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In the sequence spaces which are analogues of Sobolev function spaces we 
consider mathematical model whose prototypes are Barenblatt – Zheltov – 
Kochina equation and Hoff equation. One should mention that these equations 
are degenerate equations or Sobolev type equations. Nonexistence and 
nonuniqueness of the solutions is the peculiar feature of such equations. 
Therefore, to find the conditions for positive solution of the equations is a topical 
research direction. The paper highlights the conditions sufficient for positive 
solutions in the given mathematical model. The foundation of our research is the 
theory of the positive semigroups of operators and the theory of degenerate 
holomorphic groups of operators. As a result of merging of these theories a new 
theory of degenerate positive holomorphic groups of operators has been obtained. 
The authors believe that the results of a new theory will find their application in 
economic and engineering problems. 
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Introduction 
The Barenblatt–Zheltov–Kochina equation [1] 

( )  tu u fλ α− Δ = Δ +      (1) 

simulates the pressure dynamics of the fluid filtered in fractured porous media. Besides, the equation (1) 
simulates processes of moisture transfer in a soils [2] and processes of the solid-to-fluid thermal conduc-
tivity in the environment with two temperatures [3]. Note that the required function ( , )u u x t=  must be 

nonnegative, that is 0u ≥  by physical necessity. The Hoff equation [4]  
       ( ) tu u fλ α+ Δ = +      (2) 

simulates the H-beam buckling under the influence of high temperatures. The case is also most 
interesting when the required function ( , )u u x t=  is nonnegative. 

Consider both equations as special cases of  Sobolev type mathematical model such as 
     tLu = Mu + f,       (3) 

given in Sobolev sequence spaces 
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Here ( )L L= Λ  and ( )M M= Λ  is polynomials with real coefficients, and their degrees satisfy the 
relation 

deg degL  M≥ ;      (4) 

Λ  is transfer of the Laplace operator Δ  to spaces  m
ql , а { }k k +λ  :λ ∈  is monotonically increasing 

sequence such as lim kk
λ = +

→∞
∞ . 

The peculiarities of our approach will be, firstly, the active use of the theory of bounded operators 
and the degenerate holomorphic groups of operators generated by them  [5, ch. 3]. Secondly, we apply 
the theory of positive groups of operators, defined on Banach lattices [6, ch. 2 and 3], to lay the 
foundations of the theory of positive degenerate holomorphic groups of operators whose phase spaces 
are Banach lattices. Thirdly, we consider the concrete mathematical model (3) in Sobolev sequence 

spaces m
ql , m∈ ,  [1, )q ∈ +∞ , which can be interpreted as the space of Fourier coefficients of solutions 
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of initial-boundary value problems for equations of the form (1) or (2). Let us note the difference 
between our approach and the ideas and methods proposed in [7]. 

The foundations of the theory of degenerate positive groups of operators theory are laid in the first 
part of the article, which are generated by relatively positively bounded operators. The degenerate 
positive holomorphic groups of operators obtained are applied to the study of the Cauchy problem 
solvability for the homogeneous (that is f(t) ≡ 0) abstract equation (3). The initial value is taken from the 
phase space of such an equation. In the second part, the solvability of the Showalter–Sidorov problem 
[8] for the abstract nonhomogeneous equation (3) was studied. Sufficient conditions are obtained for the 
existence of a positive solution of this problem. Abstract results are applied to a mathematical model of 
the form (3), where ( )L L= Λ  and ( )M M= Λ  are polynomials with real coefficients. It is noted that the 

Barenblatt–Zheltov–Kochina equation for +λα∈ℝ  satisfies the sufficient conditions found, and 
therefore the initial-boundary value problem can have non-negative solutions. The final part of 
the article outlines directions for further possible research. The list of literature does not pretend 
to be complete and reflects only the tastes and preferences of the authors. 
 

1. Degenerate positive holomorphic groups of operators 
Let U  and F  be Banach spaces, operators ( )L  ;∈L U F  (i.e. linear and continuous),  

( )M  Cl ;∈ U F  (i.e. linear, closed and densely defined). Sets ( ) ( ){ }1
( )L

ρ M = µ : µL  M ;
−∈ − ∈ℂ L F U  

and ( ) \ ( )L Lσ  M = C ρ M  are called resolvent set and L -spectrum of operator M  respectively. Operator 

M  is ( , )L σ -bounded if 

( )| | ( ( ))L
+  a  µ µ > a  Mµ ρ∃ ∈ ∀ ∈ ⇒ ∈ℝ ℂ . 

If operator M  is ( ,0)L -bounded, then operators P, Q are the projectors 

( ) ( )( ) ( )
2 2

L L
µ µ

1 1
P = R  M dµ ,  Q = L  M dµ .

πi πiγ γ
∈ ∈∫ ∫L U L F  

Here  ( ) 1
( )L

µR  M = µL  M L
−−  is called a right resolvent, and ( ) 1

)L
µL  (M = L µ L  M

−−  is is called a left 

resolvent of operator M ; contour { }γ= µ : | µ |= r > a∈ℂ . Here and below, loop integrals are 

understood in the sense of Riemann. We consider subspaces 0 ker=  PU , 1 im = P,U  0 ker=  Q,F  
1 im=  QF ; and denote operator of the contraction  ( )L M  on ( )domk k  M∩U U  by  ( )k kL M , 0,1 k = .  

Theorem 1.1. Let operator ( , )M be  Lσ -bounded. Then 

(i) operators ( )k k
kL  ;∈L U F , 0,1 k = ; and there exist the operator ( )1 1 1

1L ;− ∈L F U ; 

(ii) operators ( ) 0,1 k k
kM Cl  ; , k∈ =U F ; and there exist the operator ( )1 0 0

0M ;− ∈L F U . 

Let operator M be (L,σ) -bounded, construct the operator ( )1 0
0 0H = M L  .− ∈L U  Operator M  is 

called ( , )L p -bounded, , (( ,0)p  L∈N -bounded) if pH ≠O , and 1 ( )pH =  H =+
O O . Let operator 

 be ( , )M L p -bounded, { }0p∈ ∪ℕ , we consider the equation 

Lu = Mu.ɺ        (5)  
Vector function ( )u u t= , t ∈ℝ , is solution of equation (5) if it satisfies this equation. Decision ( )u u t=  
is called solution of the Cauchy problem 

0(0)u u= ,          (6)  

if it satisfies condition (6) at some 0u ∈U . The set ⊂P U  is phase space of equation (5) if its any 

solution ( )u t ∈P  at each t ∈ℝ ; and for any 0u ∈P  there exists a unique solution 1  ( )u C ;∈ ℝ U  of 

problem (6) for equation (5). Finally, we introduce a degenerate (if { }ker 0 L  ≠ ) holomorphic (in the 

whole plane ℂ ) group of operators 
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( )1
,t L µt

µU  = R  M e dµ t .
2πi γ

∈∫ ℂ  

notice, that 0 = PU , where ker ker  P   L⊃ . 
Theorem 1.2. Let operator be( , )M   L p -bounded, { }0p∈ ∪ℕ . Then 

(i) any solution 1 ( )u  C ;∈ ℝ U  of equation (5) has the form 0( ) tu t U u= , t∈ℝ , and some 0u ∈U ; 

(ii) the phase space of equation (5) is subspace 1
U . 

Thus, under the conditions of the theorem 1.2 L -resolvent ( ) 1
µL M

−−  of operator M  in the ring 

µ > a  decomposes into a Laurent series  

( ) 1 1 1 1
1 0

1 0

         ( ) , 
p

k k k k

k k

L M S L Q H M Qµ µ µ
∞

− − − − −

= =
− = − −∑ ∑ I  

where operators 1 1
1 1 ( )S L M−= ∈L U , 1 0

0 0 ( )H M L−= ∈L U . Hence the resolving degenerate group tU  
of equation (5) is as follows 

 ( )   ,t StU Q e Q= − + I  
where 

( )
0

1

2  !

k
St µt

k=

St
e  = µ  S e dµ=   

i kγπ

∞
− ∑∫ I  

is the group of operators of equation (5), given on the phase space 1U . 

Next, we give an order relation “≥ ”, compatible with both vector and metric structures, to 1
U . In 

other words, we assume that (1;≥U ) is a Banach lattice. Recall those properties of Banach lattices, 
which will prove useful to us in the future. An arbitrary set �X  is called ordered if on ×X X  there is  
the relation of order ≥ , which satisfies the following axioms: 

(io) x x≥  for each x∈X ; 
(iio) ( ) ( ) ( )x  y  y  x  x y≥ ∧ ≥ ⇒ =  for any x, y∈X ; 

(iiio) ( ) ( ) ( )x  y  y  z  x z≥ ∧ ≥ ⇒ ≥  for any x, y,z .∈X   

An ordered vector space X  is called Riesz space if in addition, the following axioms are satisfied: 
(ivo) ( ) ( )x y  x z y z≥ ⇒ + ≥ +  for all x, y,z∈X . 

(vo) ( ) ( )x  y  x yα α≥ ⇒ ≥  for all x, y∈X  and each { }0 +α∈ ∪ℝ . 

The Riesz space X  is called functional Riesz space if u v, u v  ∨ ∧ ∈X  for any u, v∈X . Here 

( )( ) ( ) ( )( ) { }max ( ) ( ) min ( ), ( )u v x = u x , v x ,  u v x = u x v x .∨ ∧  

The spaces ( )C Ω , ( ), C Ω  where nΩ ⊂ ℝ is a domain, and spaces ql , where  [1, ]q∈ +∞  are the 

classical functional Riesz spaces examples. In these examples u v, u v∨ ∧  are defined pointwise, but if 
measure is given on  Ω , and It is possible to define these elements almost everywhere, then the Lebes-
gue spaces ( ) ,  [1, ]qL qΩ ∈ +∞  can be assigned to the to the functional Riesz spaces. 

In the Riesz function space, the following elements can be defined { }max , 0u u+ = , and 

{ }min , 0u u− = − , so that u = u u+ −− , and there is another element + .u = u +u−  If  norm 
X

⋅ is given  

on the Riesz functional space X  and satisfies the axiom 

(vio) ( ) ( )u  v  u v≥ ⇒ ≥
X X

 for all u, v∈X , 

then we call the Riesz function space X  normed Riesz function space. A complete normed functional 

space is called a Banach lattice. Spaces ( ),  ( )C CΩ Ω  and ( )qL Ω  with the qualifications specified 

above, as well as space ql , where domain ,  [1, ]n qΩ ⊂ ∈ +∞ℝ  are examples of Banach lattices. 

Further, let X  is vector space. Convex set X⊂C  we call a cone if 
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(ic) + ⊂C C C ; 

(iic) α ⊂C C  for any { }0 +α∈ ∪ℝ ; 

(iiic) ( ) { }0=∩ −C C . 

The cone C  is called generative if 
(ivc)  =−C C X .  

Now let X  is Riesz space. We construct the set 

{ }0+ x : x  .= ∈ ≥X X  

Proposal 1.1. Let X  be a vector space, ⊂C X  is generative cone. Then X  is Riesz space, where 
relative ≥  is given by 

( )  ( ).x y x y≥ ⇔ − ∈C  

Proposal 1.2. Let X  be Riesz space, then  +X  is generative cone. 

Let X  be Banach lattice with generative cone +X . Linear bounded operatorA ( )∈L X  is positive if 

 0Au ≥  for all +u  ∈X . Holomorphic group of operators ( ){ }for all  t tX  = X  : X  t∈ ∈i
ℝL X  is called 

positive if  0tX u≥  for all + u  ∈X  and t ∈ℝ . 

Proposal 1.3. Holomorphic group X i  is called exactly positive when its generator is positive 

( )'

0

t

t
A= X .

=
 

Finally, let us return to the abstract problem (5), (6). We will be interested in its positive solution 

( ),u u t=  i.е. such that ( )  0u t ≥  for all t  .∈ℝ  Therefore, we consider the phase space of equation (5) 1
U  

Banach lattice, generated by a cone 1
+U . ( , )L p -bounded operator M is  positive ( , )L p -bounded, 

{ }0p∈ ∪ℕ  if  1Su +∈U  for any 1u +∈U . The degenerate holomorphic group   ( ; ( ))U C∞∈i ℝ L U , 

generated ( , )L p -by positive operator M  is called a degenerate positive holomorphic group. 

Theorem 1.3. Let operator ( )M is positive L, p-bounded, { }0p∈ ∪ℕ . Then for any 1
0u  +∈U  there 

is the unique positive solution ( )u = u t , t∈ℝ , of problem (5), (6), and it has the form 0( ) tu t S u= .  

 
2. Mathematical model in sequence spaces 

Let U  и F  be Banach spaces, operators ( )L ;∈L U F , ( )M  Cl ;∈ U F , and operator is ( , )M  L p -

bounded, { }0 p∈ ∪ℕ . Consider a linear inhomogeneous equation of Sobolev type  

L u = Mu + fɺ .          (7) 

Vector function ( ) ( )( )1[0 ) 0 +u  C ,τ ;  C  ,τ ; , τ∈ ∩ ∈U U R , is called solution of equation (7) if it satisfies 

this equation for some ( )f f t= . The solution ( )u u t=  of equation (7) is called solution of the 
Showalter – Sidorov problem [9] 

( )( )0
0

lim  0
t

P u t u
→ +

− = ,      (8) 

if it also satisfies the initial condition (8). Here 1P:  →U U  along 0
U  is projector. Further, let U  be a 

Banach lattice generated by the cone +U . The solution ( )u u t=  of problem (7), (8) is positive if 

( ) +u t ∈U  for any  [0, )t τ∈ . 

We will be interested in the conditions under which the solution  ( )u u t=  of problem (7), (8) is 

positive. Let F  be also be a Banach lattice generated by a cone+F . If operator M  is  ( , )L p -bounded, 

{ }0p∈ ∪ℕ , then it is not difficult to show that the subspaces k
U  and k

F , 0,1 k = , are also Banach 

lattices generated by cones k k
+=+ ∩U U U  and k k

+ =  + ∩F F F , 0,1 k = , respectively. ( )L, p -bounded 

operator M  is called strongly positive if 
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(ip) operator 0 0
0 :L + +→U F , and operator 1 1

1 :L + +→U F  is a toplinear isomorphism; 

(iip) operator 1 1
1 : domM M  + +∩ →U F  and operator 0 0

0 : domM M  + +∩ →U F , and 1 0 0
0M −

+ +  ⊂ F U . 

It is easy to see that strongly positive ( , )L p -bounded operator M  is positive ( , )L p -bounded , 

{ }0p∈ ∪ℕ . Let be 0 1( )  f Q f Qf f f= − + = +I , where 1:Q →F F  is projector along 0F . 

Theorem 2.1. Let U  be a Banach lattice and  operator M  is strongly positive ( , )L p -bounded, 

{ }0p∈ ∪ℕ . Then for any vector functions [ )0f : ,τ →F  such that 

( )( ) ( ) ( )01 0 00 0, 1k0 p+f  C  ,τ ; , f  t   k = p,+∈ − ∈ +F F ,  (0, )t τ∈ , [ )( )1 10 ;f  C ,τ +∈ F , and for any vector 

0u ∈U , such that  1 1
0u +∈U  there exists the unique positive solution ( )u u t= , which also has the form 

( ) ( ) ( )01 1 1
0 0 1

0 0

( )    . 
p

kk t t

k

u t H M f t U u U L f d
τ

τ τ τ− − −

=
= − + +∑ ∫  

Here ( )0 0( )  ( )
k

k
k

d
f t f t

dt
= , 0, 1k p= + . Proof of the theorem 2.1 does not differ fundamentally from 

the proof of the theorem 5.1.1 [5]. We check the positivity of the resulting solution for the reader. We 

also note that condition ( ) ( )0 0,  (0, ), 0, 1kf t    t k pτ+− ∈ ∈ = +F , seems difficult, so here is an example: 
0 0( )  tf t e fα=− , where α +∈ℝ , 0

0  f +∈F . 

We consider Sobolev sequence spaces m
ql , m∈R ,  [1, )q∈ +∞ . First of all, we note that these 

spaces are Banach spaces with the norm 
1

 
2

,
1

mq q
q

kkm q
k

u uλ
∞

=

 
 =
 
 
∑ . 

Then pay attention to dense and continuous investments m
ql  n

ql  at m n≥ .  (The proof of this fact 

is left to the reader). Finally, we set operator   ( )k ku uλΛ = , where ( )ku u= . We show that operator 
2 ( ; )m m

q ql l+Λ ∈L . Indeed,  
1

, 2, 
1

2  . 

q

q
kkm q m q

k

mq q
u u uλ

∞

+
=

 + 
Λ = = 

 
 

∑  

Let's construct operators ( )L L= Λ  and ( )M M= Λ , where ( )L s  and ( )M s  are polynomials with 

real (for simplicity) coefficients. If the condition (4) is satisfied, that operators deg ( ; )m L m
q qL, M  l l+∈L , 

m∈R ,  [1, ).q∈ +∞  Indeed, deg degm+  L, q m+  M, q
u u≥ , degm+  L

qu l∈ , m∈R , [1, )q∈ +∞ . Hence, by the 

continuity of the embedding deg m+ L
ql

degm+  M
ql  follows the truth of what has been said. 

Lemma 2.1. Let 
(i) the condition (4) is satisfied; 
(ii) polynomials ( )L L s=  and ( )M M s=  have only real roots and have no common roots. 

Then operator   ( ,0)M is L -bounded. 

Before proceeding with the proof of this assertion, we make a number of remarks. At first, let op-
erators ( )L, M ;∈L U F , where U  and F  are Banach spaces. If there exists a vector ψ∈U  such that 

Mψ = Lφ , where the vector { }ker \ 0φ L∈ , then it is called the adjoint vector of operator L . Secondly, 

operator ( )A  ;∈L U F  is called Fredholm operator, if dim ker codim imA=  A . Third, the proof of 

Lemma 2.1 will be based on the following assertion, which is a particular case of Theorem 4.6.1 [5]. 
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Proposal 2.1. Let be operators ( )L, M ;∈L U F , and operator L is Fredholm operator. Then the 

following statements are equivalent: 
(i) operator   ( ,0)M is L -bounded; 

(ii) operator L  does not have associated vectors. 
We proceed to the proof of the lemma 2.1. Fredholmism of operator ( )L L= Λ  is obvious. Let poly-

nomial ( )L L s=  has no real roots. Then { }ker  ( ) 0L Λ = , means operator L  does not have associated 

vectors. If polynomial ( )L L s=  has real roots, then ( ) { }ker  0L Λ ≠  and finite-dimensional. If condition 

(ii) of the lemma 2.1 is satisfied, then ( ) im ( )M φ LΛ ∉ Λ  for all ( ) { }ker \ 0φ  L Λ∈ . Lemma 2.1 is 

proved. 

We introduce in spaces , ,   [1, )m
ql m q∈ ∈ +∞ℝ , Banach lattices. In each of them we choose a family 

of vectors { }ke , all components of which are zero except for the component that is equal to unity. We 

construct the linear span of these families consisting of linear combinations of these vectors with 

positive coefficients. The closure of this linear shell in the norm of the space m
ql  we denote by m

qC , 

m∈R ,  [1, )q∈ +∞ . As is easy to see, mqC  is generating cone in space m
ql , m∈R , [1, )q∈ +∞ . 

Lemma 2.2. Let the conditions of the lemma 2.1 are satisfied, and all the coefficients of the poly-
nomials ( )L s  and ( )M s  are positive. Then operator M  is strongly positive ( ,0)L -bounded. 

Proof. By the lemma 2.1 and theorem 1.1 space degm+  L
ql  splits into a direct sum deg deg 

,0 ,1
m L m L
q ql l+ +⊕ , 

and deg 
, 0 ker ( )m L

ql L+ = Λ . If { }ker ( ) 0L Λ = , then the assertion of Lemma 2.2 is obvious. Let 

( ) { }ker 0L Λ ≠ . This can happen only when one of the roots of the polynomial ( )L s  coincides with a 

member of the sequence { }kλ . By construction, the sequence { }kλ  monotonically increases, and 

lim .k
k

λ
→∞

= +∞  This, in particular, means that a set of equal terms of a sequence can not be infinite. Let 

j j+1 j+lλ = λ = = λ = λ… , where λ  is the root of the polynomial ( )L s . Hence 

( ) { }1ker  span , , , j j j lL e e e+ +Λ = … . 

Further, the space m
ql  also splits into a direct sum 0 1

m m
q, q,l l⊕ , and 

{ }, 0 1 ( )[ker ( )] span , , , m
q j j j ll M e e e+ += Λ Λ = … , а ,1   im ( )m

ql L= Λ , i.e. ,1 m
ql  there is a closure in the norm 

,1
m
ql  span of vectors { }k ke :λ λ≠ . 

Hence, deg 
,1

m L
ql

+  there is a closure { }span k k e :λ λ≠  in norm deg 
,1

m L
ql

+ . Strongly positive ( ,0)L -

limitation of operator M  follows from the positivity of the coefficients of the polynomials ( )L s  and 

( )M s . 
By Lemmas 2.1, 2.2 and Theorem 2.1, we have 
Theorem 2.2. Let the conditions of Lemmas 2.1 and  2.2. Then for any vector function ( )f f t=  

such that deg 0 1
,0 ((0, ); )m L

qf C lτ +∈  and deg 0 deg 
,0( )   m Lm L

q qf t C l ++− ∈ ∩ ; ( )0, ,t τ∈  and 

( )deg deg 
1 ,1[0, ); m Lm L

q qf C C lτ ++∈ ∩  and any vector deg 
0  m L

qu C +∈ , such that deg 1 deg 
0 ,1  m Lm L

q qu C l ++∈ ∩ , there 

exists a unique positive solution of the problem (7), (8) ( )u u t= , which also has the following form  

( ) 1 0 1 1
0 0 1

0

  ( )     ( )  .
t

t t su t M f t U u U L f s ds− − −= − + + ∫  

Here  
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( ) ( )
( )

( )
( ) ( ) ( )1 0 1 1

0 0 0 1
1 1

,  'exp , ' ,
( )

kk k k kt
k k

k k kk kk

Mf t e f t e
M f t U u t u e L f t

M L Lλ λ

λ
λ λ λ

∞ ∞
− −

= = =

 
= = =  

 
∑ ∑ ∑  

and the prime at the sum sign means that the summation is over the set { }kk :λ λ .∈ ≠N  

Comment 2.1. All the arguments above were carried out under the implicit assumption that only 
one root of the polynomial ( )L s  coincides with some term of the sequence { }kλ . However, these argu-

ments are not difficult to extend to the case when several roots and even all the roots of the polynomial 
( )L s  coincide with the terms of the sequence { }kλ . 

Comment 2.2. If we return to the mathematical models (1) and (2) and consider them from the 
point of view of the approach suggested above, then we can see that in the case (1), non-negative solu-
tions are possible (at +λ, α∈R ), and in the case of  (2) such decisions can not be made (even with 

( )  0f t ≡ ). 

 
Conclusion 

To continue the tradition laid down in [7], the next step should be the study of a stochastic model of 
the form (3). To date, the main results have already been obtained, but unlike [7] they are based not on 
the Ito–Stratonovich–Skorokhod approach, but on the Nelson–Glickich derivative [9]. In addition, it 
would be interesting to consider various generalizations of the Showalter–Sidorov condition [10]. Fi-
nally, it would be nice to consider the relations between the powers of the polynomials L  and M , other 
than (4) [11–13]. 

The work was supported by Act 211 Government of the Russian Federation, contract 
№ 02.A03.21.0011. 
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НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ СОБОЛЕВСКОГО ТИПА  
С ОТНОСИТЕЛЬНО ПОЗИТИВНЫМИ ОПЕРАТОРАМИ  
В ПРОСТРАНСТВАХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 
 
Н.Н. Соловьёва, С.А. Загребина, Г.А. Свиридюк 
Южно-Уральский государственный университет, г. Челябинск, Российская Федерация 
E-mail: zargebinasa@susu.ru 
 

В пространствах последовательностей, являющихся аналогами функциональных пространств 
Соболева, рассмотрена математическая модель, прототипами которой служат уравнение Баренб-
латта–Желтова–Кочиной и уравнение Хоффа. Отметим, что эти уравнения являются вырожден-
ными уравнениями или уравнениями соболевского типа. Для таких уравнений отличительной 
чертой служат феномены несуществования и неединственности решений. Поэтому нахождение 
условий существования позитивных решений таких уравнений – актуальное направление иссле-
дований. В статье описаны условия, достаточные для существования позитивных решений в рас-
смотренной математической модели. Фундаментом наших исследований стали теория позитив-
ных полугрупп операторов и теория вырожденных голоморфных групп операторов. В результате 
слияния этих теорий получилась новая теория вырожденных позитивных голоморфных групп 
операторов. Авторы надеются, что результаты новой теории найдут применение в экономических 
и инженерных задачах. 

Ключевые слова: соболевы пространства последовательностей; модели соболевского типа; 
вырожденные позитивные голоморфные группы операторов. 
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