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Corporative-competitive system, which is inside o€orporations, can be de-
termined as a “game”, step-by-step performing a ceain type of activity. The sys-
tem operates in real physical time, and the resulbf operation is the distance,
which is divided into stages. The stages are pasdeglthe team participants due to
rigid schedule, which may be occasionally selectdébm the set of possible sched-
ules. The abstraction “M-parallel semi-Markov process” is used for description of
a system under consideration. In semi-Markov procesdegenerate distribution is
used for description of time intervals between rela points. For analysis of relay-
race evolution, recurrent method which takes into acount rigidity of schedule
and stochastic character of route selection is useth accordance with the concept
of distributed forfeit and proposed recurrent procedure, the method of calcula-
tion of summing forfeit, which one of competing tems receives from other teams,
is proposed.

Keywords: relay-race; semi-Markov process; degeteedistribution; route; evo-
lution; distributed forfeit; recurrent procedure.

Introduction

Relay-races, as the basic conception of corporativmeurrent system description, may be applied
to modeling of such fields of human activity, adustry, economics, politics, defense, sport, etel]1
Due to conception announced teams, participatinglisy-race, should to pass the distance, which is
divided onto stages by relay-points, and team @pants should to pass the stage in real physioal. t
Common case of random time relay-race simulatios gansidered in [2, 5], where for description of
teams behavior such abstraction, as semi-Markogegowas used. Semi-Markov process is quite uni-
versal mathematical apparatus, and when insteaahdbm time emerges rigid schedule, it can be used
too. Rigidity of stage passing time permit subsélytsimplify model of the system and calculatioh
forfeit, but also leads to substantial restrictionhsesults obtained.

On practice teams, participated the relay race, waay their schedules, and for an external ob-
server such variations are the stochastic ones. gérmits to consider different combinations ofesth
ules and to improve results obtained. Approachesddeling of relay-races with rigid schedules and
alternative routes are currently known insufficignthat explains necessity and relevance of tlresn
tigations in this domain.

1. Relay-race as M-parallel semi-Markov process

The graph, which shows the alternative routes rigidedule relay-race structure, is shown on the
fig. 1.

Following assumptions, when modeling this kindaxfas, are made bellow [5]:

in relay-race participat®l-teams, every of which pass its distance in regsighl time;

distance of every team is divided onto stages,yewemwhich is overcame by one participant of a
team, and first participants of all teams starirtsiages at once;

every participant may choose a route, for passiagstage, for an external observer the route selec-
tion is a random event;

passing the stage route by participant lasts tigid, which is individual for the team, the stagel a
the route;

after completion of a current stage on the seleatete next participant of the team selects route
and starts the passing next stage without a lag;

forfeit, which is imposed on the teams is definedttee distributed payment, value of which de-
pends on the time and difference of stages, whictently teams pass.
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Fig. 1. Structure of alternative routes rigid sched

The model of relay-race witkl teams may be performed ldsparallel semi-Markov process [6—8]

ule relay-race
,Ll:{ﬂl,---,ﬂm,---,ﬂm (t)} 1)
Hn ={ A (D)}
wheret is the physical timeyy,, is the ordinary semi-Markov proces4,, is the set of stateshm(t) is
the semi-Markov matrix, which describes an actiotghem-th team;
2)

A, ={ao(m), A+ By + By n)} ;

him(t) :[hj(m),l(m) (t)J ; 3)
him(t) =[hj(m),l(m) (t)} 1< j(m),I(m)< J; (4)
K(m, j)
~ (t),whenl = j +1, ] <J -1
0y mpagmy (1) = k(n%‘)-lh“m'”( ) wheni(m) = i(m) i(m= A m (5)
0in all other cases
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Due to rigid schedule and quasi-stochastic prieogflroute selection [9]
A ) ()= Pigm T m ) (0= Py )] = Ty | (6)

where P is the probability of route selectiorf;((m’ ) (t) is the pure time density of residence the

m, j)
process at the sta@, with further switch to the state;(,,, on thek-th route; 5(t - Ty, ;) is the

Dirac Jfunction; Tk( is the rigid time of passing theth stage by participant of team with

m, j)
k(m j)-th route.
Comparison of classic competition [2] and compatitivith rigid schedule is shown on the fig. 2;

H‘fk(m'j)(t) fk(m'j)(t) fT Th(m,) T T Tiop ¢

f
T Titnyp T T Tump ¢
f
t Tim,) Tini t

a b

Fig. 2. Classic competition (a) and competition wit ~ h rigid schedules (b)

When classic competition, times of semi-Markov g residence in statea;,,, and g, are

equal to fk(mj)(t) and fl(n,i)(t)’ correspondingly. When rigid schedule times araiagqto

5[t ~T(m j)] and J[t —T,(n’i)]. Formulae, which describe weighted time density probabilities of

winning thej-th stage of race byth team, if all participating teams start theeggs simultaneously,

are as follows:
M

wl\:\fm, i) (t): fk(m j)(t) D [1_ I:I(n,i) (t):|' ()
e

At ) = [im (O (®)

0
(//?("Em ) (t) _ J(t _Tk(m, J))’ WhenTk(m J) = mir{Tl(lyi) , ’Tk( m, J) , ""Tl(M,i)} (9)

& nonsense, otherwise
" ={1, WhenTk.(m’ LT, R . 10

0, otherwise

t
where F_(t) =I f (6)dé is the distribution function@is the auxiliary argument.
0

Pure time density of winning theh stage of race by-th team is as follows:

wl\?zm ) (t)
B(m () =— 51— (11)
”J'qm i)
When paired competition, formulae, which describe time density of waiting byn-th, winner,
team untiln-th, loser, team, finishes the stage, are as fallow
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[ee]

”(t)j fi(m ) (6) i) (t+6)de

Bem ) -1(n) () =5 : (12)
[ Figm ) ()R (1)
0
O t=Timin *T(mn [ whenT < Foa
¢k(m,j)ﬁl(n,i)(t):{ [ I(n;i) k(myl).] Km )= o (13)
nonsense, otherwise,

wherer(t) is the Heaviside function;

(t)= 0, whent< 0
M= 1, otherwise.

It is necessary to admit, that in the case undesideration, unlike the case considered at [2], the
draw effect emerges. It is caused with the infgiiteal probability of two or more teams stage pagsin
times coincidence when time intervals are a randogs, and quite real rigid schedule case, when some
time intervals are quite the same (the case is slmwthe fig. 2p, bottom line).

Due to the fact, that for all teams, participatedirace, number of the stajgat every relay point
may to increment only, for external viewer sequenicswitches during relays in the system as a whole
has the nature of evolution [10-13], which develfésn functional state, being defined with vector

[14] (ao(l),...,ao(m),...,aqM)) till functional state(aJ(l),...,aJ(m),...,aJ( M)). Trajectory of evolution

depends of routes, which every team select foripgss proper stages and schedules which develop
from routes selected. Owing to random charactaoofes selection trajectory of evolution is the-ran
dom one. Common number of routes, on whielth team as a whole may overcome the distance is
equal to
J
R(m)=[7%(m ). (14)
=1

where K (m, j) is the common number of routsrofth teamj-th stage.

Common number of different variants of rigid rel@ges is as follows:
M
K=[]K(m). (15)

m=1

2. Recursive procedure of relay-race evolution angsis
Let us select from all possible routes on whieth team may overcome the distance k{en) -th

variant, in which routesk(m1), ..., k(m j), ..., k(m J) are selected (note, that in common case
k(m1)#..2k(m, j)#..#k(m, J), since these are different functions rofandj). So 1(m)-th and

K (m)-th variants correspond to combinatiotém,1), ..., 1(m, j), ..., 1(m,J) and K(m1), ...,
K(m, j), ... K(m, J) respectively. Such a selection should be execotetbutes of all other teams.

For selected routes the recursive procedure of-relee evolution may be worked out. For this puepos
auxiliary time8 should be introduced. Recursive procedure of ¢imlanalysis is as follows.

Initial functional state of the semi-Markov procgd9 as a whole is(ao(l),...,ao(m) , ...,aqM)),

where elements of vector are numbers of relay-séaeing points. All teams start race simultanegpusl
and into auxiliary timeg next substitutions should be made:

6 (1) 0 Ty - & (M O Tmyyr - 66(M) 0 Ty (16)
where arrow] indicates the direction of substitution; index m&éhe quantity of previous switches.
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Rigid time intervalsé, (1), ...,6,(m) , ...6,( M) compete between them, and result of competition

is winning the stage by those teams, which havémaihvalue of@ This values fulfill the subseﬁ)g:

0 ={ ) (u), .. 6(v) . Bo( W} : (17)
{6 (u).. 8y (V) (W = min{6( ) ... 00(m) .80 M)},

whereu, v, w are auxiliary indices for nomination the numbetezm.
It is obviously, that

6 0 G(u)=...=6,(V)=..=6p(W), (18)

Ng :{arg[é’;(u)] i ar@éo(v)] av@o( V\b]} (19)
win the competition among other teams, but draw dbmpetition among themselves. Quantity of
switches§(1) on the first step of recursion is equal to cardinember of subse@B:

s(1)=|ey- (20)
Due to the switches, next substitutions should b&lro prepare next step of recursion:
index of g,(m), 1<m< M, should be replaced with index sf1) O 0+35(1);
time intervals, which will compete further shoule teplaced as follows

i. e. teams with numbers

6 (m) = 6, whenm N, ;
8y (M) O o(m) o, WhEn T e (1)
Ti(mz2)» whenmO Ny ;
indices/(m) of elements of vecto(ao(l), s Bg(im) ...,aqM)) should be replaced as follows:
0(m), whenmO N, ;
1(m) O (m). whenm? N (22)
1(m), whenm N} .

In such a way on the second step or recursion tigid intervalsHs(l) (1), ---’95(1) (m) ,...ﬂ@ (M)

will compete between them.

Let us assume that on the¢h step of the recursion vector of functional stat semi-Markov proc-
ess is(aj(l)_l,...,aj(m)_l,...,a]-(M)_l), and time intervalsty,_y (1), ...,y (M) , .. 84—y (M) com-
pete between them. Result of competition is winrting stage by those teams, which have minimal

value ofé. This values fulfill the subseﬁ);(r_l) :
O*S(r—l) ={H;(r—l) (U), ,9;( r—]) (V) s ,95( r_])(V\/)} ; (23)
{H;(r_l)(u),...,ﬁs(r_l)(v),...,H;(r_])(w)} = ming{es( (3 By (M By M)}

It is obviously, that
Hs(r—l) O g(s( I’—l) (U) =...= gq r—]) (V) =...= 95( I’—J) ( \N) , (24)

i.e. teams with numbers

N(r-1) :{arg[é’;( 1) (u)} i ar@és( -1 (V)J . av[ﬁs( 1 V\ﬂ} (25)

win the competition. Quantity of switches on thth step of recursion is equal to cardinal numier o
subsetOy, ) :

$(1)=|04 - (26)
Due to the switches, following substitutions shdoddmaid to prepare next step of recursion:
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index of 6,,_;) (m) 1<m< M, should be replaced with ind&(r) O s(r-1)+3(r);
time intervals, which will compete further shoulel teplaced as follows —
Hs(r_l)(m)—H;( 1) Whenm[J I\L(r_]) :

‘95( r (m) O N (27)
Tk(m, j+l)’ whenmO Ni I‘—1) ;
components of vectc(raj(l)_l, s B ()10 ...,a]-(M)_l) should be replaced as follows —
a; g, WhenmO Ny ;
j(m)-1: r-1
ama | Ny 28)

(), WhenmO Ny, .

In such a way on the r{1)-th step or recursion rigid time intervals
641y (1), .84y (M) ... 84 (M) compete between them.

Let assume that on the lust but one step of remursifter MJ— 3 switches vector became
(aJ(l),...,aJ(u)_l,...,aJw_l,...,av(n) , ...,aQ W1 ,...aa M)’ and rigid time intervals
Guy-3(K), Guy_3(1),Oys_3(n) compete between them only. Let us also assumeprtingmal values of

8, which fulfill the subse®),,_, are

O3 :{HBM—a(U)’ gJM—3(W)} : (29)
{HEM—3(U)’ ---1‘93M—3(W)} O min9{9M3—3(U) Ona-3( V) B3 V\)} :
Bs-s 0 Gz-3(u) = Ey-s(W), (30)

i. e. teams with numbersandw win the competition.
Due to (29) and (30) on the last but one step twitches occur, namely-th andw-th teams reach
the final point of race and after that functional tats became

(aJ(l), s B s By g By R Y R M)’ I.e.w-th team on the last step should finish the
distance at the time
bus-sr2(1) = Ows-3(1) = -3, (31)

and relay race in the staéaJ(l), T TR | M)) will over.

3. Schedule effectiveness evaluation recursive pexture
Quite natural for evaluation of rigid schedule effeeness is the model, in which all possible pairs

of teams, f.em-th andn-th, and forfeito; ) ;) (t), distributed at the time, are considered. Distedu
forfeit, in turn, is defined as payment, which theéh team pays to the-th team, namely
>0, wheni(m) > j(n) |
Fi(m),i(n) ()1 =0, wheni(m) > j(n) : (32)
<0, wheni(m) < j(n)
where0<i(m), j(n)<J.
For evaluation of common forfeit, which theth team receives from theth team, one can to use
the recursive procedure, described above. At Irntitia-elements functional sta(eao(m), ao(n)) substitu-

tions

6 (M) O Tmyy+ (M) 0 Tna (33)
should be done.
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In this simplified two-parallel semi-Markov processly time intervalsg, (m), ,(n) compete be-
tween them. Possible result of competition mayheentext:

a) wins the teamm, if &,(m)<6,(n), then & ={6’5(m)} =min{6?0(m),6?0( n)} , 6,0 6,(m),
s(1)=1;

b) wins the tearm, if &,(m)>6,(n), then @, ={Hg(n)}:min{6?0(n),6?o(n)}, & O 6y(n),
s(1)=1;

c) competition is draw, if&(m)=6,(n), then O :{Hg(m),éo(m)}:min{HO(n),Ho( r)}
6 0 6,(m)=6y(m), s(1)=2.

Value of forfeit is equal as follows:

oK) K= gy @

where insertion indicek(m1),k( n1) substitution (33).
Substitutions for preparing next step of recursiomas follows:
indices ofg,(m), 6,(n), should be replaced with
s(1) 0 0+3(1); (35)
(1)= {1 i.n the case a),. b (36)
2in the case ¢);
time intervals, which will compete further and caments of vectof 0(m), 0(m) | should be replaced
as follows
Ti(mz2) In the cases a), ¢);

By (M) O {

Ti(nz2) In the cases b), c);
w(n)o {

6 (n) -6, in the cases a

6, (m) - &, in the cases b

e,

S|

(37)

components of vectc(rao(m), ao(n)) should be replaced as follows —

(ail.(m)v 3o(n)) in the case a
(aO(m)’aO(n))D (aqm),aj(,))inthecaseb 38)
(ail.(m)1 aj[(n)) in the case c)

In such a way on the second step or recursion tigid intervalséyy (m), 8y, (n) will compete

between them.
Let us assume that on th¢h step of the recursion vector of functional staftsemi-Markov proc-

ess is(ai(m), aj(n)), and time interval®,,_y (m), 8¢,y (n) compete between them. Possible result of

competition may be the next:
a) wins the team m, if By -1y (M) <6y, (n), then

Or) ={9;(r—1)(m)} =mi”{95(r—1)(m)’95( 9 ( ”)} 04y O Gy g (M), s(r) O s(r=1)+1;
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b) wins the team n, if Hs(r (m)>6 )(n), then

) ={5;(r-1)(”)} =mi”{5’s( (), 6g r—:)(”)}’ 8y 0 e (). s(r) O ( —)+1

c) competition is draw, if 6?( y(m)=6y,_y(n), then
Olf1-y ={ Oy (M) Gy g (M) =minf B 3 (.04 (0} 6 O e;(rl(m) Oy (),

s(r)0 s(r-1)+2.
Value of forfeit is equal as follows:
g
s(r-1)

Iy [K(M ), K )]= [ Gy, (Dt (39)
0
Substitutions for preparing next step of recursiamas follows:

indices of 6, ;) (M), 8y, (n), should be replaced with index &{(r) 0 s(r-1)+3(r), where
5(r) is defined as (36);

time intervals, which will compete further and caments of vectof i(m), j(m)]should be re-
placed as follows

r

Te(mi+) In the cases a), €);

6, 0
s(1) (m) {gs( 1) (m)- 9;( g) in the case b

T(n j+1) in the case®), c);
s (n) . (40)
By(r-1) (n) ~ 64y In the case)
components of vectdri (m), j(n) | should be replaced as follows
(ai(m)ﬂ, aj(n)) in the case a);
(ai(m), aj(n)) 0 (a(m), aj(n)+1) in the case b); (41)

So on the ¢+ 1)-th step or recursion rigid time intervaf (m),HS( r)(n) will compete between

them.
Let us assume, that on the last step of recursiiy ra-th team stays in race, and time, it spend

from a previous switch till finishing)-th stage, obtained on previous stage of recu,rsik)nﬁg(m).

Value of forfeit on the last stage is is equalaivs:
g
s(R-1)

Oqry k(M I-2).Kn ] = J(; Ty(mpsyn (3 - (42)

For evaluation of common forfeit one should to eat¢ probability of realization of thlé(m) -th

evolution trajectory of teamm and IZ(n) -th evolution trajectory of team They are as follows:

J ~ ~ ~
P =[] P (m)< k(m< K(n);
J ~ ~ ~
Prm) =[] P> 1(n)<k(n)< K(n). (43)
=1
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Weighted sum of forfeit, which the-th team receives from-th team when realizedd(m) -th and

k (n)-th evolution trajectories is as follows:

R-1
Timi (M) = By Py %%—1)[ Km). Kn) (44)

Common sum of forfeit, which tha-th team receives from theth team is as follows:
Common sum of forfeit, which tha-th team receives from theth team, when is as follows

K(n) K(m)
amn)=_ 2 2 Fmigs(Mm D “9
k(m=1(m K m=1( m
Common sum of forfeit, which tha-th team receives from all other teams, is as fadlo

M

o(m)=> o(mn. (46)
n=1,
nZm

It is necessary to admit, that common sum of furfei(m), them-th team receives from all other
teams, rigidly depends of schedules of all pardiotp of races, including time-th team and probabilities
of routes selection. So to change a sum of fozﬁe(im) one may both changeth team schedule, and

probabilities of selection possible routes on therg stage of the distance. This is essential olesta
from point of view of putting and solving the foitfeptimization task.

Conclusion

Results obtained gives to system engineers andatsts rather simple method of evaluation the
effectiveness of those or that team managemensidasion the basis of opponent teams behavior ob-
servation. Method of forfeit calculation proposgiies a solid forfeit figure, based on the realwho
edge of the strategies of opponents and possiblegels of opponents plans. This, in turn, permitssto
the game theory [15, 16] to work out a managingtsgy, for increasing sum of forfeit which team un-
der management receives from other teams, paiidpa relay race.

Further investigation in this area should be deddb finding common recommendation for sched-
uling mth team strategy with optimization sum of forfidit].

The research was carried out within the state aswmgt of the Ministry of Education and Science
of Russian Federation (No 2.3121.2017/PCH).
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KopnopatuBHO-KOHKYpHpYIOI[asi CHCTEMa, KOTOpas MPUCYTCTBYET BHYTPH KOPIOPAIUHA, MOXKET
OBITH OTpe/eNiCHa KaK «urpa», Iar 3a IaroM peajau3yromlas OnpeAeaEHHYIO NesTeNnbHOCTh. CucTeMa
(OYHKIIMOHUPYET B peabHOM (PH3MYECKOM BPEMEHH, a Pe3yJbTaT OMEPaIH — 3TO <JIMCTAHIUSI», KOTO-
past JeNuTCs Ha <OTaIbl». JTambl MPOXOIAT YYACTHUKH KOMAH]I B COOTBETCTBHHU C <OKECTKHM Tpadu-
KOM», KOTOpPBI MOET OBITh BBIOpaH U3 HaOOpa BO3MOXHBIX TrpadukoB. AOcTpakuus «M-
MapauIeIbHBINA TTOTYMAPKOBCKHI MPOIIECC» MOXKET OBITh MCIOJB30BaHA ISl OITUCAHMS paccMaTpUBac-
MO¥ cUCTeMBI. B TTOTyMapKOBCKOM TPOIIECCE BBIPOKIACHHOE PACIIPEIEICHNE HCITONB3YETCSI JJIs OIuca-
HUSl BPEMEHHBIX MHTEPBAJIOB MEXIy NMPOMEXYTOUYHBIMH TOYKaMH dcTadersl. g anammsza pazBUTHA
acTadeThl UCTIOIB3YETCS PEKYPPEHTHBI METO/I, YIUTHIBAIOIINN KECTKOCTh rpauka ¥ CTOXaCTUICCKUMA
XapakTep BbIOOpa MapmipyTa. B COOTBETCTBUU C MPEIOKCHHOM KOHIETIIHEH pacIpeIe]ICHHON «HEyC-
TOMKW» W MpeajiaraeMoi peKyppeHTHON Npolieayphl IpeajiaraeTcsi METO/] pacyeTa CyMMUPYIOIIEH «He-
YCTOHKI», KOTOPYIO MOJIyYaeT OHa U3 KOHKYPUPYIOIIUX KOMaH/I OT APYTUX KOMaHI.

Kniouesvie cnosa. scmaghema, nomymapkockuii npoyecc; 6vlpodcoenHoe pacnpeoeieHue; Map-
wWpym; 360110YUs;, pacnpedesieHHds HeYCMOUKA, peKyPPeHMHAs Npoyedypd.
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