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We study the issue of recovering a lower order coefficient depending on
spatial variables in a forward-backward parabolic equation of the second order.
The overdetermination condition is an analog of the final overdetermination
condition. A solution at the initial and final moments of time is given. Equations
of this type often appear in mathematical physics, for example, in fluid dynamics,
in transport theory, geometry, population dynamics, and some other fields.
Conditions on the data are reduced to smoothness assumptions and some
inequalities for the norms of the data. So it is possible to say that the obtained
results are local in a certain way. Under some condition on the data, we prove
that the problem is solvable. Uniqueness of the theorem is also described. The
arguments rely on the generalized maximum principle and the solvability of
theorems of the periodic direct problem. The results generalize the previous
knowledge about the multidimensional case. The used function spaces are the
Sobolev spaces.

Keywords: inverse problem; final overdetermination; forward-backward
parabolic equation, solvability, periodic condition.

1. Introduction
Let G be a bounded. The inverse problems is studied in the cylinder Q= GX(0,7),

§=Ix(0,T), T'=0G. The problem is stated as follows: find a pair of functions u(x,z) and A(x)
satisfying the equation

g(x,tu, — Lu=Ax)u+ f(x,1), (x,t)e O, (1)

and the boundary conditions
Bu|g= ¢(x,1), (2)
u(x,0) =u(x,T) = uy(x). 3)

Here the operator L is of the form Lu =Z?j_18x.aij (x)u,. —Z?_lal.(x)ux, —ay(x)u and Bu=u or
J=L ) i = i

n .
Bu= Zi =itV +0(x)u , where v, are the components of the outer unit normal to I'. We assume
s 1

that the coefficients of the operator L and the boundary operator B as well as the corresponding
function spaces are real. The definitions of the function spaces involved can be found, for instance, in
[1]. The operator L is elliptic, i. e., there exists a constant ¢, >0 such that

Zal-j(x)fifj >8,|EF VEER", xe G, a; = aj for alli,j.

i,j=1
The inverse problems of the form (1)—~(3) in the case of positive function g(x,#) are studied in many
articles (see [2—5] and the bibliography therein). In our case the function g(x,7) can change a sign, i. e.,

we deal with the forward-backward parabolic equation. Equations of this type often appear in
mathematical physics, for example, in fluid dynamics while studying fluid motion with alternating
coefficient of viscosity, in transport theory while describing the process of particles motion in some
environment. Such equations also occur in geometry, population dynamics, and some other fields.
Sufficient number of examples is given in [6]. The boundary value problems for equations of the form
(1) are studied in many articles (see, for instance, [7, 8]). The inverse problem of finding the right-hand
side in (1) is studied in [9, 10, 12, 13]. We generalize here the results of the article [13]. Our conditions
on the coefficients are more general (in particular, the function in front of the derivative in time can
depend on ¢ ) and moreover, we prove solvability for an arbitrary n (n<3 in [13]).
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2. Preliminaries
Let £E=L,(G). The inner product in E 1is defined by the equality (u,v)= IGu(x)v(x)dx. Let

D(L)={ve W22 (G):Bv|p=0}. The space H, agrees with with W21 (G) in the case of Dirichlet boundary

conditions and with W21 (G) in the case of conditions of the third boundary value problem. The space

H,' is the completion of £ in the norm

1Vly= sup (o) |/l
weHl,w¢0

1. e., it is a negative space constructed on the pair of H|,E . The operator L extends to an operator of the
class L(H,,H,") which is the space of linear continuous operator defined on H, with values in H,'.
Define the space
W ={ue L,(0,T;W,)(G)):u,,u, € L,(0,T;W,(G)), 9*u(x,0)=0%u(x,T7)(k=0,1) }.
where 8f are generalized derivatives in the Sobolev sense. By W, we mean the subspace of W of
functions satisfying the homogeneous Dirichlet conditions in S . Define the norm
2 .
[ lly= ; | du ||L2(0,T;H1) .
Next, we present the condition on the data of the problem. We assume that
a; € WA(G), a,e Wy(G) (i,j=1,...,n)and ay € L,(G); 4)

£.8,,84 € L.(0,T;L,(G)), 0/ g(x,0) = 9f g(x.T) (k =0,1), (5)
where p>n/2 for n>2 and p>1 for n<2;

() S fin i€ Ly(O.T3HY), 9 f(x,0) =97/ (x.T) (k=0.1);

(i) @,0,0,€ L,(S), d'p(x,0)=0'p(x,T) (i=0,1) in the case of the Robin boundary conditions
and there exists a function ®(x,r)e W such that ®|;=¢ in the case of the Dirichlet boundary
conditions (this function @ exists if, for instance, if @,9,0,.9, € L,(0,T;W,*(T)) and
9p(x,0)=0;p(x,T) (i=0,1,2)).

. 1
(iii) there exists a constant &, >0 such that ao(x)+agt(x,t)—527:1aixi

(x)>06,>0 for all
oe[-1/2,3/2] and a.a. (x,t)e Q;

(iv) o(x)e L_(I') and O'(x)“'%Z?:]aiVi >0 for a. a. xeI in the case of the Robin boundary
conditions.

A pair of functions u(x,7),A(x) is called a solution to problem (1)—(3) if A(x)e L,,(G) for n>2,
Alx)e L,(G) with some p>1 for n<2, ue W in the case of Robin boundary conditions, u —® € I¥,
in the case of the Dirichlet boundary conditions, the conditions (2), (3) holds, and

n n
jgu,v + Z agu, v, + Zaiux‘v + aguvdQ + Iauv —ovdl' = I/iuv + fvdG, (6)
G pe e T G
Vve H,, where the integral over I" is absent in the case of the Dirichlet boundary conditions.
Consider an auxiliary problem

Mu=g(x,t)u, — Lu= f(x,1), (x,t)€ O, 7
u(x,0)=u(x,T), Bu|g=@(x,t). (®)
We can state that
24 Bulletin of the South Ural State University

Ser. Mathematics. Mechanics. Physics, 2018, vol. 10, no. 4, pp. 23-29



Pyatkov S.G., Recovering of Lower Order Coefficients
Kvich E.S. in Forward-Backward Parabolic Equations

Theorem 1. Under the conditions (4)—(5), (i)—(iv) there exists a unique solution to the problem (7),
(8) such that ue W in the case of the Robin boundary conditions and u—®e W, in the case of the

Dirichlet boundary conditions. A solution satisfies the estimate

2
Hu_q)|’WSCOZ(;||a;(f_Mq))HLz(O,T;Hl') )
in the case of the Dirichlet boundary condition and the estimate
2
el < o D010 Nl 000 +118i60 1 5)) (10)

i=0
in the case of the Robin boundary conditions, where the constant ¢, is some absolute constant c
multiplied by the quantity 1/min(d;,d,) .

Proof. We can refer to Theorem 3 in [8], where the corresponding result is stated in an abstract
form. We need only to check the conditions of this theorem. In the case of the Dirichlet boundary
condition Theorem 1 is reduced to Theorem 3 in [8] after the change of variables u=v+®. The
corresponding check relies on the embedding theorems and the condition of the theorem.

3. Main results

In this section we consider the inverse problem in question. To justify the corresponding results
below, we employ the generalized maximum principle. So we need to impose some additional
conditions on the data.

v) gx,t)e L, (Q), f.f,€L.(Q); @.¢,€ L.(S), uy(x)e W2(G) and there exists a constant
0, >0 such that u,(x) =9, ;
(vi) there exists a constant 0; >0 such that a,(x)+ g,(x,t)=0; >0 fora.a. (x,t)e Q;
(vii) in the case of the Robin boundary conditions, we have that o(x)e C'(I'), either o(x)> 0,>0
for some constant J, and all xe " or o(x) 20 and @(x,/)=0, ¢(x,1)e Wzl/ 4112 (S), and
| &(x,0)[;_(g) R Svraimin g(Luy + f(x,0)), Ry =max(| @, [|,_(s) /sl f; lo_(0) /)
(viii) in the case of the Dirichlet boundary conditions we have that ¢(x,t)e W23/ 4372 (S) and
| g(x,0) ||L°°(G) R, <vraimin g(Luy + f(x,0)), R, =max(|| ¢, HLOO(S)’H /i HLOQ(Q) /63).
Theorem 2. Under the conditions (4)—(6), (i)—(viii), there exists a solution
ue WnlL, (0,T;W22 (G)), A€ L_(G) to the problem (1)—(3).
Proof. Consider the problem
Myu= g(x,t)u, — Lu — A(x)u = f(x,t), (x,t)€ O, (11)
u(x,0)=u(x,T), Bul|g=@(x,1), (12)
where we assume that A(x)<0 a. a. in G. In view of Theorem 1, for a fixed
Ae B ={A(x)e L,(G), A(x)<0ae.,|| /1HLP(G)S R}, where p>n/2 for n>2 and p>1 for n<2,

there exists a unique solution to the problem (11), (12) from the class W . This solution satisfies the
estimate

2 2
|u—®[y<c, Z |0, (f =M D) HLZ (0.T;Hy) +¢y Z | A(x)0;® HL2 (0,T;Hy) (13)
i=0 i=0
in the case of the Dirichlet boundary condition and the estimate
2
il <o X2 o 7o) 19280l 5)) (14)
i=0

in the case of the Robin boundary conditions. In view of the embedding Wz1 (G) C Ly, -2y (G) (see [1])

we have (let, n > 2, for example)

|(A®)DP V) el Al L) 9P L oIV

W%(G)' W3 (G)
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and thus
12D, 7y SN AL @IAP, o 7t o (15)
Using the conditions on the data and (15), we can rewrite (13) in the form
2
[l <cy Z(H 9.f HLz(O,T;Hl‘) H @) +es (|4 HLp(G)a (16)

i=0
where the constants c,, c¢; are independent of A, u. Differentiate the equality (6) with respect 7 to and
take v=(u, —k)", with (u, k)" =u, —k if u, 2k and (u, —k)" =0 otherwise. Take k>0 and as
before assume that A€ By . First, consider the case of the Robin boundary conditions and assume that
@ #0 . Integrating with respect # to and by parts we infer

n 1 1 n
I Z AV vy + (ay + Eg, —EZal.xi W+ (ay + g, )kvdQ +
0i.j=1 / i=1

J.(O"’-%Zaivi)vz +okv—gdS = V“’v * fivdQ.
S i=l1 0

(17)

Here we employ the transformations of the type au,v=a(u, —k)v+akv= av* + akv . This equality can
be rewritten in the form (see the conditions (iv), (vii) and the ellipticity condition)

[ IVV P +6" + 8skvdQ + [S,v = gvdS < [ fvdG.

Q N 0

Choosing & 2|| f; |l;_(o) /5 here and k 2| ¢, ||;_s) / Oy, We arrive at the inequality
j 8 | VvI? +60*d0 <0
G

and, therefore, v=0 a. e. or u,(x,)<k=max(| f, [I;_( /65, @, lr_(s) /6,)=R,. Similar arguments

applied to a function -u, yield the estimate

I, (e, 0) |l 6y < max(ll £; llz_ o) /65, @ Iz.cs) /04)=Ry. (18)
In the case of the Dirichlet boundary condition an analog of the equality (17) is written as
n 1 1 n
[ am, v, +Ha+ g, —EZa,.xi W +(ay +g)kvdQ = [Auy+ fvdQ, (19)
0i.j=1 i=1 0
if we take k 2[| ¢, [[;_(s)- In this case we obtain the estimate
(0 |l yS max(|| £, |l o) / Oasll @ Ml (5)) = Ro- (20)

Consider the mapping A(A)=(g(x,0)u(x,0)—Luy — f(x,0))/uy(x), where u is a solution to the
problem (11), (12). Let A€ By, with R=u""7(G)(| g(x,0) ) R+ | Lug [y + 1| f (.0l 5)) >
where i=1 in the case of the Robin boundary conditions and i=2 otherwise, and u(G) is the
Lebesgue measure of G. Demonstrate that this operator 4 takes a set B, into itself and is compact. Let
A€ By . As we have proven, the inequalities (18), (20) hold and the conditions (vii), (viii) imply that
Il A(A) ]| LP(G)SO a.e. Next, the definition of the quantity and the estimates (14), (20) imply that

1 AA) || LP(G)SR, i. e, takes the set By into itself. The continuity of the mapping A(A) is obvious.

Demonstrate that it is compact. Consider a sequence 4, with A, € By. The corresponding sequence of
solutions satisfies the estimates (13), (14), (18), (20) and thus the sequence is bounded as well as the
sequence || u,, |;_p)- Moreover,

I AD N, SR/ 1P (G). (21)
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Fix p,<2n/(n—2) in the case of n>2 and is p, arbitrary if n<2. The sequence | u,, HW1(0 TG
PASEER U

is bounded and thus so is the sequence ||u,, || . In this case there exists a subsequence Uy,

C(0.TE3(G))
such that u, (x,0)—>v(x) in L, (G) (the embedding theorems). Extracting one more subsequence if
necessary we can assume that Uy, (x,0) >v(x) a. e. in Lemma 3.2 of Ch.2 in [14] implies that
U, (x,0) > v(x) in any L (G). We have proven that the mapping is compact. By Schauder fixed point
theorem, the equation is solvable on the set Bj. Consider the equation (11). Since ue W, every

summand in this equation belongs C([0,T ];Hl') to after a possible change on a set of zero measure. So
we can take the trace at = 0. We obtain that

g(x,0)u,(x,0) — Lu(x,0) = A(x)u(x,0)+ f(x,0) .
The equation A(A)=A can be rewritten as

g(x,0)u,(x,0) — Luy (x) = A(x)u(x,0)+ £(x,0).
Subtracting these equalities and using the uniqueness theorem for solutions to the problem
Lv+Av=0, Bv|=0, we conclude that u(x,0)=u,(x). Next, we note that the conditions

u,(x,t)e L,(0Q) and u,(x,t)e C([0,T];L,(G)) (we can state even that u,(x,t)e C([O,T];Wz1 (G))) imply
that u,(x,)€ L (G)for every t. Hence, in view of the equality A(4)=A4 we have that Ae L_(G).
Rewrite the equation (11) in the form

Lu=gu, + A(x)u— f(x,t)e L (O).
In view of the conditions (vii), (viii) and the classical results on solvability of elliptic problem (see [14]),
we can conclude that ue L,(0,T; sz (G)).

In the next theorem we expose the uniqueness conditions. The proof coincides with that in [13,
Theorem 6]. So we omit it.
Theorem 3. Let the conditions of Theorem 2 hold and

gl o) Ri/ 6 <1,
where i = 1 in the case of the Robin boundary conditions and i = 2 otherwise. Then a solution (u,4) to

the problem (1)—(3) from the class pointed out in the claim of Theorem 2 is unique.
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BOCCTAHOBJIEHUE MINTAALLUNUX KOQ®PULIMEHTOB B NAPABOJIMMECKOM
YPABHEHUU C MEHAKOLWLMWMCA HAMNPABJIEHUEM BPEMEHU
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PaccmarpuBaetcst oOparHasi 3aa4a BOCCTAHOBJICHUSI MIIAAIIETO KO3(pQPHUIMEHTa, 3aBUCSIIETO OT
NPOCTPAHCTBEHHBIX MEPEMEHHBIX, B MapaboIM4ecKOM YpaBHEHHU BTOPOTO MOPSIKA C MEHSIOLUIMMCS
HalpaBJICHUEM BPEMEHH. YCIIOBUE IMEPEONpeesieHHs — aHaIOT YCJIOBHS (MHAIBHOTO Iepeonpenese-
Husl. Penienue 3aiaercd B HaYaJIbHBIA M KOHEUHBI MOMEHT BpEMEHHU. Y PaBHEHUS TaKOI'O THUIA BO3HU-
KalOT B MareMaTnieckoi pusuke, B 3a1a4ax THAPOJMHAMUKH, B TCOPHU NIEPEHOCA, TEOMETPHH, TTOIYJIs-
LIMOHHOH AMHAMHKE, 1 HEKOTOPBIX APYTHX 001acTsaX. YCIOBHS Ha JaHHBIE CBOAATCS K YCIIOBHSAM IJIaJ-
KOCTU U HEKOTOPBIM HEPaBEHCTBAM Ul HOPM JaHHBIX. B cuily 3TOro MOJKHO CKa3aTh, YTO MOJIYYECHHBIE
Pe3yabTaThl SBISAIOTCA B HEKOTOPOM CTENEHU JIOKAJIbHBIMU. IIpy BBINIOJIHEHNUN YCIIOBUI HA JaHHBIE JO-
Ka3aHo, 4TO 3ajava paspemnma. [lomydeHa Taxke W TeopeMa eIUHCTBEHHOCTU MPU HECKOJIBKO Ooee
KECTKUX YCJIOBHSX. 3a7ada CBOAUTCS K ONEPaTOPHOMY YPaBHEHHMIO, Pa3peliuMOCTh KOTOPOTO YCTaHAB-
JMBAETCS IPU HOMOIIM alpHOPHBIX OLEHOK M TeopeMbl Jlepa-1llaynepa. JlokazaTenbcTBa alpUOpPHBIX
OLIEHOK OCHOBAHbI Ha 00OOIIEHHOM NMPHHLHUIIE MAaKCUMyMa M TEOpeMax O pa3pelIMMOCTH IepHOAnde-
ckoii 3agaun. [lomyueHHoe pewieHne sSBIAeTcst 000OIEHHBIM PELIEHUEM U yPaBHEHHUE YIOBIETBOPSIETCS
B CMBICJIC MHTETPAJILHOTO TOXKIECTBAa. Pe3ynbTaTsl 000011al0T y>Ke M3BECTHBIE HA MHOIOMEPHBIN CITy-
yaii. Mcrionp3yeMbie QyHKIMOHATIBHBIE TPOCTPAHCTBA eCTh MpocTpancTBa Coboena.

Kniouesvie cnosa: obpamnas 3adaua; gpunanvHoe nepeonpedenenue; napaboiuieckoe ypagHenue ¢
MEHAIOWUMCS. HANPABICHUEM BPEMEHU, PA3PEUUMOCb, NEPUOOULECKOe YCNO8UE.
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