) and T2 = () for (L )e "

Theorem 7. The triplet {I",,T";} is a boundary value space for 4" . The Weyl function is given b
p 0-11 p g y

20 BectHuk KOYpFY, Ne 11, 2012



Strauss V.A,, Some Sobolev Spaces as Pontryagin Spaces
Trunk C.

In -
(-k\ytandh  (1-k\)sin)
M(\) = Wj; \/é , NE P(Ay) .

(=k\ysindN  (I=kX)tan
Proof: The above calculations imply that {T"y.T",} is a boundary value space for 4" . Let xe C\R and
g,.825€ H! 2(O,l) as in (15). Then we have

ker(4" —X)=spig;, &2} -
Let f=ag, + g, forsome a,fe C. Then

r ( / ):r ( /”):( ar(1-k\) )
03 v 0y ¢ a(1=kNyeos VN + A=k \)sin N
and

Py _ Y Ox
n(g)=nl)=(, Sy
Now, by (8), it is follows that M is of the above form. |,

Lemma 8. The operator A, =ker[, is a selfadjoint extension of 4 with a compact resolvent and
O(4))=0,(A) =tk '.1°.47797%, .} .
Proof: The operator 4, =kerI’, is selfadjoint in the Hilbert space H'2(0,1). We have for f e D(A)
"2 2
(4, +1)f7f)H13(01) = / H,z(m) +i|fHH2 201y’
where H22(0,1) is the Sobolev space of all functions fe H'%(0,1) with f’e #"*(0,1). This gives
1132200, SHAF DS 2o 1 220
Therefore, as the embedding of H 22(0,1) into H'?(0,1) is compact, the selfadjoint operator A; has a

compact resolvent. By (11) the difference between the resolvents of A, and 4, is of finite rank, hence
Ay has a compact resolvent. We have o(4,) = 0 ,(4y). Now (1 8) follows from a simple calculation. []
QUESTION. Is A simple? That is H"*(0,1y=clsp{ker(4" —X\):\e P(Ay)} Grve a simple proof for it
Proposition 9. Let «e R, o # 0 and
L)< 24k . (19)
Then the operator 4, defined by
D(4,) ;:{ ge H'2(0,1)| g",g" H'?(0,1) with arg’(0) = g(0)+ kg”(0) and ag’(1) = g(1) + kg"(1) = o}
and
A, 8= 'g” » g€ D(4,).

is a selfadjoint extension of 4 with non-real eigenvalues.

In the case =2k we have that the selfadjoint extension A, of A4 has a Jordan chain of length

—a' 0
0= .

Then Ag = A4, , hence, by Lemma 2 and the fact that 0(4,)e R (see Lemma 8), we have for all non-real
X that X€ 0,(4,) if and only if

two corresponding to the eigenvalue —-1.

P
Proof: Set

i’ P VSR
0=det(M(\)—0)=————| N\ + 204 (20)
( az(l—kX)z[ Kok k-J

Hence,

Cepua «Maremartuka. Mexanuka. Pusuka», Boinyck 6 24



MartemaTuka

X\ _l_a3+a a—z—k
Y ERER

are the solutions of Equation (20). Assertion (19) implies now the existence of two non-real eigenvalues
of 4,.

In the case o = 2vk we have that the functions ho.h € D(A, ;) given by

—~1 -1
hy(x) = e and h(x)= —%e""/;

satisfy

1 1
[AZ«/Z +'k—)h1 :h() and (AZ\/Z +;jh0 =0,

i.e. {fy,/} is a Jordan chain of A, corresponding to the eigenvalue -"};. [
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HEKOTOPbLIE MPOCTPAHCTBA COBOJIEBA KAK MPOCTPAHCTBA
NMOHTPATNHA

B.A. lUmpayc1, K. prt-u(2

[lokasaHo, 410 M3BCccTHBIC npocTpaHcTBa Coboncea MOryT ObITh CCTCCTBCHHO CHAOXKCHBI CTPYKTY-
poii npoctpaHcTBa [ToHTparuHa. Takoi 11oaxo4 MO3BOIACT [0JYYHTh HOBBIC CBOMCTBA Y lAKHX IPaiH-
LUMOHHBIX OOBCKTOB KaK, HAlpUMep, fpocTehiine AU epecHUMaibHBIC ONeparoph.

Kuoueswie crosa: ¢hvikyuonansiisie npocmpancmed, apocmpancmea lonmpsiouna, cavioconps-
ACEHIBIC ONEPAMOPBL, OUDPEPENYUAIBIIBIC ORCPAMOPBLL.
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