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Corporative-competitive system, which is inside of corporations, can be de-

termined as a “game”, step-by-step performing a certain type of activity. The sys-
tem operates in real physical time, and the result of operation is the distance, 
which is divided into stages. The stages are passed by the team participants due to 
rigid schedule, which may be occasionally selected from the set of possible sched-
ules. The abstraction “M-parallel semi-Markov process” is used for description of 
a system under consideration. In semi-Markov process degenerate distribution is 
used for description of time intervals between relay points. For analysis of relay-
race evolution, recurrent method which takes into account rigidity of schedule 
and stochastic character of route selection is used. In accordance with the concept 
of distributed forfeit and proposed recurrent procedure, the method of calcula-
tion of summing forfeit, which one of competing teams receives from other teams, 
is proposed. 

Keywords: relay-race; semi-Markov process; degenerate distribution; route; evo-
lution; distributed forfeit; recurrent procedure. 

 
Introduction 

Relay-races, as the basic conception of corporative-concurrent system description, may be applied 
to modeling of such fields of human activity, as industry, economics, politics, defense, sport, etc [1–4]. 
Due to conception announced teams, participating in relay-race, should to pass the distance, which is 
divided onto stages by relay-points, and team participants should to pass the stage in real physical time. 
Common case of random time relay-race simulation was considered in [2, 5], where for description of 
teams behavior such abstraction, as semi-Markov process was used. Semi-Markov process is quite uni-
versal mathematical apparatus, and when instead of random time emerges rigid schedule, it can be used 
too. Rigidity of stage passing time permit substantially simplify model of the system and calculation of 
forfeit, but also leads to substantial restrictions of results obtained. 

On practice teams, participated the relay race, may vary their schedules, and for an external ob-
server such variations are the stochastic ones. This permits to consider different combinations of sched-
ules and to improve results obtained. Approaches to modeling of relay-races with rigid schedules and 
alternative routes are currently known insufficiently, that explains necessity and relevance of the inves-
tigations in this domain. 
 
1. Relay-race as M-parallel semi-Markov process 

The graph, which shows the alternative routes rigid schedule relay-race structure, is shown on the 
fig. 1.  

Following assumptions, when modeling this kind of races, are made bellow [5]: 
in relay-race participate M-teams, every of which pass its distance in real physical time; 
distance of every team is divided onto stages, every of which is overcame by one participant of a 

team, and first participants of all teams start their stages at once; 
every participant may choose a route, for passing the stage, for an external observer the route selec-

tion is a random event;  
passing the stage route by participant lasts rigid time, which is individual for the team, the stage and 

the route; 
after completion of a current stage on the selected route next participant of the team selects route 

and starts the passing next stage without a lag; 
forfeit, which is imposed on the teams is defined as the distributed payment, value of which de-

pends on the time and difference of stages, which currently teams pass. 
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Fig. 1. Structure of alternative routes rigid sched ule relay-race 

 

The model of relay-race with M teams may be performed as M-parallel semi-Markov process [6–8]: 

( ){ }1, ..., , ...,m M tµ µ µ µ= ,      (1) 

( ){ },hm m mA tµ = , 

where t is the physical time; mµ  is the ordinary semi-Markov process, mA  is the set of states; ( )hm t  is 

the semi-Markov matrix, which describes an activity of the m-th team; 

( ) ( ) ( ) ( ){ }0 1, , ..., , ...,m m m j m J mA a a a a= ;        (2) 

( ) ( ) ( ) ( ),m j m l mt h t =
 

h ;                      (3) 

( ) ( ) ( ) ( ),m j m l mt h t =
 

h , ( ) ( )1 ,j m l m J≤ ≤ ;             (4) 

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

,

,
, 1,

when 1, 0 1;

0 in all other cases

K m j

k m j
k m jj m l m

h t , l m j m j m J m
h t

.

=


= + ≤ ≤ −

= 



∑                   (5) 
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Due to rigid schedule and quasi-stochastic principle of route selection [9] 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,k m j k m j k m j k m j k m jh t p f t p t Tδ  = = −
 

,            (6) 

where ( ),k m jp  is the probability of route selection; ( ) ( ),k m jf t  is the pure time density of residence the 

process at the state ( )j ma  with further switch to the state ( ) 1j ma +  on the k-th route; ( ),( )k m jt Tδ −  is the 

Dirac δ-function; ( ),k m jT  is the rigid time of passing the j-th stage by participant of team m with 

( ),k m j -th route. 

Comparison of classic competition [2] and competition with rigid schedule is shown on the fig. 2;   
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Fig. 2. Classic competition (a) and competition wit h rigid schedules (b) 
 

When classic competition, times of semi-Markov process residence in states  ( )j ma  and ( )i na  are 

equal to ( ) ( ),k m jf t  and ( ) ( ),l n if t , correspondingly. When rigid schedule times are equal to 

( ),k m jt Tδ  −
 

 and ( ),l n it Tδ  −
 

. Formulae, which describe weighted time density and probabilities of 

winning the j-th stage of race by m-th team, if all participating teams start their stages simultaneously, 
are as follows:  

( ) ( ) ( ) ( ) ( ) ( ), , ,
1

1
M

w
k m j k m j l n i

n
n m

t f t F tψ
=
≠

 = −
 ∏ ,                 (7) 

( ) ( ) ( ), ,
0

w w
k m j k m j t dtπ ψ

∞

= ∫ ;                  (8) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }, , 1, , ,
,

, when min , ..., , ..., ;

nonsense, otherwise

w k m j k m j l i k m j l M i
k m j

t T T T T T
t

,

δ
ψ

 − == 


     (9) 

( )
( ) ( ) ( ) ( ){ }, 1, , ,

,

1, when min , ..., , ..., ,

0, otherwise

w k m j l i k m j l M i
k m j

T T T T

,
π

 == 


    (10) 

where ( ) ( )... ...
0

t

F t f dθ θ= ∫  is the distribution function; θ is the auxiliary argument. 

Pure time density of winning the j-th stage of race by m-th team is as follows: 

( ) ( ) ( ) ( )
( )

,
,

,

w
k m jw

k m j w
k m j

t
t

ψ
ϕ

π
= .               (11) 

When paired competition, formulae, which describe the time density of waiting by m-th, winner, 
team until n-th, loser, team, finishes the stage, are as follows: 



Larkin E.V., Alternative Routs of Games with Rigid Schedule 
Privalov A.N.  

Вестник ЮУрГУ. Серия «Математика. Механика. Физика» 
2018, том 10, № 3, С. 30–40 

33 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,
0

, ,

, ,
0

k m j l n i

k m j l n i

k m j l n i

t f f t d
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F t dF t

η θ θ θ
ϕ

∞

→ ∞

⋅ +
=

∫

∫

;         (12) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,
, ,

, ;

nonsense, otherwise,

l n i k m j k m j l n i
k m j l n i

t T T when T T
t

δ
ϕ →

  − + ≤  = 


     (13) 

where ( )tη  is the Heaviside function; 

( ) 0, when 0;

1, otherwise.

t
tη

≤
= 


 

It is necessary to admit, that in the case under consideration, unlike the case considered at [2], the 
draw effect emerges. It is caused with the infinitesimal probability of two or more teams stage passing 
times coincidence when time intervals are a random ones, and quite real rigid schedule case, when some 
time intervals are quite the same (the case is shown on the fig. 2, b, bottom line).  

Due to the fact, that for all teams, participated in a race, number of the stage j at every relay point 
may to increment only, for external viewer sequence of switches during relays in the system as a whole 
has the nature of evolution [10–13], which develops from functional state, being defined with vector 

[14] ( ) ( ) ( )( )0 1 0 0, ..., , ...,m Ma a a  till functional state ( ) ( ) ( )( )1 , ..., , ...,J J m J Ma a a . Trajectory of evolution 

depends of routes, which every team select for passing of proper stages and schedules which develop 
from routes selected. Owing to random character of routes selection trajectory of evolution is the ran-
dom one. Common number of routes, on which m-th team as a whole may overcome the distance is 
equal to 

( ) ( )
1

,
J

j

K m K m j
=

= ∏ɶ ,            (14) 

where ( ),K m j  is the common number of routs of m-th team j-th stage. 

Common number of different variants of rigid relay-races is as follows: 

( )
1

M

m

K K m
=

= ∏ɶ ɶ .       (15) 

 
2. Recursive procedure of relay-race evolution analysis 

Let us select from all possible routes on which m-th team may overcome the distance the ( )k mɶ -th 

variant, in which routes ( ),1k m , ..., ( ),k m j , ..., ( ),k m J  are selected (note, that in common case 

( ),1k m ≠ ( ).. ,k m j≠ ≠ ( ).. ,k m J≠ , since these are different functions of m and j). So ( )1 mɶ -th and  

( )K mɶ -th variants correspond to combinations ( )1 ,1m , ..., ( )1 ,m j , ..., ( )1 ,m J  and ( ),1K m , ..., 

( ),K m j , ..., ( ),K m J  respectively. Such a selection should be executed on routes of all other teams. 

For selected routes the recursive procedure of relay-race evolution may be worked out. For this purpose 
auxiliary time θ should be introduced. Recursive procedure of evolution analysis is as follows. 

Initial functional state of the semi-Markov process (1) as a whole is ( ) ( ) ( )( )0 1 0 0, ..., , ...,m Ma a a , 

where elements of vector are numbers of relay-race starting points. All teams start race simultaneously, 
and into auxiliary time θ next substitutions should be made: 

( ) ( )0 1,11 kTθ ⇐ , ..., ( ) ( )0 ,1k mm Tθ ⇐ , ..., ( ) ( )0 ,1k MM Tθ ⇐ ,          (16) 

where arrow ⇐  indicates the direction of substitution; index means the quantity of previous switches. 
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Rigid time intervals ( ) ( ) ( )0 0 01 , ..., , ...,m Mθ θ θ  compete between them, and result of competition 

is winning the stage by those teams, which have minimal value of θ. This values fulfill the subset *0Θ : 

( ) ( ) ( ){ }* * * *
0 0 0 0, ..., , ...,u v wθ θ θΘ = ;        (17) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }* * *
0 0 0 0 0 0, ..., , ..., min 1 , ..., , ...,u v w m M

θ
θ θ θ θ θ θ= , 

where u, v, w are auxiliary indices for nomination the number of team. 
It is obviously, that  

( ) ( ) ( )* * * *
0 0 0 0... ...u v wθ θ θ θ⇐ = = = = ,           (18) 

i. e. teams with numbers  

( ) ( ) ( ){ }* * * *
0 0 0 0arg , ..., arg , ..., argN u v wθ θ θ     =           (19) 

win the competition among other teams, but draw the competition among themselves. Quantity of 

switches ( )1s  on the first step of recursion is equal to cardinal number of subset *0Θ : 

( ) *
01s = Θ .      (20) 

Due to the switches, next substitutions should be maid to prepare next step of recursion: 
index of ( )0 mθ , 1 m M≤ ≤ , should be replaced with index of ( ) ( )1 0 1s s⇐ + ; 

time intervals, which will compete further should be replaced as follows 

( ) ( )
( )

( )

* *
0 0 0

1 *
0,2

, when ;

, when ;
s

k m

m m N
m

T m N

θ θ
θ

 − ∉⇐ 
∈

               (21) 

indices ( )mι of elements of vector ( ) ( ) ( )( )0 1 0 0, ..., , ...,m Ma a a  should be replaced as follows: 

( ) ( )
( )

*
0

*
0

0 , when ;

1 , when .

m m N
m

m m N
ι

 ∉⇐ 
∈

        (22) 

In such a way on the second step or recursion rigid time intervals ( ) ( ) ( ) ( ) ( ) ( )1 1 11 , ..., , ...,s s sm Mθ θ θ  

will compete between them. 
Let us assume that on the r-th step of the recursion vector of functional state of semi-Markov proc-

ess is ( ) ( ) ( )( )1 1 1 1, ..., , ...,j j m j Ma a a− − − , and time intervals ( ) ( ) ( ) ( ) ( ) ( )1 1 11 , ..., , ...,s r s r s rm Mθ θ θ− − −  com-

pete between them. Result of competition is winning the stage by those teams, which have minimal 

value of θ. This values fulfill the subset ( )
*

1s r−Θ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* * * *
1 1 1 1, ..., , ...,s r s r s r s ru v wθ θ θ− − − −Θ = ;         (23) 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }* * *
1 1 1 1 1 1, ..., , ..., min 1 , ..., , ..., .s r s r s r s r s r s ru v w m M

θ
θ θ θ θ θ θ− − − − − −=  

It is obviously, that  

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 1... ...s r s r s r s ru v wθ θ θ θ− − − −⇐ = = = = ,                       (24) 

i.e. teams with numbers 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* * * *
1 1 1 1arg , ..., arg , ..., args r s r s r s rN u v wθ θ θ− − − −

     =
     

        (25) 

win the competition. Quantity of switches on the r-th step of recursion is equal to cardinal number of 

subset ( )
*

1s r−Θ : 

( ) ( )
*

1s rs r −= Θ .        (26) 

Due to the switches, following substitutions should be maid to prepare next step of recursion: 
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index of ( ) ( )1s r mθ −  1 m M≤ ≤ , should be replaced with index ( ) ( ) ( )1s r s r s r⇐ − + ; 

time intervals, which will compete further should be replaced as follows – 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* *
1 1 1

*
, 1 1

, when ;

, when ;

s r s r s r

s r

k m j s r

m m N
m

T m N

θ θ
θ

− − −

+ −

 − ∉⇐ 
∈

         (27) 

components of vector ( ) ( ) ( )( )1 1 1 1, ..., , ...,j j m j Ma a a− − −  should be replaced as follows – 

( )
( ) ( )

( ) ( )

*
1 1

1 *
1

, when ;

, when .

j m s r

j m

j m s r

a m N
a

a m N

− −
−

−

 ∉⇐ 
∈

            (28) 

In such a way on the (r+1)-th step or recursion rigid time intervals 

( ) ( ) ( ) ( ) ( ) ( )1 , ..., , ...,s r s r s rm Mθ θ θ  compete between them. 

Let assume that on the lust but one step of recursion after MJ – 3 switches vector became 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1, ..., , ..., , ..., , ..., , ...,J J u J v J m J w J Ma a a a a a− − − , and rigid time intervals 

( ) ( ) ( )3 3 3, ,MJ MJ MJk l nθ θ θ− − −  compete between them only. Let us also assume, that minimal values of 

θ, which fulfill the subset *
3JM −Θ , are 

( ) ( ){ }* * *
3 3 3,JM JM JMu wθ θ− − −Θ = ;        (29) 

( ) ( ){ } ( ) ( ) ( ){ }* *
3 3 3 3 3, ..., min , , .JM JM MJ MJ MJu w u v w

θ
θ θ θ θ θ− − − − −⊆  

( ) ( )* * *
3 3 3MJ MJ MJu wθ θ θ− − −⇐ = ,         (30) 

i. e. teams with numbers u and w win the competition.  
Due to (29) and (30) on the last but one step two switches occur, namely u-th and w-th teams reach 

the final point of race and after that functional state became 

( ) ( ) ( ) ( ) ( ) ( )( )1 1, ..., , ..., , ..., , ..., , ...,J J u J v J m J w J Ma a a a a a− , i.e. w-th team on the last step should finish the 

distance at the time 

( ) ( ) *
3 2 3 3MJ MJ MJl lθ θ θ− + − −= − ,       (31) 

and relay race in the state ( ) ( ) ( )( )1 , ..., , ...,J J m J Ma a a  will over. 

 
3. Schedule effectiveness evaluation recursive procedure 

Quite natural for evaluation of rigid schedule effectiveness is the model, in which all possible pairs 
of teams, f.e. m-th and n-th, and forfeit ( ) ( ) ( ),i m j n tσ , distributed at the time, are considered. Distributed 

forfeit, in turn, is defined as payment, which the n-th team pays to the m-th team, namely 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

,

0, when ;

0, when ;

0, when ,
i m j n

i m j n

t i m j n

i m j n

σ
> >


= >
< <

            (32) 

where ( ) ( )0 ,i m j n J≤ ≤ . 

For evaluation of common forfeit, which the m-th team receives from the n-th team, one can to use 

the recursive procedure, described above. At initial two-elements functional state ( ) ( )( )0 0,m na a  substitu-

tions  

( ) ( )0 ,1k mm Tθ ⇐ , ( ) ( )0 ,1k nn Tθ ⇐        (33)  

should be done. 
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In this simplified two-parallel semi-Markov process only time intervals ( )0 mθ , ( )0 nθ  compete be-

tween them. Possible result of competition may be the next:  

a) wins the team m, if ( )0 mθ < ( )0 nθ , then ( ){ } ( ) ( ){ }* *
0 0 0 0min ,m m nθ θ θΘ = = , ( )* *

0 0 mθ θ⇐ , 

( )1 1s = ; 

b) wins the team n, if ( )0 mθ > ( )0 nθ , then ( ){ } ( ) ( ){ }* *
0 0 0 0min ,n n nθ θ θΘ = = , ( )* *

0 0 nθ θ⇐ , 

( )1 1s = ; 

c) competition is draw, if ( )0 mθ = ( )0 nθ , then ( ) ( ){ } ( ) ( ){ }* * *
0 0 0 0 0, min ,m m m nθ θ θ θΘ = = , 

( ) ( )* * *
0 0 0m mθ θ θ⇐ = , ( )1 2s = . 

Value of forfeit is equal as follows: 

( ) ( ) ( ) ( ) ( ) ( )
*
0

0 0 ,0
0

,1 , ,1s m nk m k n t dt
θ

σ σ  =  ∫ ,                   (34) 

where insertion indices ( ) ( ),1 , ,1k m k n  substitution (33). 

Substitutions for preparing next step of recursion are as follows: 
indices of ( )0 mθ , ( )0 nθ , should be replaced with  

( ) ( )1 0 1s s⇐ + ;            (35) 

( ) 1in the case a), b);
1

2 in the case c);
s


= 


                   (36) 

time intervals, which will compete further and components of vector ( ) ( )0 , 0m m    should be replaced 

as follows 

( ) ( ) ( )

( )
,2

1 *
0 0

in the cases a), c);

in the cases b);

k m

s

T
m

m
θ

θ θ

⇐ 
−

 

( ) ( ) ( )

( )
,2

1 *
0 0

in the cases b), c);

in the cases a);

k n

s

T
n

n
θ

θ θ

⇐ 
−

               (37) 

components of vector ( ) ( )( )0 0,m na a  should be replaced as follows – 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1 0

0 0 0 1

1 1

, in the case a);

, , in the case b);

, in the case c).

m n

m n m n

m n

a a

a a a a

a a





⇐ 




            (38) 

In such a way on the second step or recursion rigid time intervals ( ) ( ) ( ) ( )1 1,s sm nθ θ  will compete 

between them. 
Let us assume that on the r-th step of the recursion vector of functional state of semi-Markov proc-

ess is ( ) ( )( ),i m j na a , and time intervals ( ) ( ) ( ) ( )1 1,s r s rm nθ θ− −  compete between them. Possible result of 

competition may be the next:  
a) wins the team m, if ( ) ( )1s r mθ − < ( ) ( )1s r nθ − , then 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }* *
1 1 1 1min ,s r s r s r s rm m nθ θ θ− − − −Θ = = , ( ) ( ) ( )* *

1 1s r s r mθ θ− −⇐ , ( ) ( )1 1s r s r⇐ − + ; 
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b) wins the team n, if ( ) ( )1s r mθ − > ( ) ( )1s r nθ − , then 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }* *
1 1 1 1min ,s r s r s r s rn n nθ θ θ− − − −Θ = = , ( ) ( ) ( )* *

1 1s r s r nθ θ− −⇐ , ( ) ( )1 1s r s r⇐ − + ; 

c) competition is draw, if ( ) ( )1s r mθ − = ( ) ( )1s r nθ − , then 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }* * *
1 1 1 1 1, min ,s r s r s r s r s rm m m nθ θ θ θ− − − − −Θ = = , ( ) ( ) ( ) ( ) ( )* * *

1 1 1s r s r s rm mθ θ θ− − −⇐ = , 

( ) ( )1 2s r s r⇐ − + . 

Value of forfeit is equal as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( )

*
1

1 ,
0

, , ,
s r

s r i m j nk m i k n j t dt

θ

σ σ
−

−   =  ∫ .      (39) 

Substitutions for preparing next step of recursion are as follows: 
indices of ( ) ( )1s r mθ − , ( ) ( )1s r nθ − , should be replaced with index of ( ) ( ) ( )1s r s r s r⇐ − + , where 

( )s r  is defined as (36); 

time intervals, which will compete further and components of vector ( ) ( ),i m j m   should be re-

placed as follows 

( ) ( )
( )

( ) ( ) ( )

, 1

*
1 1

in the cases a), c);

in the case b);

k m i

s r
s r s r

T
m

m
θ

θ θ

+

− −

⇐ 
−

 

( ) ( )
( )

( ) ( ) ( )

, 1

*
1 1

in the cases

in the case ;

k n j

s r
s r s r

T b),c);
n

n a)
θ

θ θ

+

− −

⇐ 
−

            (40) 

components of vector ( ) ( ),i m j n    should be replaced as follows 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

1

1

1 1

, in the case a);

, , in the case b);

, in the case c).

i m j n

i m j n i m j n

i m j n

a a

a a a a

a a

+

+

+ +





⇐ 




             (41) 

So on the (r+ 1)-th step or recursion rigid time intervals ( ) ( ) ( ) ( ),s r s rm nθ θ  will compete between 

them. 
Let us assume, that on the last step of recursion only m-th team stays in race, and time, it spend 

from a previous switch till finishing J)-th stage, obtained on previous stage of recursion, is ( )
*

1s Rθ − . 

Value of forfeit on the last stage is is equal as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( )

*
1

1 1,
0

, 1 , , ,
s R

s R J m J nk m J k n J t dt

θ

σ σ
−

− − −  =  ∫ .                    (42) 

For evaluation of common forfeit one should to evaluate probability of realization of the ( )k mɶ -th 

evolution trajectory of team m and ( )k nɶ -th evolution trajectory of team n. They are as follows: 

( ) ( ),
1

J

k m ik m
i

p p
=

= ∏ɶɶ ɶ ,  ( ) ( ) ( )1 m k m K m≤ ≤ɶɶ ɶ ; 

( ) ( ),
1

J

k n jk n
j

p p
=

= ∏ɶɶ ɶ ,  ( ) ( ) ( )1 n k n K n≤ ≤ɶɶ ɶ .          (43) 
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Weighted sum of forfeit, which the m-th team receives from m-th team when realized ( )k mɶ -th and 

( )k nɶ -th evolution trajectories is as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1,
0

, , , ,
R

s rk m k n k m k n
r

m n p p k m i k n jσ σ
−

−
=

=   ∑ɶ ɶ ɶ ɶɶ ɶ .      (44) 

Common sum of forfeit, which the m-th team receives from the n-th team is as follows: 
Common sum of forfeit, which the m-th team receives from the n-th team, when is as follows 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( )

( )

,
1 1

, ,
K n K m

k m k n
k m m k m m

m n m nσ σ
= =

= ∑ ∑
ɶ ɶ

ɶ ɶ

ɶ ɶɶ ɶ

.          (45) 

Common sum of forfeit, which the m-th team receives from all other teams, is as follows 

( ) ( )
1,

,
M

n
n m

m m nσ σ
=
≠

= ∑ .                  (46) 

It is necessary to admit, that common sum of forfeit, ( )mσ , the m-th team receives from all other 

teams, rigidly depends of schedules of all participants of races, including the m-th team and probabilities 
of routes selection. So to change a sum of forfeit ( )mσ  one may both change m-th team schedule, and 

probabilities of selection possible routes on the every stage of the distance. This is essential obstacle, 
from point of view of putting and solving the forfeit optimization task. 

 
Conclusion 

Results obtained gives to system engineers and economists rather simple method of evaluation the 
effectiveness of those or that team management decisions on the basis of opponent teams behavior ob-
servation. Method of forfeit calculation proposed, gives a solid forfeit figure, based on the real knowl-
edge of the strategies of opponents and possible changes of opponents plans. This, in turn, permits to use 
the game theory [15, 16] to work out a managing strategy, for increasing sum of forfeit which team un-
der management receives from other teams, participated in relay race. 

Further investigation in this area should be directed to finding common recommendation for sched-
uling m-th team strategy with optimization sum of forfeit [17].  

The research was carried out within the state assignment of the Ministry of Education and Science 
of Russian Federation (No 2.3121.2017/PCH). 
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АЛЬТЕРНАТИВНЫЕ МАРШРУТЫ ИГР С ЖЁСТКИМ РАСПИСАНИЕМ  
 
Е.В. Ларкин1, А.Н. Привалов2 
1 Тульский государственный университет, г. Тула, Российская Федерация 
2 Тульский государственный педагогический университет им. Л.Н. Толстого, г. Тула,  
Российская Федерация 
E-mail: privalov.61@mail.ru 
 

Корпоративно-конкурирующая система, которая присутствует внутри корпораций, может 
быть определена как «игра», шаг за шагом реализующая определённую деятельность. Система 
функционирует в реальном физическом времени, а результат операции – это «дистанция», кото-
рая делится на «этапы». Этапы проходят участники команд в соответствии с «жестким графи-
ком», который может быть выбран из набора возможных графиков. Абстракция «M-
параллельный полумарковский процесс» может быть использована для описания рассматривае-
мой системы. В полумарковском процессе вырожденное распределение используется для описа-
ния временных интервалов между промежуточными точками эстафеты. Для анализа развития  
эстафеты используется рекуррентный метод, учитывающий жесткость графика и стохастический 
характер выбора маршрута. В соответствии с предложенной концепцией распределенной «неус-
тойки» и предлагаемой рекуррентной процедуры предлагается метод расчета суммирующей «не-
устойки», которую получает одна из конкурирующих команд от других команд. 

Ключевые слова: эстафета; полумарковский процесс; вырожденное распределение; мар-
шрут; эволюция; распределенная неустойка; рекуррентная процедура. 
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