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The paper is devoted to the possibility of determiate and probabilistic scat-
tering under various assumptions of the state of #hlocations of medical robots in
both fault-tolerance and vulnerable environments. e topicality of the work is
due to the need to place medical robots in the cadinate space having disjoint
polygons (robot bodies) which is absolutely unaccegble in the case of medical
applications. As a limitation it is assumed that tle medical robot sees its nearest
neighbors and local monitor of multiplicity is functioning, which can determine
the situation when robots occupy intersecting spase We propose a probabilistic
scattering algorithm which describes the initial sates of medical robots and the
proper transient state algorithm which can predictthe movement of robots to a
location where they can intersect. It is shown, thavhen using the algorithm the
states and motion algorithms can be estimated in fault-tolerance (robots do not
fail and the medium is stationary) and vulnerable the robot may fail and the
byzantine problem is not solved, the environment @nges faster than the robot
can react) environments. The estimates for the compational complexity of the
algorithm working without the mission planner are gven.

Keywords: mobile medical robots; fault-tolerancepbpabilistic scattering; self-
stabilization.

Introduction

In recent years, centralized sophisticated andresipe medical robots gave way to distributed sys-
tems of mobile autonomous and cheap medical rdhef. The rise of distributed systems was based
on two main reasons:

1. The lower cost of uniform medical robots compatiee centralized ones. For example, now there
are polymorphic medical robots which consist ofeawork of low cost simple medical robots that are
able to reorganize themselves into a single compiedical robot [4]).

2. The simplicity of uniform medical robots. Indeédmay be advantageous to use a group of sim-
ple small and relatively cheap medical robots imsadnstances of cooperative work. For example, ap-
plication of medical robot networks in hazardousarsh environments, such as space, great depths of
seas, or after some natural or man caused disasterdt follows that the group should be abledor-
ganize themselves without any prior infrastructrafter a major disaster occurred.

On the other hand, as the systems of cheap, siampleelatively weak medical robots are not reli-
able we can face the problem of possible failuespecially when such medical robot systems are ex-
pected to operate in hazardous or harsh enviroranAnthe same time, one of the main advantages of
mobile medical robot systems is the possibilitctorectly execute a given task even in case otdaul
This is possible due to redundancy of such sys{éim#nother problem of these systems is a complex-
ity of coordination which appears because of thigelanedical robot networks. Due to simplicity of
medical robots algorithm they follow must be sirankously self-organized fault-tolerant and distrib-
uted.

Another important task that has been studied &sser extent is that of scattering. In this tasé, t
medical robots must start from any initial configtion, and then scatter on the positions, not fixed
advance, such that no two medical robots occupgdhee position.

To study the scattering problem, we consider th©RKTsystem model first defined by Suzuki and
Yamashita [6]. In this model, medical robots angresented as points that evolve on the plane. }t an
given time, a medical robot can be either idleativa. In the latter case, the medical robot obssithe
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locations of other medical robots, computes a tgsgsition, and moves towards it. In our case wesha

a partially blind medical robot meaning that thedinal robot has the capability of detecting theifpms

of its nearest neighbor. Hereinafter, we use tha t&f visibility of nearest neighbor to express Hemise

of "partially blind”. The time when a medical robo¢comes active is governed by an activation daemon
(scheduler). In the original definition of SuzukicaYamashita, called the ATOM model, activations
(i.e., look-compute-move) are atomic, and the sgoleedis assumed to be arbitrary and distributed,
meaning that at each configuration, an arbitragn{empty) subset of enabled medical robots is acti-
vated. In the CORDA model of Prencipe [7], actiwvas are completely asynchronous, for instance al-
lowing medical robots to be seen while moving.

Model

Medical robots networks

We consider a network of autonomous mobile medical robots, denotedby.. ; r,, arbitrarily
deployed in a two-dimensional unbounded plane.mbdical robots are viewed as points, and they are
capable to freely move in the plane. The medichbt® never collide and two or more medical robots
may simultaneously occupy the same physical posifiie medical robots are devices with sensing,
computational and motion capabilities. The medichlots are devoid of any common orientation and
any means of explicit communication. Communicatenurs in a totally implicit manner, by observing
other medical robots’ position. Each medical rates its own local coordinate system (e. g., Catdsi

The medical robots are uniform, it means that tilkgxecute the same algorithm. The medical ro-
bots are anonymous. They cannot be distinguishdtidiyappearance and they do not have any kind of
identifiers that can be used during the computafldre medical robots are oblivious, meaning thayth
do not remember any previous observation nor coatipats performed in the previous steps.

In this paper, we consider that medical robots ltawvaplementary capabilities:

1. Visibility of nearest neighbo+ each medical robot can only observe the positioils nearest
neighbor.

2. Local multiplicity detector a medical robot can distinguish if there areertbian one medical
robot at the current position.

This model is more adapted to systems where thieilitisis replaced by wireless communication
or radar detection.

Summarizing, the medical robots are uniform, anamysn oblivious, and endowed with capabilities
of local multiplicity detection and visibility ofearest neighbor; they are devoid of any orientation

Medical robot computation cycle. Each medical robepeatedly cycles through the following
states:

— Look The medical robot observes the world and retarssapshot of the positions of all other
medical robots in the visibility range with respéxits local coordinate system. In our case, tliser-
vation returns the value of the distance betweemtadical robot and its nearest neighbor.

— Compute The medical robot performs a local computatioa farobabilistic algorithm A. The al-
gorithm is the same for all medical robots andré#silt of the computed state is a destination point

— Move The medical robot moves towards the computedrdgiin. It can be stopped anywhere
before the destination by the scheduler after soredefined distance has been traversed.

Computational model

The literature proposes two computational modelKOM and CORDA. The ATOM model was in-
troduced by Suzuki and Yamashita [6]. In this mpdath medical robot performs the actions of a com-
putation cycle (observation, computation and mgtmmce activated by the scheduler in an atomic man-
ner. The execution of the system can be modeleahasfinite sequence of rounds. In a round one or
more medical robots are activated and perform apodation cycle. In every single activation, the-dis
tance that medical robot can travel in one cycle is bounded dy> 0. Specifically, if the destination
point computed at a given cycle by medical rabist farther thar,;, then the algorithm returns a point
of at mosb,; . This distance may be different for different noatirobots.

The CORDA model was introduced by Prencipe [7].sTimodel refines the atomicity of actions
performed by each robot. Hence, medical robots peaform in a decoupled fashion the atomic actions
of a computation cycle. They may be interruptedhgyscheduler in the middle of a computation cycle.
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In particular, when a medical robot goes towarggdal, the move can end anywhere before the desti-
nation. Moreover, while a medical robot performsaation A, whereA can be one of the following
atomic actionswait, look, comput®r move another medical robot may perform a totally diéfg ac-
tion B.

Scheduler. A scheduler decides at each configurdlie set of medical robots allowed to perform
their actions. We distinguish various kinds of stiler. The arbitrary scheduler is such that at each
figuration an arbitrary subset of enabled medioabts is activated. In our case, a medical robenis
abled if it occupies a multiplicity point. A schdduis fair if, in an infinite execution, a medigalbot is
activated infinitely often. The probabilistic sclubgl guarantees that the probability for medicalota;
to be activated at timgis such that lim,.. Pr[ri(t) = activg = 1. A centralized scheduler guarantees that
at each configuration a single medical robot isvedid to execute its actions.

In our work we use two hypotheses to assure tineiiation of scattering procedure:

1. A non-fair scheduler activates a medical robbictv is placed on one of multiplicity points, if a
medical robot is alone on its position it will bever activated.

Definition 2.1. A multiplicity aware scheduler -saheduler which activates a medical robot which
is placed on one of multiplicity points.

2. A fair scheduler activates a medical robot e¥éns alone on its position. In this case, thedn
cal robots have a complementary capability asdabal Imultiplicity detection.

Faults

The ordinary models of medical robot networks afatively simple and cheap medical robots and,
hence, not fail-proof. In addition, hazardous aishaenvironments (explosion, theft, crash, eta)alao
affect the fail-proof of medical robots. Thus,dtassential to study distributed networks of autooes
mobile medical robots in the context of faulty neadirobots. Our attention focuses on two types of
faults:

1. crash failures can happen in two cases:

— medical robots physically disappear from the ek

— medical robots stop all their activities, howethary are still physically present in the network.

Note. The scheduler activates only non-crashedaakdibots in the case of crashed medical robots
which are still physically present in the network.

2. Byzantine failures. A Byzantine medical robo} f@ght behave in arbitrary and unforeseeable
ways. To prevent correct medical robots to dispers¢he plan, a Byzantine medical robot chooses, by
vision, one or more medical robots on the sameipfigity point and go at the same position.

Scattering problem

In the following we formally define the scatteripgoblem. The Scatter problem is considered
solved when no two medical robots occupy the samséipn [9, 10]. A system afi autonomous mobile
medical robots solves the scattering problem if @xgcution of the system verifies the following gro
erties:

1. Convergence: Regardless of the initial posigbthe medical robots on the plane, no two medi-
cal robots are eventually located at the sameiposit

2. Closure: Starting from a configuration wheretwo medical robots are located at the same posi-
tion, no two medical robots are located at the sposition thereafter.

3. Termination: Starting from any configuration teeattering procedure is finite when no two
medical robots are located at the same position.

Lemma. Termination of scattering is impossible withadditional assumptions.

Proof. During an execution of scattering procedmitbout additional assumptions, the medical ro-
bots never stop moving. A scheduler activates aicakdobot even if it is alone on its position. The
medical robots have no ability to detect numbemeftiical robots on the same position and, even if no
two medical robots are located at the same positoatop. So, execution of scattering procedurstmu
be infinite.

Note. Petit and Dieudonné [10] proved that theresdmot exist a deterministic algorithm that solves
the scattering problem in ATOM model, even if thedital robots have the localization knowledge or
are able to detect the multiplicity.
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If the faults are present (crash or Byzantine maddiabots) in the system we can have a situation
where several faulty medical robots can be on #éimesmultiplicity point, so, the scattering of medic
robots is impossible in the general sense. Buvtidathis situation we consider that the scattepnap-
lem has a solution for the correct medical robets.that we introduce a following definition:

Definition. The weak scattering problem consistprioviding scattering of correct medical robots.

By definition [11] a self-stabilizing system is gsgem that will end in a correct state after atdini
number of execution steps regardless of the irstatles of the computing units. So, an algorithselé
stabilizing if it solves the scattering problemiwiblivious or stateless medical robots [12].

Probabilistic scattering algorithm

In this section we present a probabilistic selb#itang algorithm for the scattering problem. In
generaly denotes a medical robot in the syste(n) is used to represent the point in the plane aecdup
by that robot. A configuration of the medical rabat given time (t > 0) is the set of positions in the
plane occupied by the medical robots at tinfe(t) = {py; ... ; pn}-

We consider that medical robots move accordingltecal coordinate system (i.e. the axes and the
distances may be specific to each robot). The localdinate system makes use of possible distances
and directions. We consider the get {a;; a; ... ; a} as the set of possible distances in the plane. Th
setA containsk elementsk > 0;k eN. The seB = {by; by; ... ; by} is the set of possible directions which
contains d elementd,> 0;d eN. Thus, we have the set kd pairs &; b)) — the set of possible destina-
tion points in the plane.

Lemma. Termination of scattering procedure in ffnge systems is possible with additional as-
sumptions.

Proof. We can get a termination for the scattepragedure in fault-free systems in two cases.

Case 1. Under a non-fair multiplicity aware sched@vhich activates a medical robot locating on
one of multiplicity points).

A non-fair scheduler can choose the same set ofcalatbots at each activation, so, the scattering
problem has no solution. If we apply an additiomssumptions that a non-fair scheduler activateg onl
medical robots which are placed on a multiplicigym, thus, gradually we reduce number of multiplic
ity points (at moment of activation each medicdlatis obliged to move on other position). So, exec
tion of scattering procedure is finite.

Case 2. Under a fair scheduler which activates diagakrobot even if it is alone on its position hwit
multiplicity detection capability of medical robots

In [10], the authors apply a fair scheduler ancertbe necessity of multiplicity detection capapilit
to ensure the termination of scattering procedDrging an execution of scattering procedure without
additional assumptions, the medical robots neva@p stoving. Because they have no ability to detect
number of medical robots on the same position amdn if no two medical robots are located at the
same position, to stop. So, execution of scattgrimogedure must be infinite.

But multiplicity detection allows the medical robdb stop if there exists no position with more
than one robot. So, execution of scattering proaedan be finite. In fault-free systems we can wappl
both cases for the termination of scattering praced

Systems under an arbitrary multiplicity aware schediler

In this section, we consider a system of medichbt® with visibility of nearest neighbor under an
arbitrary multiplicity aware scheduler.

At the time of activation, the multiplicity awarerseduler activates a medical robot which is placed
on a multiplicity point. This medical robot detedts nearest neighbor by vision and it builds itsver
ment circle by taking the half of the distance tesw itself and its neighbor. Then, it chooses dtipns
with a probability within its movement circle artdrioves towards the chosen position.

A medical robot; has the capability of viewing its nearest neighbdre detects the medical robot
r, its nearest strict neighbago(¢,) # p(r2)). It estimates the value of distance between thsfiy. Then,
the medical robot; takes the half of this distangg to build its movement circle with radiyg.,/2. It

moves at distanca which is chosen with probability Kand a directiory; which is chosen with prob-
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ability 1/d. The destination coordinates are bounded by theement circle: €nin; 5,1/2), where
€min > 0.

Definition The movement circle of medical roba a set of points in the circle with radius.{.;
B1/2), whereg,, is value of distance between medical robot r aschéarest strict neighbor; where

emin > 0 andeni, can be different for every computation cycle.
Algorithm 1. Probabilistic scattering for medicabotr. LT

Function: .0

. . . B./2 7 B~ 5

compute nearest distancereturns the distangé,; be- , TN~ x
tweenr and a nearest neighbor o - N

A ; i
compute nearest distanfeand medical robat chooses ]
a positionp; with probability 1kd (k — distanced — direc-
tion) and move from current position pi towards ti®sen
positionp, wherep; # p within Circle, € (emimy £1/2). e ..
Lemma. No two medical robots which are nearest Fig. 1. watts — Radius detection of the
neighbors choose the same destination point. mov ement circle
Proof. Consider a system of two medical robgtandr,, so, they are nearest neighbors. The
value of distance between medical robptindr, is . By algorithm 1 each of the medical robots
builds its movement circle by taking half of thetdince between itself and its neighbor. The medical
robotr; has its movement circl€ircle; e (emn; B/2), and respectively for medical rohgt Circle,,

e (emn; B/2). So, the movement circles of medical robots hene point of intersection on the border

of circles. But the medical robots can move wittlirir movement circles and not on the border of
circles. So, they can not choose the same destinBécause the medical robots have not a sector of
intersection.

Definition. Legitimate configuration:

Or;; local multiplicity detectior(positiorir]) = 1.

Lemma (Closure). Started in a legitimate configjorathe system verifies the closure property.

Proof. The medical robatwill be activated if it is on a multiplicity point

local multiplicity detectiorfpositiorir]) > 1.

If medical robotr is alone at its position it will be never activéte

Lemma (Convergence). For any timend for every pair of medical robots, §;) such thap(r;) =

p(r;). By executing scattering algorithm, we have

lim Pr[p, (t,)% p; (tZ)J =1.

X — 00
Proof. If medical robots occupying the same positid the instant of activation do not choose the
same destination, the condition of convergencedsraplished.
The probability thah medical robots choose the same destination tenzisro when the number of
rounds tends to infinity:

Prip(t)=p(t)]=lim [ﬁ} _

X — 0 d)
wherex is the number of rounds of execution.

Consider two medical robotg andr, which occupy ov,
the same position in the initial configuration. ._ ___________ :. !
The probability that the medical robot rl chooses a
distance amond-elements is ¥ (respectively forr,). r1/r2
The probability that two medical robatgandr, choose

. i , Fig. 2. Two medical robots occupying the same
the same distance is upper bounded/kS/= 1k. It's the position at the instant of activation

same for direction. The probability that two medica
botsr; andr, choose the same element of direction amd@iements is upper bounded byl.1The
choice of the two medical robots are independenfgchoicer; N choicer,] = 1/kd.

The probability that two medical robots choosedhme destination tends to zerx >0, wherex
is the number of rounds of execution.
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rounds under an arbitrary scheduler with multi-

Lemma. Algorithm 1 converges in—-1+ kdl

pliciy detection assumption.

Proof. The scheduler activates only the medicabt®kvith strict multiplicity. That is a medical ro-
bot alone on its position is not activated.

Consider a system with n medical robots anclet k be the stochastic process shown in fig. 3: at
roundt there ar&k medical robots at the same position arkl medical robots with different positions.

In the worst case, all the n medical robots artaily placed on the same poig = n. We should
compute the time needed for the stochastic praoegsach 1 (all the medical robots have differesgip
tions). Note that in a particular configuration te&heduler may activate all the medical robotshen t

same multiplicity point at the same time and allhefm may choose the same destination.Tiete the
expectaction time for the Markov chain defined abtivreach statestarting from state. Formally,
Ty = E[ min{t,such thatX, = e knowingX, = §].

1-p, 1'pn»1 1'pn-i

1-p,
' Pn ' En-l ' Pr-i P2
- = IR \ — T T

Fig. 3. Time of convergence in the worst case

It follows that the convergence time of AIgorith:&nTln1 computed below.
Tril =1+ pnTr:li—l + (1_ pn) Tr%'

where p, =1- 1 — probability not to choose the same destination.
Pn )_1 p y
kd
Ta =1+ p T+ T pTo,
1= Pn (Tr}—l_Tr})'
Tr}_Tr}—l:i: 11 =1+ riLl
h 1- (kd)" -1
(kd)n—l
Thus,
1
Tr-T =1+ ——,
T (kd)" -1
1
T, -1 =1+ ,
n-1 n-2 (kd)n_z 1
1
T, -T'=1+
2 1 kd -1
So,
n-1
Tr=(n-1)+ 1|
|:1(kd) _1
If kd> 2, so
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n-1 n-1 i-1
;_ < Z i ,
- kd

n—l(iji‘lz( (kd)"™ -1

kd)"?(kd-1)’
(kd)"™ -1

i=1

Tr=(n-1)+

We can bound the equationM
(k)" (kd-1)
(kd)™-1 _ kd
(kd)"?(kd-1) kd-1'
(kd)"™ -1
(kd)n—Z

<kd,

rounds.

The algorithm converges in—1+ kdl

Note that we studied the time of convergence ofoAtgm 1 in a discrete space. In a continuous
space the set of possible destinations for evenjicakrobot tends to infinity. Fdt-distances choices

—o0 and ford-directions choices—w, the fraction

tends to 0. It follows that the convergence

time tends to+1 rounds.

Lemma. Algorithm 1 converges im-1 steps under a centralized scheduler with midiipldetec-
tion assumption.

Proof. A centralized scheduler activates the méddaots on multiplicity points one by one. The
probability that the activated medical robot reachesigularity position after it completes its moe
eration is 1.

1 1 1 £
m B Hi :f . H‘m
Fig. 4. Time of convergence in the best case

The convergence time ia«{1) steps.

Lemma 4.7. Algorithm 1 converges on average ingogounds under an arbitrary multiplicity
aware scheduler.

Proof. Consider a system of n medical robots. Aedaker activates the non empty subset of medi-
cal robots which are placed on the multiplicityrsi If a medical robot is alone on its positiowill be
never activated. At the moment of activation a roaldrobot chooses with probabilitykty its future
position, wherek — number of elements of possible distancesdrdnumber of elements of possible
directions.
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Consider that alh medical robots are initially placed on the samifpa,. The scheduler activates
the medical robots. The probability that at least medical robot chooses the positmria pair &; b))
is the positiorp, in the plane) is = kd. The probability that aftdrrounds on the positiop, remains no
more than one medical robotrigkd)i. So, the average convergence time ig4aglf kd —oo the aver-
age convergence time equal to 1.

The number of rounds is= logn :
logkd
n —
(ka)
n=(kd) ,
logn=ilogkd,
- logn _
logkd

Note. The convergence time with the same assungpéienn Lemma is lag.

Systems under a fair scheduler

In this section we consider a system of medicabi®lvith nearest neighbor visibility under a fair
scheduler which activates a medical robot eveni# alone on its position. In this case, the maidio-
bots possess complementary capability as the locdtiplicity detection to assure the termination of
scattering procedure.

A system of n autonomous mobile medical robotsesbhe scattering problem if any execution of
the system verifies the following properties:

1. Convergence: regardless of the initial positbthe medical robots on the plane, no two medical
robots are eventually located at the same position.

2. Closure: starting from a configuration wheretwo medical robots are located at the same posi-
tion, no two medical robots are located at the sposition thereafter.

3. Termination: starting from any configuration theattering procedure is finite when no two
medical robots are located at the same position.

In Lemma we proved that the termination is possibléhe systems of medical robots with capabil-
ity of local multiplicity detection under a fairlseduler.

At the time of activation, the scheduler activaaesedical robot even if it is alone on its position
This medical robot verifies the multiplicity. If éhmedical robot distinguishes more than one medical
robot on its position it executes the algorithneltse it does not move. Executing algorithm 1 théime
cal robot detects its nearest neighbor by visiahitibuilds its movement circle by taking the hailfthe
distance between itself and its neighbor. Theoh@oses a position with a probability within its vae
ment circle and it moves towards the chosen pasitio

A medical robotr; has the capability of viewing its nearest neighbdre detects the medical robot
r, its nearest strict neighbqgu(¢,) # p(r2)). It estimates the value of distance between tasfiy.

Then, the medical robot takes the half of this distanBg to build its movement circle with radius
B1/2. It moves at distanca which is chosen with probability Kand a directior; which is chosen

with probability 18. The destination coordinates are bounded by theement circle: Emn; 5.1/2),

wheregy,n > 0.
Algorithm 1. Probabilistic scattering for medicabotr.
Function:
local multiplicity detection: local multiplicity detection.
compute nearest distancereturns the distangg betweerr and a nearest neighbor
Al
if local multiplicity detection() > 1;

48 Bulletin of the South Ural State University
Ser. Mathematics. Mechanics. Physics, 2018, vol. 10, no. 3, pp. 41-51



Melekhova O.N., Self-Stabilizing Mobile Medical Robot s Scattering Algorithm
Meshcheryakov R.V.

thencompute nearest distan¢pand medical robat chooses a positign with probability 1kd (k —
distance;d — direction) and move from current positipntowards the chosen positignwherep; # p;
within Circlez e (emin 51/2).

else do not move.

Lemma (Convergence) are true for this case, becauseese Lemmas we do not use any assum-
tions of scheduler.

Lemma (Closure) Started in a legitimate configunatihe system verifies the closure property.

Proof. Each medical robot has a complementary cltlyasis local multiplicity detection. At the
moment of activation a medical robot verifie legitite configuration. If local multiplicity detectidpo-
sition[r]) > 1 than this medical robot chooses a new pmsiwith probability 1kd (k — distanced — di-
rection) and move towards it, else it does not move

The time of convergence in the case of arbitrarjtiplicity aware schaduler is better than in the
case of fair scheduler, because, an arbitrary pligity aware scheduler activates the medical relodt
multiplicity points whereas a fair scheduler adtisaa medical robot even if it is alone on its posi

Note. The time of convergence in the case of miditp aware scheduler is better than in the case
of fair scheduler, because, a multiplicity awarbestuler activates the medical robots of multipjicit
points whereas a fair scheduler activates a methtalt even if it is alone on its position.

The goal of our research is to define minimal cdjgs of theoretical medical robots for solving
the scattering problem in both fault-free and fautine systems. We proposed a probabilistic self-
stabilizing algorithm for the scattering problens far as we know, this is the first attempt to sadeat-
tering in fault-prone environments [13, 14].

The given paper is completed with the support efftinistry of Education and Science of the Rus-
sian Federation within the limits of the projecttpaf the state assignment of TUSUR in 2017 and201
(project 2.3583.2017) and science schdeINSH-3070.2018.8).

In conclusion, the authors are pleasant sinceretirde to Professor A.V. Bogomolov for his
hearts discussion of the on problem of medicalateaind equipment in the framework of medical and
biological research and congratulate him on annsazy.
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ABTOCTABMUITU3NPYIOLLMUCS ANITOPUTM CXOXAEHUSA MOBUIbHbIX
MEOULMHCKUNX POBOTOB

O.H. Menexoea’, P.B. Meu;ep;moe2
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2 Yuemumym npo6nem ynpaeneHusi um. B.A. TpanesHukosa PAH, Mockea, Poccutickas ®edepauust
E-mail: meshcheryakov.roman@gmail.com

Pabora mocBsieHa BO3MOKHOCTH JETEPMUHAPOBAHHOTO W BEPOSTHOCTHOTO PACCESHHS MPHU pas-
JIUYHBIX TPEIIOI0KCHUASX COCTOSHUS MECTOTIOIOKEHHS METUITMHCKIX POOOTOB Kak B O€30TKa3HOM, Tak
U B yA3BUMOH cpefie. AKTyallbHOCTb pabOThl 00YCIIOBJIEHA HEOOXOAMMOCTRIO Pa3MEIICHUST MEIUIHH-
CKHX POOOTOB B MPOCTPAHCTBE KOOPAMHAT, NMEIOIIHNE HETIePECEKAOIMNECs MMOJIUTOHBI (Tena poOOTOR),
YTO B CJIy4ae MEIUIIMHCKUX MPUIOKECHUN a0COTIOTHO HEOMyCTUMO. B KayecTBe OrpaHU4eHUHN MPUHS-
ThI MPEIIONOKEHHS, UTO MEIUIMHCKHA pOOOT BUAMT ONMXKANIINX coceneil U HYyHKIMOHUPYET JIOKAJb-
HBIE MOHUTOP MHOXECTBEHHOCTH, KOTOPBIH MOXET ONpEAeNsITh CUTYaIHio, KOrja poOOThl 3aHHUMAIOT
nepeceKaronrecss MecTa B MPOCTpPaHCTBe. [Ipemnaraercst alrOpUuT™M BEPOSITHOCTHOTO pacCesiHHs, OTH-
CBIBAIOIIUN UCXOMHBIC COCTOSHUS MEIUIMHCKUX POOOTOB M COOCTBEHHO AJTOPUTM IEPEXOIHBIX CO-
CTOSTHHH, KOTOPhIC MOXKET MPOTHO3UPOBATH JBIKECHHE POOOTOB B MECTOTIONIOKEHHE, T/Ie OHH MOTYT TIie-
peceKaThbCH. HOKaSI)IBaeTCSI, 4TO IIPpU HCIIOJIB30BaHHUU aJIrOpUTMa MOTYT OLITH OLICHCHBI COCTOAHHA U
AITOPUTMBI JIBM)KCHUS KakK B 0€30TKa3HOM cpejie (POOOTHI HE BBIXOIST M3 CTPOS U Cpejia CTallMOHApHA),
TaK ¥ B ySI3BUMOU cpenie (pOOOT MOKET BBIMTH M3 CTPOsi, He pelieHa BuzanTuiickas mpobiiema, cpeaa
MeHsieTCsl ObICTpee, YeM poOOT MOXKET pearmpoBaTh). Takxe MPHUBEJCHBI OIICHKU 10 BBIYHCIHTEILHON
CIIOKHOCTH aJiTOPUTMa, padoTaromero 6e3 mIaHupOBITUKA MUCCHA.

Kniouesvie crosa: pobom; meduyunckuil pooom, aneopumm, GeposmHOCIMHOe paccesuue, amo-
CMubUIU3AYUL.
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