Механика

УДК 532.593+536.715

МОДЕЛИРОВАНИЕ ТЕПЛОВОЙ СОСТАВЛЯЮЩЕЙ УРАВНЕНИЙ СОСТОЯНИЯ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ

Ю.М. Ковалев, О.А. Шершнева

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация E-mail: kovalevym@susu.ru

> Анализ существующих приближений для описания зависимости теплоемкости при постоянном объеме от температуры молекулярного кристалла показал, что рассмотренные приближения не позволяют адекватно описывать зависимость теплоемкости при постоянном объеме от температуры. Поэтому в данной работе для теплоемкости при постоянном объеме молекулярного кристалла было предложено такое приближение, которое позволило описать как низкочастотную, так и высокочастотную части колебательных спектров молекулярных кристаллов, и получить зависимость теплоемкости при постоянном объеме от температуры для молекулярных кристаллов нитросоединений, хорошо согласующуюся с известными зависимостями. Знание зависимости теплоемкости при постоянном объеме от температуры молекулярного кристалла имеет определяющее значение при построении уравнений состояния, которые являются замыкающими соотношениями математических моделей, описывающих распространение ударных волн, инициирование детонации в молекулярных кристаллах и т. д. Разделение частот нормальных колебаний на внутримолекулярные и колебания молекулы как целого (три колебания центра тяжести молекулы и три колебания углов Эйлера) позволило применять методы квантовой химии для определения вклада внутримолекулярных колебаний в величину теплоемкости при постоянном объеме. Проведенный в данной работе анализ предлагаемого приближения показал, что для молекулярных кристаллов гексогена, ТЭНа, тротила, тетрила и ТАТБ значения относительной теплоемкости при постоянном объеме могут быть описаны универсальной кривой с одним параметром равным 600 К.

> Ключевые слова: уравнение состояния; молекулярный кристалл; энергия Гельмгольца; постоянная Планка; постоянная Больцмана; приближение Дебая; приближение Эйнштейна.

Введение

Развитие современной вычислительной техники позволяет разрабатывать все более сложные математические модели для описания физики быстропротекающих процессов. Законы сохранения массы импульса и энергии, лежащие в основе математических моделей, требуют построения замыкающих зависимостей между входящими в уравнения сохранения величинами – уравнения состояния. Уравнения состояния определяют фундаментальную связь между термодинамическими параметрами, не зависящую от способа достижения тех или иных значений этих параметров. Математические модели, определяющие термодинамические свойства вещества, постоянно совершенствуются. Несмотря на то, что решению этой задачи посвящено достаточно большое количество как экспериментальных, так и теоретических работ, теория построения уравнений состояния далека от своего завершения, особенно это касается молекулярных кристаллов нитросоединений, которые являются твердыми взрывчатыми веществами (BB). Это связано с тем, что теоретическое определение зависимостей, характеризующих поведение ВВ осложняется большим числом внутренних степеней свободы молекул, входящих в состав кристалла. Трудности расчета межчастичного взаимодействия в молекулярных кристаллах приводят к тому, что описание термодинамических характеристик обычно осуществляется в рамках полуэмпирических подходов. При таком подходе функциональная зависимость термодинамического потенциала определяется исходя из теоретических соображений, а выбор некоторых коэффициентов этой зависимости рассчитывается из условия наилучшего совпадения с экспериментальными данными.

Механика

В настоящее время принято считать, что в уравнения состояния молекулярных кристаллов входит две составляющие: тепловая и «холодная» [1, 2]. Тепловая составляющая определяется колебательным движением молекул, входящих в состав кристалла, а холодная составляющая – изменением энергии взаимодействия, как внутри молекулы, так и между молекулами, входящих в состав кристалла, в зависимости от объема. Как было показано в работе [3], традиционные приближения не дают возможности получать правильные значения характеристических температур для молекулярных кристаллов нитросоединений по известным экспериментальным данным, и для их определения необходимо разрабатывать специальные методы и приближения.

Целью настоящего исследования является построение зависимости теплоемкости при постоянном объеме от температуры, что позволит в дальнейшем моделировать тепловую часть уравнений состояния молекулярных кристаллов.

Определение зависимости теплоемкости при постоянном объеме от температуры молекулярных кристаллов

Термодинамические свойства вещества полностью определяются, если известен один из термодинамических потенциалов. Удобно исходить из определения свободной энергии Гельмгольца F(V,T), которая наиболее простым образом связана с моделью строения вещества [1, 4, 5]:

$$F = U + E_0 + kT \sum_{\alpha} \ln(1 - \exp(-\frac{h\omega_{\alpha}}{kT})), \qquad E_0 = \frac{1}{2} \sum_{\alpha} h\omega_{\alpha} . \tag{1}$$

Здесь U – энергия взаимодействия между атомами; V – удельный объем; T – температура тела; h – постоянная Планка; k – постоянная Больцмана; ω_{α} – частоты нормальных колебаний; E_0 – энергия нулевых колебаний.

Из потенциала Гельмгольца легко определяется теплоемкость при постоянном объеме C_V . Однако, уже здесь начинаются проблемы, связанные с тем, что в эксперименте получают данные по теплоемкости при постоянном давлении C_P . В силу того, что при температурах, при которых проводятся эксперименты, присутствует ангармонизм, то теплоемкости при постоянном объеме и постоянном давлении не совпадают. Легко показать, что связь между теплоемкостями определяется следующим равенством [3], в которое входит теплоемкость при постоянном давлении C_P , изобарический коэффициент объемного расширения α , адиабатическая скорость звука C_S и температура T

$$C_v = C_p^2 / (C_p + T\alpha^2 C_s^2).$$

В качестве исходных данных для определения начального теплового состояния молекулярного кристалла были использованы экспериментальные значения соответствующих величин, приведенные в справочниках [6, 7]. В табл. 1 приведены экспериментальные данные, которые позволяют определить теплоемкость при постоянном объеме и апробировать различные модели описания ее поведения в зависимости от температуры. Таблица 1

		Ha	звание соединения									
Параметры	гексоген	ТЭН	тетрил	тротил	татб							
μ , кг/кмоль	222,13	316,50	287,15	227,13	258,18							
$ ho_0$, кг/м 3	1806,0	1778,0	1731,0	1653,0	1937,0							
C_p , кдж/кг·К	0,9707	1,6694	0,9046	1,1255	1,0054							
C_v , кдж/кг·К	0,9017	1,5902	0,7805	0,9559	0,9995							
T_0 , K	293,0	293,0	293,0	293,0	293,0							
C_{so} , м/сек	2650	2320	2190	2160	1.4390							
$\alpha \cdot 10^{-3}$, K ⁻¹	0,1908	0,2300	0,3200	0,3200	0,0995							

Тепловые параметры уравнения состояния кристалла

Следуя работам А.И. Китайгородского [5], для описания поведения органического молекулярного кристалла разбиваем его термодинамические функции на межмолекулярные и внутримолекулярные. Межмолекулярная часть спектра состояла из шести колебаний на молекулу: три колебания – колебания центра тяжести молекулы, а три колебания – колебания углов Эйлера. В этом случае выражение для свободной энергии Гельмгольца может быть представлено в виде двух составляющих: межмолекулярной и внутримолекулярной

$$F = U_K + U_M + E_0 + 18RT \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \xi^2 \ln(1 - \exp(-\xi)) d\xi + RT \sum_{i=7}^{3N} \ln(1 - \exp(-x_i)), \quad (2)$$

где $x_i = h\omega_i/kT$, а ω_i – частоты нормальных колебаний атомов внутри молекул для гексогена, тротила, ТАТБ и ТЭНа приведены в работе [8, 9], U_k – межмолекулярная энергия взаимодействия, U_M – внутримолекулярной энергия взаимодействия, $\theta_D = h\omega_D/k$ – характеристическая температура Дебая, ω_D – частота Дебая.

Дифференцируя дважды выражение (2) по температуре при постоянном объеме, получим выражение для теплоёмкости при постоянном объёме в виде двух составляющих: первая относится к колебаниям внутри молекулы, вторая к колебаниям молекулы как целого

$$C_{VM} = R \sum_{i=7}^{3N} \frac{x_i^2 \exp(x_i)}{\left(\exp(x_i) - 1\right)^2}.$$
(3)

$$C_{VD} = C_V - C_{VM} = 6R \left(4D(x_D) - \frac{3x_D}{\exp(x_D) - 1} \right).$$
(4)

Здесь C_{VD} – составляющая теплоёмкости при постоянном объёме, зависящая от колебаний молекулы как целого (три колебания центра масс и три колебания углов Эйлера) и определяемая в приближении Дебая, а C_{VM} – составляющая теплоёмкости при постоянном объёме, зависящая от внутримолекулярных колебаний. Часть теплоемкости C_{VM} называют внутримолекулярной. Предельные значения составляющих теплоёмкости, соответствующие высоким температурам для всех степеней свободы, равны 6*R* и (3*N* – 6)*R* соответственно. Молекулярные кристаллы обычно имеют низкие характеристические температуры Дебая (~100÷300 K) [10, 11], поэтому при комнатных температурах и выше часть теплоемкости, определяемая колебаниями молекулы как целого, приближается к своему предельному значению 6*R*.

Силовые постоянные для расчета спектров нормальных колебаний внутри молекулы были определены с помощью квантово-химических методов PM-3 и DFT, подробно описанных в работах [12, 13]. Для обеспечения достоверности получаемых в расчетах внутримолекулярных колебательных спектров конформации молекул определялись из данных ренгеноструктурного анализа соответствующих молекулярных кристаллов. ИК-спектры для гексогена, тротила, тетрила, ТАТБ и ТЭНа хорошо согласуются с известными экспериментальными данными [7] и в терминах характеристических температур колебаний $\theta = h\omega/k$ приведены в табл. 2–6.

Если на выводы, полученные по результатам работы [3], погрешности измерений C_p , α и C_s влияют слабо, то в данном случае при расчетах C_V этот факт обязательно необходимо учитывать. Это связано с тем, что величина теплоёмкости C_{VD} , описывающая колебания молекулы как целого, составляет всего 7–10 % от величины полной теплоёмкости C_V и может быть сравнима с суммарной погрешностью измерений C_p , α и C_s . Известные экспериментальные данные [11] позволяют определить значение C_V в некотором коридоре значений, приведенном в табл. 2. В силу того, что давления 10–20 ГПа, характерные для инициирования детонации в большинстве твердых ВВ, практически не влияют на внутримолекулярный колебательный спектр нитросоединения [10], для расчета части теплоёмкости, связанной с внутримолекулярными колебаниями, можно использовать колебательный спектр, полученный для одиночной молекулы. Значения полной безразмерной теплоёмкости при постоянном объёме C_V / R , безразмерных теплоёмкостей C_{VM} / R и C_{VD} / R для гексогена, ТЭНа, ТАТБ и тротила, определенных формулами (3) и (4) с использованием данных из табл. 2–6, приведены в табл. 7.

Механика

	Характеристические температуры колебаний молекулы тротила № θ, K № θ, K № θ, K № θ, K 1 0,0 17 413,062 33 1158,672 49 2232,412 2 0,0 18 465,708 34 1222,008 50 2274,799 3 0,0 19 483,160 35 1351,801 51 2286,280 4 0,0 20 501,677 36 1397,123 52 2308,539 5 0,0 21 533,115 37 1424,704 53 2322,610 6 0,0 22 638,377 38 1430,790 54 2546,126													
N⁰	heta, K	N⁰	θ, K	N⁰	heta, K	N⁰	θ, K							
1	0,0	17	413,062	33	1158,672	49	2232,412							
2	0,0	18	465,708	34	1222,008	50	2274,799							
3	0,0	19	483,160	35	1351,801	51	2286,280							
4	0,0	20	501,677	36	1397,123	52	2308,539							
5	0,0	21	533,115	37	1424,704	53	2322,610							
6	0,0	22	638,377	38	1430,790	54	2546,126							
7	27,537	23	694,159	39	1485,277	55	2575,434							
8	41,345	24	764,415	40	1509,478	56	2760,434							
9	50,261	25	803,607	41	1701,096	57	2763,196							
10	86,668	26	910,970	42	1794,761	58	2770,750							
11	101,720	27	961,874	43	1829,695	59	4292,011							
12	154,022	28	967,342	44	1921,375	60	4302,255							
13	208,262	29	1070,100	45	1955,560	61	4396,367							
14	211,673	30	1073,956	46	1982,825	62	4419,632							
15	226,998	31	1078,244	47	2033,615	63	4571,324							
16	385,173	32	1103.811	48	2083.166									

Таблица 3

Таблица 2

Характеристические	температуры	колебани	ий молекулы ТАТБ

N⁰	θ, K	N⁰	heta, K	N⁰	heta, K	N⁰	θ, K
1	0,0	20	575,070	39	1153,420	58	2368,536
2	0,0	21	588,307	40	1187,649	59	2400,707
3	0,0	22	715,985	41	1187,664	60	2400,722
4	0,0	23	715,999	42	1240,856	61	2564,715
5	0,0	24	790,730	43	1353,369	62	2564,902
6	0,0	25	795,133	44	1486,400	63	2574,729
7	40,069	26	795,162	45	1486,400	64	2608,483
8	40,079	27	798,874	46	1886,383	65	2672,178
9	40,083	28	849,462	47	1886,426	66	2672,207
10	114,856	29	849,591	48	1929,576	67	4790,034
11	114,913	30	870,569	49	1930,568	68	4798,983
12	114,926	31	891,604	50	1949,330	69	4799,055
13	305,724	32	892,194	51	1949,445	70	4862,520
14	434,968	33	922,854	52	2182,026	71	4862,563
15	434,974	34	922,926	53	2185,321	72	4868,837
16	444,616	35	961,644	54	2185,321		
17	444,672	36	1029,080	55	2213,650		
18	551,564	37	1029,684	56	2262,339		
19	551,575	38	1029,785	57	2262,368		

Таблица 4

Характеристические температуры колебаний молекулы гексогена

N⁰	heta, K	№	θ, K	№	heta, K	N⁰	θ, K
1	0,0	17	442,039	33	1137,810	49	1938,770
2	0,0	18	468,355	34	1284,034	50	1943,057
3	0,0	19	500,368	35	1306,954	51	1949,776
4	0,0	20	526,626	36	1333,600	52	2179,148
5	0,0	21	622,939	37	1369,311	53	2180,975
6	0,0	22	645,643	38	1386,476	54	2215,175
7	47,569	23	690,518	39	1446,085	55	2875,192
8	60,140	24	709,525	40	1541,261	56	2897,392
9	66,459	25	768,947	41	1549,893	57	2906,241
10	79,752	26	816,672	42	1579,763	58	4162,218
11	95,504	27	905,891	43	1652,105	59	4164,160
12	110,457	28	927,717	44	1688,449	60	4178,678

Ковалев Ю.М., Шершнева О.А.

Моделирование тепловой составляющей уравнений состояния молекулярных кристаллов

							Окончание табл. 4
N⁰	θ, K						
13	281,411	29	939,458	45	1711,455	61	4220,834
14	327,471	30	970,507	46	1782,359	62	4223,712
15	362,503	31	982,751	47	1839,666	63	4244,574
16	404,822	32	997,873	48	1860,341		

Таблица 5

	Xa	рактер	истические температуры к	олебан	ний молекулы тетрила		Таолица
N⁰	θ, K	N⁰	θ, K	N₂	θ, K	N⁰	θ, K
1	0,0	20	345,810	39	1077,730	58	2023,858
2	0,0	21	412,831	40	1098,900	59	2172,510
3	0,0	22	428,886	41	1121,745	60	2224,884
4	0,0	23	442,090	42	1173,551	61	2266,405
5	0,0	24	490,121	43	1248,389	62	2282,485
6	0,0	25	512,418	44	1387,854	63	2299,619
7	30,698	26	530,991	45	1402,507	64	2311,157
8	39,030	27	574,412	46	1413,886	65	2537,961
9	43,533	28	666,941	47	1439,344	66	2563,696
10	61,730	29	682,325	48	1465,681	67	2761,500
11	95,618	30	753,831	49	1507,668	68	2775,868
12	125,145	31	763,872	50	1607,209	69	2777,234
13	135,887	32	824,998	51	1714,776	70	2974,530
14	161,881	33	898,703	52	1804,292	71	4257,938
15	193,300	34	923,263	53	1869,680	72	4302,595
16	202,809	35	951,676	54	1907,167	73	4390,433
17	216,275	36	971,507	55	1944,706	74	4403,467
18	222,037	37	977,815	56	1952,422	75	4501,042
19	254,900	38	1074,631	57	1982,385		

Характеристические температуры колебаний молекулы тэна

Таблица 6

				1					
N⁰	heta, K	N⁰	heta, K	N⁰	θ, K	N⁰	heta, K		
1	0,0	23	295,687	45	1135,773	67	1895,544		
2	0,0	24	301,282	46	1135,773	68	2028,793		
3	0,0	25	358,068	47	1157,823	69	2028,793		
4	0,0	26	394,701	48	1234,733	70	2035,511		
5	0,0	27	394,702	49	1330,823	71	2061,779		
6	0,0	28	490,184	50	1330,825	72	2211,154		
7	24,809	29	528,423	51	1379,322	73	2211,154		
8	32,149	30	724,476	52	1384,431	74	2216,072		
9	33,013	31	724,477	53	1384,431	75	2228,812		
10	47,086	32	792,838	54	1415,548	76	2310,509		
11	57,834	33	792,838	55	1456,054	77	2310,510		
12	66,114	34	832,909	56	1541,352	78	2310,748		
13	68,083	35	882,688	57	1699,176	79	2315,484		
14	68,084	36	919,776	58	1699,178	80	4474,865		
15	114,091	37	928,495	59	1755,385	81	4474,869		
16	114,810	38	993,159	60	1756,148	82	4481,692		
17	193,496	39	993,841	61	1756,148	83	4482,720		
18	196,629	40	993,842	62	1773,277	84	4571,178		
19	196,630	41	995,907	63	1776,397	85	4573,758		
20	247,838	42	1009,723	64	1800,453	86	4580,997		
21	247,839	43	1009,725	65	1820,869	87	4581,000		
22	288,866	44	1132,256	66	1895,543				

Параметры	Название соединения											
	гексоген	ТЭН	ТАТБ	тротил								
C_V / R	28,14–29,48	38,42	30,60–31,8	27,25–30,66								
C_{VM} / R	22,35	32,33	24,48	21,62								
C_{VD} / R	5,79–7,13	6,09	6,12	5,63–9,04								

Как следует из результатов расчетов, приведенных в табл. 7, значение C_{VD} / R = 6 попадает в коридор, определяющий значение теплоёмкости, зависящей от колебаний молекулы как целого. Следовательно, разбиение термодинамического потенциала на внутримолекулярную и межмолекулярную части является оправданным и может быть использовано при расчетах теплоёмкости молекулярных кристаллов. Учитывая тот факт, что характеристические температуры Дебая молекулярных кристаллов малы, можем записать выражение, определяющее зависимость теплоёмкости при постоянном объёме от температуры в виде

$$C_V = 6R + R \sum_{i=7}^{3N} \frac{x_i^2 \exp(x_i)}{(\exp(x_i) - 1)^2}.$$
(5)

Таблица 7

Другой подход к определению зависимости теплоёмкости при постоянном объёме от температуры был предложен в работе В.Г. Щетинина [11]. В данной работе для ряда кристаллов нитросоединений было показано, что зависимость $C_V(T)$ хорошо описывается эмпирическим выражением вида

$$C_V / C_{VH} = 1 - (1 - C_V^0 / C_{VH}) \exp[-(T - T) / T_c],$$
(6)

где $C_{VH} = 3NR$, C_V^0 – значение теплоемкости при начальной температуре, T_c – параметр, определенный в работе [11] для ряда органических соединений.

Объединение результатов расчетов, проведенных по формулам (5) и (6), позволяет получить выражение универсальной кривой, описывающей зависимость безразмерной теплоемкости при постоянном объеме от температуры, в следующей форме

$$\frac{C_V}{C_V^0} = \frac{C_{VH}}{C_V^0} - \left(\frac{C_{VH}}{C_V^0} - 1\right) \exp\left[-\left(T - T_0\right)/T_*\right],$$
(7)

где T_* – параметр. В табл. 8 приведены данные расчетов относительных теплоемкостей для гексогена, ТЭНа, ТАТБ, тротила, проведенных по формуле (5) – столбец таблицы с номером 1, формуле (7) – столбец с номером 2 и по формуле (6) – столбец номер 3. Как следует из данных табл. 8 значения относительной теплоемкости при постоянном объеме, рассчитанные по формуле (7) с параметром T_* равным 600 К, находятся в коридоре, ограниченным снизу значениями относительной теплоемкости при постоянном по формуле (5), и ограниченным сверху значениями относительной теплоемкости при постоянном объеме, рассчитанными по формуле (5).

Выводы

Как наглядно следует из табл. 6, 7, 8, по результатам работы можно делать следующие выводы:

1. Приближение, принятое в работах А.И. Китайгородского, может быть использовано при расчетах зависимости теплоемкости при постоянном объеме от температуры.

2. Для гексогена, ТЭНа, тротила, тетрила и ТАТБ значения относительной теплоемкости при постоянном объеме могут быть описаны универсальной кривой (7) с одним параметром T_* , равным 600 К.

Авторы выражают свою благодарность профессору А.В. Белику за полезные обсуждения и интерес к работе.

a 8																					
Таблиц		3	1,0000	1,0857	1,1683	1,2454	1,3172	1,3842	1,4466	1,5048	1,5590	1,6096	1,6567	1,7007	1,7416	1,7798	1,8154	1,8486	1,8795	1,9084	1,9221
	Тротил	2	1,0000	1,0842	1,1629	1,2366	1,3055	1,3700	1,4303	1,4867	1,5395	1,5889	1,6351	1,6783	1,7187	1,7565	1,7919	1,8250	1,8560	1,8850	1,8987
тротила		1	1,0000	1,0838	1,1634	1,2384	1,3086	1,3738	1,4343	1,4902	1,5418	1,5894	1,6332	1,6737	1,7111	1,7456	1,7776	1,8071	1,8346	1,8600	1,8720
Ha, TATE		3	1,0000	1,0933	1,1802	1,2611	1,3364	1,4065	1,4718	1,5326	1,5892	1,6419	1,6910	1,7366	1,7792	1,8188	1,8556	1,8899	1,9219	1,9517	1,9658
огена, ТЭ	TATE	2	1,0000	1,0873	1,1690	1,2454	1,3168	1,3837	1,4463	1,5048	1,5595	1,6107	1,6586	1,7035	1,7454	1,7846	1,8213	1,8556	1,8877	1,9178	1,9321
е для гекс		1	1,0000	1,0979	1,1888	1,2728	1,3503	1,4214	1,4866	1,5462	1,6007	1,6505	1,6961	1,7378	1,7761	1,8114	1,8439	1,8740	1,9018	1,9277	1,9313
объемо		3	1,0000	1,0733	1,1529	1,2270	1,2960	1,3694	1,4203	1,4762	1,5282	1,5767	1,6218	1,6639	1,7031	1,7396	1,7736	1,8053	1,8348	1,8623	1,8754
остоянно	HET	2	1,0000	1,0816	1,1579	1,2292	1,2960	1,3585	1,4169	1,4716	1,5228	1,5706	1,6154	1,6572	1,6964	1,7331	1,7674	1,7994	1,8294	1,8575	1,8708
ости при г		1	1,0000	1,0866	1,1686	1,2450	1,3154	1,3799	1,4387	1,4921	1,5407	1,5850	1,6254	1,6624	1,6963	1,7274	1,7561	1,7826	1,8071	1,8298	1,8405
теплоёмк		3	1,0000	1,0861	1,1663	1,2409	1,3103	1,3749	1,4349	1,4908	1,5429	1,5913	1,6363	1,6782	1,7172	1,7535	1,7872	1,8186	1,8479	1,8750	1,8878
тельные	ексоген	2	1,0000	1,0799	1,1546	1,2246	1,2900	1,3512	1,4084	1,4620	1,5121	1,5590	1,6028	1,6439	1,6822	1,7181	1,7517	1,7831	1,8125	1,8400	1,8531
Относи		1	1,0000	1,0887	1,1713	1,2474	1,3171	1,3807	1,4388	1,4918	1,5403	1,5846	1,6253	1,6628	1,6972	1,7290	1,7584	1,7857	1,8109	1,8343	1,8454
	Температура	T, K	293	333	373	413	453	493	533	573	613	653	693	733	773	813	853	893	933	973	993

Литература

1. Жарков, В.Н. Уравнения состояния при высоких температурах и давлениях / В.Н. Жарков, В.А. Калинин. – М.: Наука, 1968. – 311 с.

2. Куропатенко, В.Ф. Уравнения состояния в математических моделях механики и физики / В.Ф. Куропатенко // Математическое моделирование. – 1992. – Т. 4, № 12. – С. 112–136.

3. Ковалев, Ю.М. Анализ некоторых приближений для описания тепловой части уравнений состояния молекулярных кристаллов / Ю.М. Ковалев // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика». – 2017. – Т. 9, № 1. – С. 49–56.

4. Жирифалько, Л. Статистическая физика твердого тела / Л. Жирифалько. – М.: Мир, 1975. – 382 с.

5. Китайгородский, А.И. Молекулярные кристаллы / А.И. Китайгородский. – М.: Наука, 1971. – 424 с.

6. Dobratz, B.M. LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory Report UCRL-52997 / B.M. Dobratz, P.C. Crawford. – 1985.

7. Gibbs, T.R. Last explosive property data. Los Alamos series on dynamic material properties / T.R. Gibbs, A. Popolato. – Berkeley, Los Angeles, London: University of California Press, 1980.

8. Ковалев, Ю.М. Математическое моделирование тепловой составляющей уравнения состояния молекулярных кристаллов / Ю.М. Ковалев // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование». – 2013. – Т. 6, № 1. – С. 34–42.

9. Ковалев, Ю.М. Определение тепловой составляющей уравнения состояния молекулярных кристаллов / Ю.М. Ковалев, А.В. Белик // Вестник Челябинского государственного университета. – 2013. – № 9(300). – С. 5–10.

10. Miller, P.J. Effect of Pressure on the Vibration Spectra of Liquid Nitromethane / P.J. Miller, S. Block, G.J. Piermarini // J. of Physical Chemistry. – 1989. – Vol. 93, no. 1. – P. 462–466.

11. Щетинин, В.Г. Расчет теплоемкости органических веществ в ударных и детонационных волнах / В.Г. Щетинин // Химическая физика. – 1999. – Т. 18, № 5. – С. 90–95.

12. Кларк, Т. Компьютерная химия / Т. Кларк. – М.: Мир, 1990. – 384 с.

13. Степанов, Н.Ф. Квантовая химия сегодня / Н.Ф. Степанов, Ю.В. Новаковская // Российский химический журнал. – 2007. – Т. LI, № 5. – С. 5–17.

Поступила в редакцию 28 сентября 2017 г.

Bulletin of the South Ural State University Series "Mathematics. Mechanics. Physics" 2017, vol. 9, no. 4, pp. 43–51

DOI: 10.14529/mmph170406

SIMULATION OF THE THERMAL CONSTITUENT OF MOLECULAR CRYSTALS STATE EQUATIONS

Yu.M. Kovalev, O.A. Shershneva

South Ural State University, Chelyabinsk, Russian Federation *E-mail:* kovalevym@susu.ru

The analysis of existing approximations to describe the dependence of the heat capacity at a constant volume on the temperature of the molecular crystal has shown that the given approximations do not adequately describe the dependence of the heat capacity at a constant volume on the temperature. Therefore, in this paper for the heat capacity at a constant volume of a molecular crystal such approximation is given which makes it possible to describe both the low frequency and the high frequency parts of the vibrational spectra of molecular crystals and to obtain the temperature dependence of the heat capacity at a constant volume for molecular crystals of nitro compounds which is in line with the known dependencies. The knowledge of the dependence of the heat capacity at a constant volume on the temperature of a molecular crystal is of a great importance at the developing of the equations of state which are the closing relations of mathematical models rendering the propagation of shock waves, initiation of detonation in molecular crystals, etc. The separation of the frequencies of normal vibrations into intramolecular vibrational frequencies and the vibrations of the molecule as a whole (three vibrations of the center of gravity of the molecule and three vibrations of Euler angles) made it possible to use methods of quantum chemistry to determine the effect of intramolecular vibrations on the specific heat capacity at a constant volume. The analysis of the proposed approximation carried in the paper has shown that for molecular crystals of cyclonite, penthrite, tritol, tetryl and triaminobtrinitrobenzene the values of the relative heat capacity at a constant volume can be described by a universal curve with one parameter which is equal to 600 K.

Keywords: equation of state; molecular crystal; Helmholtz energy; Planck's constant; Boltzmann's constant; Debye approximation; Einstein's approximation.

References

1. Zharkov V.N., Kalinin V.A. *Uravneniya sostoyaniya pri vysokikh temperaturakh i davleniyakh* (Equations of state at high temperature and pressure). Moscow, Nauka Publ., 1968, 311 p. (in Russ.).

2. Kuropatenko V.F. Uravneniya sostoyaniya v matematicheskikh modelyakh mekhaniki i fiziki (Equations of state in mathematical models of mechanics and physics). *Matematicheskoe modelirovanie*, 1992, Vol. 4, no. 12, pp. 112–136. (in Russ.).

3. Kovalev Yu.M. Analysis of Some Approximation for the Description of Thermal Side of the Equation States of Molecular Crystals. *Bulletin of the South Ural State University. Series of "Mathematics. Mechanics. Physics*", 2017, Vol. 9, no 1, pp. 49–56. DOI: 10.14529/mmph170106

4. Zhirifal'ko L. *Statisticheskaya fizika tverdogo tela* (Statistical physics of solid body). Moscow, Mir Publ., 1975, 382 p. (in Russ.).

5. Kitaygorodskiy A.I. *Molekulyarnye kristally* (Molecular crystals). Moscow, Nauka Publ., 1971, 424 p. (in Russ.).

6. Dobratz B.M., Crawford P.C. *LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants.* Lawrence Livermore National Laboratory Report UCRL-52997, 1985.

7. Gibbs T.R., Popolato A. *Last explosive property data. Los Alamos series on dynamic material properties.* Berkeley, Los Angeles, London, University of California Press, 1980.

8. Kovalev Yu.M. Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals. *Bulletin of the South Ural State University. Series Mathematical Modelling, Programming & Computer Software*, 2013, Vol. 6, no. 1, pp. 34–42.

9. Kovalev Yu.M., Belik A.V. Vestnik Chelyabinskogo gosudarstvennogo universiteta, 2013, no. 9(300), pp. 5–10. (in Russ.).

10. Miller P.J., Block S., Piermarini G.J. Effect of Pressure on the Vibration Spectra of Liquid Nitromethane. *J. of Physical Chemistry*, 1989, Vol. 93, no. 1, pp. 462–466. DOI: 10.1021/j100338a088

11. Shchetinin V.G. Khimicheskaya fizika, 1999, Vol. 18, no. 5, pp. 90–95.

12. Klark T. Komp'yuternaya khimiya (Computer chemistry). Moscow, Mir Publ., 1990, 384 p. (in Russ.).

13. Stepanov N.F., Novakovskaya Yu.V. Kvantovaya khimiya segodnya (Quantum Chemistry Today). *Rossiyskiy khimicheskiy zhurnal*, 2007, Vol. LI, no. 5, pp. 5–17. (in Russ.).

Received September 28, 2017