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In the sequence spaces which are analogues of Sobolev function spaces we
consider mathematical model whose prototypes are Barenblatt — Zheltov —
Kochina equation and Hoff equation. One should mention that these equations
are degenerate equations or Sobolev type equations. Nonexistence and
nonuniqueness of the solutions is the peculiar feature of such equations.
Therefore, to find the conditions for positive solution of the equations is a topical
research direction. The paper highlights the conditions sufficient for positive
solutions in the given mathematical model. The foundation of our research is the
theory of the positive semigroups of operators and the theory of degenerate
holomorphic groups of operators. As a result of merging of these theories a new
theory of degenerate positive holomorphic groups of operators has been obtained.
The authors believe that the results of a new theory will find their application in
economic and engineering problems.
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Introduction
The Barenblatt—Zheltov—Kochina equation [1]

(A—A)u, =cAu+f (1
simulates the pressure dynamics of the fluid filtered in fractured porous media. Besides, the equation (1)
simulates processes of moisture transfer in a soils [2] and processes of the solid-to-fluid thermal conduc-
tivity in the environment with two temperatures [3]. Note that the required functionu =u(x,7) must be
nonnegative, that is # >0 by physical necessity. The Hoff equation [4]

(A+A)u, =ou+f 2)
simulates the H-beam buckling under the influence of high temperatures. The case is also most
interesting when the required functionu =u(x,¢) is nonnegative.

Consider both equations as special cases of Sobolev type mathematical model such as

Lu, = Mu+ £ 3)
given in Sobolev sequence spaces
o Mg
7= u={u}: Z A2 |uk|q <oo |\meR, ge[l,+e0).

k=0
Here L=L(A) and M =M (A) is polynomials with real coefficients, and their degrees satisfy the

relation
deg L >deg M ; 4

A 1is transfer of the Laplace operator 4 to spaces l(’]", a {4 4 €R,} is monotonically increasing

sequence such as lim /4, = +oo.
k—>oo

The peculiarities of our approach will be, firstly, the active use of the theory of bounded operators
and the degenerate holomorphic groups of operators generated by them [5, ch. 3]. Secondly, we apply
the theory of positive groups of operators, defined on Banach lattices [6, ch. 2 and 3], to lay the
foundations of the theory of positive degenerate holomorphic groups of operators whose phase spaces
are Banach lattices. Thirdly, we consider the concrete mathematical model (3) in Sobolev sequence

spaces [', me R, ge [l,+e0), which can be interpreted as the space of Fourier coefficients of solutions
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of initial-boundary value problems for equationstbé form (1) or (2). Let us note the difference
between our approach and the ideas and methodssaam [7].

The foundations of the theory of degenerate p@&sigioups of operators theory are laid in the first
part of the article, which are generated by reddyivpositively bounded operators. The degenerate
positive holomorphic groups of operators obtainegl @pplied to the study of the Cauchy problem
solvability for the homogeneous (thaff{§ = 0) abstract equation (3). The initial value is tak®m the
phase space of such an equation. In the secondtiparsolvability of the Showalter—Sidorov problem
[8] for the abstract nonhomogeneous equation (3)stiadied. Sufficient conditions are obtained Far t
existence of a positive solution of this problenbskact results are applied to a mathematical moidel
the form (3), wherelL = L(A) and M =M (A) are polynomials with real coefficients. It is ndtiat the

Barenblatt—Zheltov—Kochina equation fdn[OR, satisfies the sufficient conditions found, and

therefore the initial-boundary value problem camehaon-negative solutions. The final part of
the article outlines directions for further possibkésearch. The list of literature does not pretend
to be complete and reflects only the tastes an@éamces of the authors.

1. Degenerate positive holomorphic groups of operats
Let ¥ and £ be Banach spaces, operatoBDL(‘U;T) (i.e. linear and continuous),

M O CI(v;F) (i.e. linear, closed and densely defined). S@LI$M):{/¢ OC:(pL- M)_lﬂﬁ(f;‘u)}
and oL(M ) =C\p-(M) are calledesolvent seand L -spectrum of operatoM respectively. Operator
M is (L,o)-boundedf

Da0dR,0x0C (luba)=@dp-M)).
If operatorM is (L,0)-bounded, then operatdps Qare the projectors

_ 1 L — 1 L
P—Z—M.}[Rﬂ(M)CpDL(‘U), Q—%J}:Lﬂ(M)ChDL(T).

Here R;(M)=(uL-M )7L is called a right resolvengnd L. (M)=L(uL-M )™ is is called deft

resolvent of operatorM ; contour y= {/1 OC: | ul= r>a} . Here and below, loop integrals are

understood in the sense of Riemann. We considespsigesV° = kerP, ©*=imP, #°=kerQ,

#'=im Q; and denote operator of the contractioifM ) on U"(U" n dom M) by L, (M), k=0,1.
Theorem 1.1.Let operatorM be( L) -boundedThen

(i) operators L, DLL(’UK;TK) ., k=0,1; and there exist the operatchIlDL(q:’l;Ul) :
(ii) operators M, DCI(U" ;Tk) , k=0,1; and there exist the operatdv ;* Dﬁ(fo; ‘U°) .
Let operator M be (Lg)-bounded, construct the operatét= MglLOD[,(‘UO). OperatorM is

called (L, p)-bounded, pOA, ((L,0)-bounded if HP 2@, and HP*=O(H = 0). Let operator
M be L ,p)-boundedp{0} O N, we consider the equation

Lu = Mu. (5)
Vector functionu=u(t), tOR, is solution of equation (5f it satisfies this equation. Decisian= u(t)
is calledsolution of the Cauchy problem

u@0) =1, (6)
if it satisfies condition (6) at some, U . The set? 0 U is phase spacef equation (5) if its any

solution u(t)DfP at eachtOR ; and for anyu,J® there exists a unique solutianJC' (R;V) of

problem (6) for equation (5). Finally, we introduaedegenerate (iker L;t{C}) holomorphic (in the
whole planeC ) group of operators
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U'=—[R;(M)e“gd,t0C.

notice, thatv® = P , where ker P [ ker L.
Theorem 1.2.Let operatorM be(L,p)-boundedp {0} ON. Then
(i) any solutionud C! (R ;0) of equation (5) has the form(t) = Utu0 , tOR, and someu, OU ;
(i) the phase space of equation (5) is subspate
Thus, under the conditions of the theorem Il.-ZesoIvent(/lL—M)_l of operatorM in the ring
|u|>a decomposes into a Laurent series

(WL -M) =3 S QY hF H M (- Q)
k=1 k=0
where operatorS= L;* M, 0(UY), H=M'L,0£(0°. Hence the resolving degenerate graiip
of equation (5) is as follows
U'=(-Q+e™Q
where
st 1 ¢ o St
e _ﬁiw— S) é' = %F

is the group of operators of equation (5), giveritenphase space’ .

Next, we give an order relatiore™, compatible with both vector and metric structyreo U In
other words, we assume that'{>) is a Banach lattice. Recall those properties afidh lattices,
which will prove useful to us in the future. An arbry set x is calledorderedif on x x.x* there is

therelation of order=, which satisfies the following axioms:
(io) x= x for eachxO.x ;

(iio) (x=y)O(y= X=(x ¥ foranyx, yO.x;

(iiio) (x=y)O(y= 2= (> yforanyx,y,zlx
An ordered vector spacg is calledRiesz spac# in addition, the following axioms are satisfied

(ivo) (x= y)=>(x+ z= w ¥ forall x,y,Z0x .

(vo) (x= y)=(axzay) forallx, yOx and eachu {0} OR, .
The Riesz spacg is calledfunctional Riesz spade uOv, ud Vx for anyu, v(I.x . Here

(uDV)(¥) =max(u(x) ,  J) (0 (¥ =min{ L% ¥

The space<(Q), C(ﬁ), where Q OR" is a domain, and spacés, where qU [1,+] are the
classical functional Riesz spaces examples. Irete@amplesu (v, ul v are defined pointwise, but if
measure is given o, and It is possible to define these elements aleesrywhere, then the Lebes-
gue spaces (Q) g [1,+o] can be assigned to the to the functional Riesezespa

In the Riesz function space, the following elemectn be definedu, = max{u,(} , and
u_=min{-u,@, so thatu=u, —u_, and there is another elemdot=u, +u_ If norm ||[nlx is given
on the Riesz functional space and satisfies the axiom

(vio) (ju2|M)=(|ul, 2] {,) forall u, vil.x,

then we call the Riesz function spage normed Riesz function spack complete normed functional
space is called a Banach lattice. SpaCE(Q),C (5) and Lq(Q) with the qualifications specified

above, as well as spatg, where domairQ [J R",q0 [1,+ ] are examples of Banach lattices.
Further, letX is vector space. Convex setl X we call a cone if
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(ic) c+cOc;

(iic) ac O ¢ foranya {0} OR, ;

(iiic) ¢ n(-c)={0}.
The conec is calledgenerativef

(ivc) c-Cc=x.
Now let X is Riesz space. We construct the set

X, ={x0x:x=0}.

Proposal 1.1.Let x be a vector space; [ x is generativecone. Then x is Riesz space, where

relative = is given by
(xzy) = (x=ydo).
Proposal 1.2Let x be Riesz space, the, is generative cone.
Let X be Banach lattice with generative cofie . Linear bounded operatéi] (X" ) is positiveif

Au=0 for all ullx,. Holomorphic group of operatorX" ={ Xt Xt DL(X)for all tDR} is called

positiveif X'u=0 forall udx, andtOR.

Proposal 1.3.Holomorphic group X® is called exactly positive when its generator @sifive
A= (Xt)t:o'

Finally, let us return to the abstract problem (6), We will be interested in ifgositive solution
u=u(t), i.e. such thatu(t) >0 for all tOR. Therefore, we consider the phase space of equi)jou’
Banach lattice, generated by a cong. (L, p)-bounded operator Mis positive (L, p)-bounded
pO{0}ON if Sudv; for any udv;. The degenerate holomorphic groty OC® (R;£(V)),
generatedL, p) -by positive operatoM is calleda degenerate positive holomorphic group

Theorem 1.3.Let operator M is positive( L, )-boundedp{0} ON. Then for anyu, O} there
is the unigue positive solutiam=u(t), tOR, of problem (5), (6), and it has the fomnt) = S' y .

2. Mathematical model in sequence spaces
Let U u ¥ be Banach spaces, operatdrl £(v;#), M OCI(V;F), and operatoM is (L, p)-
bounded,pD{O} O N. Consider a linear inhomogeneous equation of Setigpe
Lu=Mu+f . (7)

Vector functionuO C([0 z); V) n cl((o,r);v), tOR, , is calledsolution of equatiorf7) if it satisfies
this equation for somef = f(t). The solutionu=u(t) of equation (7) is calledolution of the
Showalter — Sidorov proble[f]

lim P(u(t)-w)=0, (8)

t-0+
if it also satisfies the initial condition (8). HelP:U — U* along V° is projector. Further, lev be a
Banach lattice generated by the cope. The solutionu=u(t) of problem (7), (8) igpositive if

u(t)0, foranytO[0,7).

We will be interested in the conditions under whible solutionu =u(t) of problem (7), (8) is
positive. Let# be also be a Banach lattice generated by a®ond operatorM is (L, p)-bounded,
pD{O} ON, then it is not difficult to show that the subseaa)k and #¢ |, k=0,1, are also Banach
lattices generated by cones‘= U¥n v, and #=#"n % , k=0,1, respectively.(L, p) -bounded
operatorM s calledstrongly positivef
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(ip) operatorl, :v? - %2, and operatot,: U+ - &} is a toplinear isomorphism;

(iip) operatoM, : U+ n domM - &} and operatoM,,: U9 n domM - £, and Mgl[ﬁo] Owvl.
It is easy to see thaitrongly positive (L, p) -boundedoperator M is positive (L, p)-bounded,
pO{0} ON. Letbe f =(7-Q) f +Qf = f°+ f*, whereQ:¥ — & is projector alongs, .

Theorem 2.1.Let U be a Banach lattice and operatdd is stronglypositive (L, p) -bounded,
pO{0} ON. Then for any  vector functions  f:[0,7) - such that

fODCp"l((o,r);fFO),—fo(k)(t)DﬁO, k=0,p+1, tO(0,r), f'O C([O,r);fff), and for any vector

Uy JU, such that ué Ou? there exists the unique positive solutior u(t), which also has the form

u(t) = —i HX M(;l fO(k) (t) +UtU0 +jUt—r Lilfl(l') ar.
k=0 0

k
Here f %% ®) =% fO(t), k=0, p+ 1. Proof of the theorem 2.1 does not differ fundatakyfrom

the proof of the theorem 5.1.1 [5]. We check thsitpaty of the resulting solution for the read&ve
also note that conditionf o(k) (t)D fF+°, tO (O,r),k=Wj, seems difficult, so here is an example:
fO(t)=—e™ £°, wherea R, , f, 0.

We consider Sobolev sequence spaté%s mOR, qO[L,+). First of all, we note that these
spaces are Banach spaces with the norm

w0
o] 01

Then pay attention to dense and continuous inveﬂtnh§' = Ig at m=n. (The proof of this fact
is left to the reader). Finally, we set operaton= (A u,), whereu=(u,). We show that operator
AOL (1g7%18. Indeed,

1
. Mg )
IAul, = kZ_l/'kz ud* | =[] s,

Let's construct operatols=L(A) and M =M (A), where L(s) and M(s) are polynomials with

real (for simplicity) coefficients. If the conditio(4) is satisfied, that operatots M DL(Ig”deg";I(;“),

mOR, qO [1,+0). Indeed,|u] psqeqr. =Yl uDIg”degL, mOR, qO[L +). Hence, by the

m+degM, q’
continuity of the embedding***%- = |T**9™ follows the truth of what has been said.

Lemma 2.1.Let

(i) the condition (4) is satisfied:;

(i) polynomialsL = L(s) and M =M (s) have only real roots and have ho common roots.

Then operatorM is (L, 0)-bounded.

Before proceeding with the proof of this assertiar, make a number of remarks. At first, let op-
eratorsL, MO£(U;F), where¥ and ¥ are Banach spaces. If there exists a vept@rV such that

My = Lg, where the vectop OkerL \{ (} , then it is called the adjoint vector of operator Secondly,

operator ADL(‘U;T) is called Fredholm operator, dlim kerA= codimimA. Third, the proof of
Lemma 2.1 will be based on the following assertighich is a particular case of Theorem 4.6.1 [5].
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Proposal 2.1.Let be operatorsL, M DE(‘U;T), and operator L is Fredholm operator. Then the

following statements are equivalent:
(i) operator M is (L,0)-bounded;
(i) operator L does not have associated vectors.
We proceed to the proof of the lemma 2.1. Fredhaimof operatoi = L(A) is obvious. Let poly-

nomial L =L(s) has no real roots. ThekerL (/\)={q , means operatot. does not have associated
vectors. If polynomialL = L(s) has real roots, thek\erL(/\) ¢{ (} and finite-dimensional. If condition
(ii) of the lemma 2.1 is satisfied, theM (A)pOimL(A) for all pOkerL(4)\{G. Lemma 2.1 is
proved.

We introduce in spacelé“,mDR, gO [L+ ), Banach lattices. In each of them we choose alfami

of vectors{q(}, all components of which are zero except for thegonent that is equal to unity. We
construct the linear span of these families comgjsof linear combinations of these vectors with
positive coefficients. The closure of this line&el in the norm of the spad(g‘ we denote byC(;“,

mOR, qO[L,+x). As is easy to seé:g‘ is generating cone in spatgé, mOR, qO[1,+o).

Lemma 2.2.Let the conditions of the lemma 2.1 are satisfad] all the coefficients of the poly-
nomials L(s) and M (s) are positive. Then operatavl is strongly positivgL,0)-bounded.

Proof. By the lemma 2.1 and theorem 1.1 spHE€®9" splits into a direct surtfy®*9- 01 7y %%,
and 110%% =kerL (A). If kerL(\)={¢, then the assertion of Lemma 2.2 is obvious. Let
kerL(A)#{ @ . This can happen only when one of the roots ofpibignomial L(s) coincides with a

member of the sequendgl}. By construction, the sequende,} monotonically increases, and
lim 4, =+c. This, in particular, means that a set of equahseof a sequence can not be infinite. Let

Koo

Aj= A4y =..= 4y =4, where 1 is the root of the polynomial L(s). Hence

kerL(A) = sparﬁej YRR } :

Further, the space |y also splits into a direct sum lgp01g

q» and
(TO =M (A)[ker (/\)]=spar{ej Q41 v qﬂ} : alg‘lz imL(A\), i.e. Ig‘l there is a closure in the norm

m

span of vectorge, 4, # i} .

q,1l

Hence, Ig"fdeg" there is a closurespar{ g, 4 # 4} in norm Ig"fdeg". Strongly positive(L,0)-
limitation of operatorM follows from the positivity of the coefficients dlie polynomialsL(s) and
M(s) .

By Lemmas 2.1, 2.2 and Theorem 2.1, we have

Theorem 2.2.Let the conditions of Lemmas 2.1 and 2.2. Therafyr vector functionf = f (t)
such  that  foOCH(O.r)Ie®t)  and  —fOt)OCI™ %" nI5®;t0(0,r),  and

leC([O,r);CC']“"deg'- N Ig"fdegL) and any vectou, DCC’]“J'deg" , such thatug DCC’]“J'deg" N Ié‘ffdeg" _ there

exists a unique positive solution of the probleim (&) u = u(t), which also has the following form
t
u(t) ==Mg" OO +U'uy + U™ 15 £ (s)ds.
0

Here
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- fic(t)e e M (A } - = fi(t)e
MLFO(t) = k ,Utug=Y""ex Jt (g, G (D)= =X
= 0 T g e O G

and the prime at the sum sign means that the suomiatover the setk DN, # 4} .

Comment 2.1.All the arguments above were carried out underirtiidicit assumption that only
one root of the polynomial(s) coincides with some term of the seque{m@} . However, these argu-
ments are not difficult to extend to the case wheveral roots and even all the roots of the polyabm
L(s) coincide with the terms of the sequerég} .

Comment 2.2.If we return to the mathematical models (1) angg@ad consider them from the
point of view of the approach suggested above, Weran see that in the case (1), hon-negative solu
tions are possible (at, a0 R, ), and in the case of (2) such decisions can roinhde (even with

f (t)=0).

Conclusion

To continue the tradition laid down in [7], the hekep should be the study of a stochastic model of
the form (3). To date, the main results have aldagkbn obtained, but unlike [7] they are basedonot
the Ito—Stratonovich—Skorokhod approach, but onNle¢éson—Glickich derivative [9]. In addition, it
would be interesting to consider various genertiima of the Showalter—Sidorov condition [10]. Fi-
nally, it would be nice to consider the relatiom$vireen the powers of the polynomidlsand M , other
than (4) [11-13].

The work was supported by Act 211 Government of Russian Federation, contract
M 02.A03.21.0011.
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HEKOTOPbLIE MATEMATUYECKUE MOLEJIN COBOJIEBCKOIO TUMA
C OTHOCUTEJIbHO NO3UTUBHBLIMU ONEPATOPAMU
B MPOCTPAHCTBAX NOCJIEAOBATEJIbHOCTEW

H.H. Conoebéea, C.A. 3azpebuHa, ' A. Ceupudiok
HOxHO-Ypanbckuli eocyGapcmeeHHbIl yHugepcumem, e. YensbuHck, Poccutickass ®edepayus
E-mail: zargebinasa@susu.ru

B mpocTtpancTBax mocienoBaTenbHOCTEH, ABISIONIMXCS aHAJIOTaMH (PYHKIIMOHABHBIX IIPOCTPAHCTB
CoboeBa, pacCMOTpeHa MaTeMaTH4ecKast MOJIeNb, MPOTOTHIIAMU KOTOPOU CITyKaT ypaBHeHUE bapeHO-
narra—Kentopa—KounHoit u ypaBHeHre Xodda. OTMETHM, YTO 3TH YPABHEHUS SIBIISIOTCS BBIPOXK/ICH-
HBIMHA ypaBHEHUSIMH WM YPaBHEHHAMHU COOOJIEBCKOTO THma. [ TakuX ypaBHEHUH OTIMYUTEIHHOU
YepTON CITy’KaT (hEeHOMEHBI HECYIIECTBOBAHMS M HECTUHCTBCHHOCTH pelieHui. [1oaToMy HaxoxaeHue
YCJIOBUI CYILIECTBOBAHUS MO3UTHUBHBIX PEIICHUIN TaKUX YPaBHEHUN — aKTyaJbHOE HAlpaBICHUE HCCIIe-
JIOBaHWU. B cTaThe ommcaHbl yCIIOBUS, TOCTATOYHbIE /IS CYIIECTBOBAHMUS MO3UTHBHBIX PEIICHUN B pac-
CMOTPEHHOM MaTeMaThudeckoi Mojienu. OyHJaMEeHTOM HallluX HCCIIEIOBAaHUM CTalu Teopus MO3UTHUB-
HBIX TIOJYTPYII ONEPATOPOB U TEOPHS BHIPOKACHHBIX TOJIOMOP(MHBIX TPYIIT ONepaTopoB. B pesynbrare
CJIMSTHUSI STHX TEOPHH TOJTYYHIach HOBAask TEOPHS BBIPOKIACHHBIX MO3UTUBHBIX TOJIOMOP(HBIX TPYIIT
orepaTopoB. ABTOPHI HAZICIOTCS, YTO PE3yIbTATHl HOBOI TEOPHH HAWIYT IPUMEHEHHE B SKOHOMUYECKIX
Y MHXCHEPHBIX 3a/1a4ax.

Knioueswie cnosa: cobonegvr npocmpancmea nociedosamenvHocmeil; Mooeau co601e8cK020 muna;
BbIPONHCOCHHbIE NO3UMUBHBIE 20TIOMOPPHbLE 2DYNNbI ONEPAMOPOS.
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