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We begin classification of prime knots in the thickned torus of genus 2 hav-
ing diagrams with at most 4 crossings. To this endt is enough to construct a ta-
ble of prime knot projections with at most 4 crossigs, and use the table to obtain
table of prime diagrams, i. e. table of prime knots In this paper, we present the
result of the first step, i. e. we construct a talel of prime projections of knots in
the thickened torus of genus 2 having at most 4 cssings. First, we introduce
definition of prime projection of a knot in the thickened torus of genus 2. Second,
we construct a table of prime projections of knotsn the thickened torus of genus
2 having at most 4 crossings. To this end, we enuraée graphs of special type
and consider all possible embeddings of the graplisto the torus of genus 2 that
lead to prime projections. In order to simplify enumeration of the embeddings,
we prove some auxiliary statements. Finally, we pre@ that all obtained projec-
tions are inequivalent. Several known and new trick allow us to keep the process
within reasonable limits and rigorously theoreticaly prove the completeness of
the constructed table.
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Introduction

One of the main problems of the knot theory isitol fan algorithm to recognize a knot (or link),
i. e., to provide the studied object with a uniédentifier. For instance, the identifier can beagivby a
catalog number. This approach involves the prolieiconstruct complete tables of knots and links ar-
ranged with respect to some their numerical charistics. Many researchers worked in this ariardyri
last 150 years. Most of the constructed tablesiden&nots and links in the 3-dimensional spheee, s
[1-3]. Recently, increasing interest in the theofyglobal knots (i. e., knots in arbitrary 3-marhifs)
leads to tabulation of knots in manifolds differémam the 3-dimensional sphere. Note tables ofdliimk
the projective space [4], knots in the solid tojbis knots in the thickened Klein bottle [6], as livas
prime knots in the lens spaces [7]. Note thatheknot theory, recent tables includes only theadted
prime objects, which can not be obtained by sonmknoperations from already tabulated objects. Vir-
tual knots and knots in the thickened surfaces haem of particular interest in the last 20 ye@tere-
fore, some tables of such knots were also consiutt particular, the works [8] and [9] presentf@et
tables of virtual knots arranged with respect tmbear of classical crossing and construct a ligavhe
properties of each knot. However, these tablescanstructed without taking into account primeness
and such important property of a knot as the geletisrmined by the minimal genus of the thickened
surface which can contain the given knot. The @étdea is to classify virtual knots taking intacaant
both parameters, i. e. not only number of classicadsings, but also the genus of a knot, seedherp
[10, 11] for tables of prime knots and links in thé&kened torus. In a sense, such tables cannmdzo
ered as tables of prime virtual knots and linkgerus 1.

We begin classification of prime knots in the tlénkd torus of genus 2. To this end, in this paper,
we present the result of the first step, i. e. westruct a table of prime projections of knotsha thick-
ened torus of genus 2 having at most 4 crossingsnfin result states that there exist exactly di¢-p
wise inequivalent such projections. Further, werndtto use the obtained table of prime projections
order to construct table of prime diagrams, iable of prime knots.

The paper is organized as follows. Section 1 greglired definitions and the main result of the
paper. Section 2 describes main ideas of the tadalaf prime projections of knots in the thickened
torus of genus 2.
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1. Main Result

A direct product of two copies of an 1-dimensiosphereS' is calleda 2dimensional torus
T = S'xS%. Further, for shortness, we refer to a 2-dimeraidorusT as a torud. Fig. 1,a shows an
example of a toru¥ endowed with a pair “meridian-longitude” of
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=

(a) (b) (c)
Fig. 1. (a) Atorus T endowed with a pair “meridian  -longitude” , (b) a torus T°with a hole and a disk D,
(c) a 2-dimensional torus T, of genus 2 formed by a connected sum of two copies of a torus T°with a hole

A surface F° with a holés obtained from the original surfageby removing the interior of a 2-
dimensional diskD. Further, for shortness, we refer to a 2-dimerdialisk D as a diskD. Fig. 1,b
shows an example: a torli®with a hole is obtained from a torlidoy removing the interior of a didh.
Hereinafter, we writ€ to show that a surface has one h#leép show that a surface has two holes, etc.

By a 2dimensional torugd, of genus 2ve mean a surface formed by a sum of two copies Df
dimensional torug©° with a hole constructed by identifying (gluing &tlger) their holes, see Fig.d,
Here each toru$?®is called a handle of a 2-dimensional tofuof genus 2. Further, for shortness, we
refer to a 2-dimensional tords of genus 2 as a torUs.

Let us define types of simple closed circles, widah be considered in a tortis

A simple closed circl€ LI T, is said to beut, if the complement,\C consists of two components.

In the torusT,, a cut circleC can be eithetrivial, i. e. bounding a disB, or nontrivial. In the first

case, the complemei$\C is formed by a disb
and a torug,° with a hole. In the second case, the
complementT,\C is formed by two copies of a

i o torusT°with a hole.

E A simple closed circleCU T, is said to be
noncug if the complemenfl,\C consists of the
unique component. Namely, the complement

Fig. 2. Examples of circles in the  torus T, T>\C is a torusr®°with two holes.
Two noncut simple closed circlé€s, C, LI
T, are said to bgarallel to each otherif the complement,\(C, O C,) consists of two components,
which are a torug°with two holes and aannulusA, i. e. a 2-dimensional sphe®&°with two holes.

Fig. 2 shows example€;,C, LI T,are two noncut circles parallel to each othdrile C;, C, LI T,
are nontrivial and trivial cut circles, respectivel

Consider a torud, and an interval = [0, 1]. By athickened torus of genus\#e mean a 3-
dimensional manifold homeomorphic to the directdora T,xI.

A smooth embedding of the setmfpairwise disjoint circles in the interidmt(T,xI) of the thick-
ened torudl,xl is called aim-component linkn T,xI. In particular, ifm=1, we have a smooth embed-
ding of the unique circle imt(T,x1), which is called a knot ifi,;x | and denoted bi{ LI T,x I.

As in the classical case, knots in the thickenedstd,x | can be given by thentiagrams which
are defined by analogy with a classical knot diagexcept that a knot is projected into the torpis-
stead of a 2-dimensional sph&fe

A projectionof a knotK in the torusT, is a diagram oK such that the crossings of the diagram con-
tain no under/over-crossing information. Therefar@rojection can be considered as an embeddiag of
connected regular graph of degree 4, i. e. valeheach vertex of the graph is equal to 4. VertiueS
are calleccrossingsof G, while connected components of the compleriigis are calledacesof G.

Two projectionsG andG' in the torusT, are said to bequivalentif there exists a homeomorphism
f: T,—T, such thaf(G) = G'.

We say that an intersection poof two circlesC,;,C, LI T, is nontransversalif only two of four
angles neaP are formed by both circlgs; andC,, while the third and the forth angles are formatyo
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by the circleC; andC,, respectively. Otherwise, i. e. if all four angle=arP are formed by both circles
C,andC,, the intersection poirR is calledtransversal

We define the following three types of projectiamshe torusr,.

1. The projectior is calledessentiglif each face o6 is homeomorphic to a didh.

2. The projectior is calledcompositeif at least one of the following conditions halds

(a) There exists a didR LI T, such that the boundafp intersectss transversally exactly in two
points, which are internal for two distinct edgé$spand at least one vertex Gfis insideD.

(b) There exist two parallel noncut simple closedlesC,, C, LI T,, and two distinct edges, e
of G such that foi = 1, 2 the circleC; intersects the edge transversally at exactly one internal point,
and both surfaces (a torli®° with two holes and an annulég to which the circles divide the tordg
contain vertices 06.

(c) There exists nontrivial cut simple closed @r€land two distinct edgess ,e, of G such that for
i = 1,2 the circleC intersects the edge transversally at exactly one internal point, anthtsurfaces
(two copies of a torug®with a hole) to which the circl€ divide the torug, contain vertices ofb.

3. The projectior is calledprime, if G is essential and noncomposite.

Our table contains only prime projections. Indesehessential projections correspond to knots that
can be found in already existing tables of knotth3-dimensional sphe®& [1-3], thickened annulus
Ax| (solid torus) [5], or thickened torts<I [10]. In its turn, composite projections corresgpaa knots,
which can be constructed using already known krastioned above. Namely, composite projections
of types (a)—(c) correspond to knots, which camdrestructed as sums of a classical knot and aifnot
the thickened toru$,xl, a knot in the thickened tordsxl and a knot in the thickened tortsl, or two
knots in the thickened torasI, respectively.

Theorem 1.In the torusT,, there exist exactly 14 pairwise inequivalent pripmejections with at
most 4 crossings. The projections are given in %ig.

Theorem 1 is proved by three steps described itidBez.

2. Proof of the main result

Let us describe main ideas of the tabulation ahprprojections given in this section. We do this in
three steps. First, Subsection 2.1 enumerates g@pspecial type. Then, Subsection 2.2 considérs a
possible embeddings of the graphs into the tdeugiving prime projections. Finally, Subsection 2.3
proves that all constructed projections are pagwigquivalent.

2.1. Enumeration of graphs with at most 4 verticesvhose embeddings into the torug§, can be
prime projections

Lemma 1.If a projectionG LI T, is prime, therG is connected and contains no loop nor any cut pair
of edges (i. e., removing the pair of edges givdiseonnected graph).

Proof of Lemma 1 is similar to arguments used tivei,emma 2 in [11].

Lemma 2.Let GLI T, be a prime projection with crossings, then G contains exactiy%) faces.

Proof. Take into account the Euler characteristic of dragT,and the fact thab is essential.

Lemma 3. There exist exactly 3 graphs with at most 4 vegiowhose embeddings into the tofys

can be prime projections, see graphsc given in Fig. 3.
Proof. By virtue of Lemma 2, it is easy to see that ar@
graph which embedding into the torlig gives a prime projection

contains at least 3 vertices. Lemma 1 gives camtiton an abstract « b c
quadrivalent graph, which embedding into the toFugives a prime  F19- 3 The graphs of special type
projection. All graphs with at most 4 vertices sfyiing the first and second conditions are enureérat
in [10]. In this list, there are exactly 3 graplegisfying the third condition, see graphsc given
in Fig. 3.

2.2. Construction of prime projections

Lemma 4. All projections shown in Fig. 5 can be obtaineceageddings of the graphs- cgiven
in Fig. 3. Namely, the graph gives the projection;3the graphb gives the projections;4and 4, and
the graplt gives the projections,44s and 4 -4,.

Proof. We construct all the projections by the followimgthod [11].

Let GU T, be a prime projection represented as a ubiafi the circlesC;, i = 1, 2,...,m, havingk
nontransversal points.
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Let l;, I, be small arcs containing a nontransversal poirthefprojectionG. We can remove the
point by the mové/ shown in Fig. 4. The dashed #rshows how to perform the inverse mawe.
Remove each nontransversal point of the projec@iday the moveM. The obtained uniob® of the
same circle<, i = 1, 2,...,m contains only transversal points and is endowet kvdashed arcB to
show where the move! was performed. Of course, the initial project®rtan be obtained frotd* by
the inverse mov&™ performed along each dashed prsee Fig. 4.
According to Lemma 3, all prime projec-

tions in the torug,with at most 4 crossings can
M be obtained as embeddings of the graghs In
W — order to construct all the projections, we repre-
sent an embedding of each graph as a union of a
——— number of circles and enumerate all possible
M-1 combinations of types of circles and intersection
points.

Fig. 4. Move M removes a nontransversal point, while ~ M™

is performed along the dashed arc B and creates the point Let us give three obvious statements, which

allow to reduce such enumeration.

Lemma 5. Let GU T, be a prime projection represented as a unionrofesi withn intersection
points. Then

(i) this union contains no more thar-8) cut circles,

(i) for n <4, all cut circles are trivial.

Proof. Statement (i) is true according to Lemma 2 anddbethat each cut circle involves an addi-
tional face. If Statement (ii) is not satisfiedetts is either a link projection, or a nonessentialjgro
tion. This completes the proof of Lemma 5.

Lemma 6.Let GLI T, be a prime projection represented as a ubiaf circles, andC LI U be a cir-
cle having exactly two intersection points with extltircles embedded in the torlis Then both points
are nontransversal, @ is cut, and at least one of two points is nontrarsal, ifC is noncut.

Proof. If both intersectiorpoints are transversal, th&hforms a projection of a component of a
link, while we consider only projections of knotk.C is cut, then both intersection points are either
transversal, or nontransversal. This completeptbef of Lemma 6.

Lemma 7. Let GLI T, be a prime knot projection obtained from the uni#fn which is endowed
with k dashed arcg. Then the following conditions hold.

(i) The union ofu*and allk dashed arcg divide the torug into disks.

(i) For any two circle<C,, C, LI U, there exists a sequence of dashed fuasd other circles that
connectC; andC,.

Proof. If Condition (i) is not satisfied, then the prdjen G is nonessential, and we arrive at con-
tradiction with the fact that the projecti@is prime. If Condition (ii) is not satisfied, thé&his a projec-
tion of a link, whileG is a knot projection. This completes the proof efrima 7.

Let us enumerate all possible embeddings of thehgia-c giving prime projections.

Graph a Let the projectiorG be an embedding of the graglin the torusT,. The pairs of double
edges form three circles in the tofizssuch that each circle has exactly one intersegdnt with each
of two other circles. According to Lemma 5, allobirs are noncut. Note that there exists at mostrist
versal intersection point, otherwise there existsrele with two transversal intersection pointsl ame
arrive at contradiction with Lemma 6.

Case 1.f all intersection points are nontransversalntinee remove all the points by the madve
and see that the three circles without common palivide the torud, into more than one part, i. e. we
arrive at contradiction with Lemma 2.

Case 2lf exactly one of three intersection points isigeersal, then, without loss of generality, we
consider the circle€; andC; to be a pair “meridian-longitude” of one of thendes of the torus,, and
the circleC; to be a meridian of another handle. We remove hotitransversal points by the maove
and cut the toru$, along all the three circles to obtain a spH&t®with three holes. By virtue of Lem-
ma 7, there exists the unique way to draw two dhsinesp such that to connect each of two holes cor-
responded to the circlé; with the hole formed by the circl€® andC, under the condition that there
exists exactly one endpoint of a dashedfaon each circleC, i = 1, 2. Apply the inverse mové™
along each dashed gt@nd obtain the projectid.
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Graph h Let the projectiorG be an embedding of the graplin the torusT,. The pairs of double
edges form four circles in the torlig such that each circle has exactly one interseqtiont with each
of the two other circles and does not intersectaleth circle. Note that there exist at most Z¢rzgersal
intersection points (moreover, each circle contaimsnore than one transversal intersection poartia),
erwise there exists a circle with two transversgrisection points and we arrive at contradictioth w
Lemma 6.

Case 1Suppose that all four intersection points are raogversal.

Remove all the points by the moi and see that the four circles without common odivide
the torusrT, into more than two parts, i. e. we arrive at cadittion with Lemma 2.

Case 2Suppose that exactly one of four intersection {gamtransversal.

According to Lemma 5, there exists at most onecitate, moreover, this circle is trivial. Therefore
without loss of generality, we consider the cirdiesandC, to be a pair “meridian-longitude” of one of
the handles of the tords, andthe circleCsto be a meridian of another handle, while the ei€jcan
be either cut or noncut. We remove all three nastrarsal points by the mow and cut the torus,
along all the four circles.

Case 2.1If the circleC,is cut, then we obtain a sphe3e”°ith four holes. By virtue of Lemma 7,
there exists the unique way to draw three dasheslpasuch that to connect one of two holes corre-
sponded to the circlé; and the hole corresponded to the ciClevith the hole formed by the circlé€
andC, and to connect another hole corresponded to thie €l; with the hole corresponded to the circle
C,under the condition that there exists exactly amdpeint of a dashed aficon each circl€;, i = 1, 2.
Apply the inverse movM™ along each dashed gf@nd obtain the projectich.

Case 2.2If the circleC,4is noncut, then we obtain a sph&®°with three holes and an annulis
In S°° py virtue of Lemma 7, there exists the unique wagraw two dashed ar@ssuch that to con-
nect the hole corresponded to the cirCleand the hole corresponded to the cirClewith the hole
formed by the circle€; andC, under the condition that there exists exactly om#peint of a dashed
arc f on each circleC;, i =1, 2. In A, by virtue of Lemma 7, there exists the unique wayraw a
dashed ar@ such that to connect the hole corresponded toitbie C;and the hole corresponded to the
circle C,. Apply the inverse moviel™ along each dashed g@nd obtain the projectiofy.

Case 3Suppose that exactly two of four intersection f®are transversal.

According to Lemma 6, these transversal pointsrigeto different pairs of circles. Therefore, with-
out loss of generality, we consider the cird@sandC, to be a pair “meridian-longitude” of one of the
handles of the torus,, while the circle<C; andC, form a pair “meridian-longitude” of another handle.
We remove both nontransversal points by the nidvand cut the torus, along all the four circles to
obtain an annulud. By virtue of Lemma 7, there exists no ways tondta&o dashed ard$ such that to
connect two holes under the condition that theist@xactly one endpoint of a dashed fron each
circleC;,i=1,2,3,4.

Graph c Let the projectiorc be an embedding of the grapim the torusT,, thenG can be repre-
sented as a union of three circles such that tisesiC; andC, have no common points, while the circle
C;intersects each of them alternately. Further, auithoss of generality, we consider the cirCleto be
a representative of the circl€ andC,. Note that there exist at most 2 transversal $etgron points
(moreover, each of the circl€ andC, contains no more than one transversal intersegpioomt), oth-
erwise there exists a circle with two transversggrisection points and we arrive at contradictioth w
Lemma 6. Also, according to Lemma 5, there exista@st one cut circle, moreover, this circle ig-tri
ial.

Case 1Suppose that all intersection points are nontrenssy.

Case 1.1Suppose that there exists no cut circles and cenaitlpossible cases of parallel circles.

If there are no parallel circles, then we removehs nontransversal points by the mdweand cut
the torusT, along all the three circles to obtain two copiea spheres°®with three holes. In each®?
by virtue of Lemma 7, there exists the unique wayitaw two dashed ar@ssuch that to connect the
hole corresponded to the cirglgwith each of the other holes. Apply the inverse elv' along each
dashed ar@ and obtain the projectiof..

If the circlesC; andC, are parallel to each other, then they bound amlae@ without crossings,
therefore, the projectioB is honessential, and, therefo@is nonprime.
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If the circlesC, andC; are parallel to each other, then we remove alinth@ransversal points by
the moveM and cut the toru$; along all the three circles to obtain a spH&i®with three holes and an
annulusA. In S°°9 by virtue of Lemma 7, there exists the unique Wwagraw three dashed afgsuch
that to connect the hole corresponded to the citgh&ith each of the other holes. B by virtue of
Lemma 7, there exists the unique way to draw aethsincf such that to connect two holes. Apply the
inverse moveV™ along each dashed gf@nd obtain the projectichy.

Case 1.2Suppose that there exists a cut circle and remibtieeapoints by the movhl to obtain a
sphereS°°%yith five holes.

If the cut circle iC,, then, by virtue of Lemma 7, there exists the uaigvay to draw four dashed
arcspP such that to connect each of two holes correspbimi¢he circleC, with the corresponded hole
formed by the circléC; and to connect the hole formed by the cit€lewith both holes formed by the
circle Cs. Apply the inverse moviel™ along each dashed gf@nd obtain the projectiof.

If the cut circle isCs, then, by virtue of Lemma 7, there exists the ueigvay to draw four dashed
arcsp such that to connect each of holes correspondétetoirclesC,; and C, with the hole formed by
the circleC; alternately. Apply the inverse mow™ along each dashed gs@and obtain a projection of
a link.

Case 2.Suppose that exactly one of four intersection tgois transversal. Without loss of general-
ity, we consider the circlgS; andC; to be a pair “meridian-longitude” of one of thendées of the torus
T,, while the circleC, can be either cut or noncut. We remove all threstraasversal points by the
moveM and cut the torus, along all the three circles.

If the circleC,is cut, then we obtain a tordi8°with two holes. By virtue of Lemma 7, there exists
the unique way to draw three dashed @rsach that to connect twice the hole correspondéle circle
C, with the hole formed by the circl€s andCs;, and the last hole with itself. Apply the inverseve
M along each dashed gF@nd obtain the projectiot.

If the circleC,is noncut, then, without loss of generality, we sidar the circleC,to be a meridian
of another handle of the torllg, and obtain a sphef&®with three holes. By virtue of Lemma 7, there
exist two ways to draw three dashed greich that to connect each of the holes correspbtaléhe
circle C, and with the hole formed by the circl€s andC;, and the last hole with itself alternately. In-
deed, the third possible way leads to a link ptapec Apply the inverse movs™ along each dashed
arcf and obtain the projectiords and4s.

Case 3Suppose that exactly two of four intersection are transversal.

According to Lemma 6, each of the circlésandC, contains exactly one transversal point, there-
fore, both the circle€; andC,are noncut. The circl€; is also noncut, since the circleésandC,do not
intersect each othand the circleC;has exactly one transversal point with the ci@lewhere = 1, 2.

Case 3.1Suppose that the circl€y andC, are parallel to each other. Without loss of gergral
we consider the circle§; andC, to be two meridians of one of the handles of tradT,, while the
circle C; is a longitude of the same handle. We remove hottiransversal points by the moveand
cut the torudl, along all three circles to obtain a tofwith a hole and a disR. In D, there exists no
dashed arcB, otherwise we obtain either a link projection,aononessential (therefore, nonprime) knot
projection. InT®, by virtue of Lemma 7, there exists the unique wagonnect the hole with itself by
two dashed ard such that there exist exactly one endpoint ofsinéd ar@ on each circleC;, i = 1, 2,
and two endpoints of different dashed gbasn the circleCs. Apply the inverse mov™ along each
dashed ar@ and obtain the projectich.

Case 3.2Suppose that the circl€s andC, are not parallel to each other. Without loss ofegah
ity, we consider the circl€; to be a meridian of thieth handle of the torus,, wherei =1, 2, while the
circle C3 is a connected sum of two longitudes of both hesxdiVe remove both nontransversal points
by the moveM and cut the torus, along all three circles to obtain a sph&fewith two holes. By virtue
of Lemma 7, there exist exactly four possible wiysonnect the two holes by two dashed @resich
that there exist exactly one endpoint of a dashed an each circle€C;, i = 1, 2, and two endpoints of
different dashed ardson the circleCs. These four ways are different in the sense ofdhewing two
facts. First, either there exists a dashed3aronnecting a hole with itself, or both dashed frcennect
different holes. Second, either there exists anfiexg of the circleC; having both endpoints of different
dashed arcB, or there exist two fragments of the cir€lethat belong to the same hole, and each frag-
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ment contains an endpoint of a dashedparpply the inverse movM™ along each dashed gcand
obtain the projectiond,, 4, 4,1, and4,s. This completes the proof of Lemma 4.

3, {12 ([} 44 {2 14 b}
< < < &~
%\\ ,d>
4 {214 ¢} 45 {2 14 ¢}

4y {313 ¢} 45 {3 13 ¢}
X
4g {4 12 b} 47 {4 12 ¢}
511 (} 49 {b 10
419 {6 10 ¢} 44 {19(}
449 bb(} 444 bb(}

Fig. 5. Prime knot projections in the torus T, with at most 4 crossings

3.3. Proof of the fact that all constructed projedbns are pairwise inequivalent

Lemma 8. All 14 projections given in Fig. 5 are pairwisequivalent.

Proof. We associate each face of a projection with arahhumber, which is equal to the number
of edges which form the boundary of the face. Hacle of a prime projection is homeomorphic to a
disk. According to Lemma 2, the number of faceg@th projection given in Fig. 5 is equal to 2 with
the exclusion of the projectidh.

Associate each projection (except for the projec89 given in Fig. 5 with an ordered seét i; X},
wherei, andi, are natural numbers, which are associated witrsfatéhe projection and taking in non-
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decreasing order, arndis the graph such that the projection is an embegddf x in the torusT,,
xLI{b, c}. By analogy, the projectioB, is associatedith the ordered set {1a}.

Such ordered sets are enough to prove that akkgiions given in Fig. 5 are pairwise inequivalent,
with the exception of the following 4 pairsiy(4k), (44, 4s), (4o, 4i0), and (42, 413).

Let us prove that projections in each of the paresalso inequivalent. We say that an eelgéthe
projectionG has typei( j) if eis a common edge of tlayonal and-gonal faces of the projectidh

1. Projections (4 4;) are inequivalent. Indeed, recall that the “stnfighead” rule determines a
cycle composed of all edges of the projection. Omls, the cycle is such that there are the same num-
ber of edges of type (14, 14) between two edgégpef (2, 14).

2. Projections (4 4s) are inequivalent, because there exists no biieatiapping between their
Gauss codes: 12324143 and 12324134, respectively.

3. Projections (4 4,0) are inequivalent, because onlycbntains the edge of type (6, 6), while the
type of each edge ofdis either (10, 10), or (6, 10)

4. Projections (4, 413) are inequivalent, because only dontains the edges that are common for
the same 8-gonal face, while all edgesgfae common for both 8-gonal faces.

Note that all tabulated projections are prime bystaiction.

This completes the proof of both Lemma 8 and Thedte
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KNACCUOUKALIUA NPUMAPHbIX MPOEKLIUA Y3NOB B YTOJILEHHOM TOPE
POMA 2 C HE BOJIEE YEM 4 NEPEKPECTKAMM*

A.A. Akumoea
FOxHO-Ypanbckuli 2ocydapcmeeHHbIlU yHUgepcumem, 2. YensbuHck, Poccutickass ®edepauyusi
E-mail: akimovaaa@susu.ru

Mpl HaunHaeM KiaccH(UKAIHMIO MPUMAPHBIX Y3JIOB B YTONIIEHHOM TOpE poja 2, UMEIOIUX JIHa-
rpaMMBbI ¢ He Oonee uyeM 4 nepekpectkamu. Kitaccudukarus mpoBoautcs B 1Ba mara. Ha nmepBom mare
CTpOUTCS Ta0JIMIla MPUMAaPHBIX MPOCKIMA ¢ He Oonee yeM 4 mepekpectkamu. Ha BTOopoM miare moiry-
YeHHas TaOJHIIa MCIIONB3YEeTCs AJIS MOCTPOCHUS TAaOJMIBI IPUMAPHBIX TUarpamm, T.e. TaOIUIIBl MPH-
MapHBIX y3JI0B. B 3TOM cTaThe MBI Mpe/CTaBIsIeM pPe3yIbTaT IePBOTO IIara, T.e. CTPOUM TalIIUIy BCeX
MPUMapPHBIX MPOCKIHH Y3JI0B B YTOJIIIEHHOM TOpE poja 2, UMeIomuX He Oojee 4 mepekpecTkoB. Tab-
JUIa CTPOUTCA B TpH 3Tamna. Ha mepBoM 3Tare Mbl BBOAMM OIpeIeIeHe TPUMApHON MPOEKINH y3Jia B
YTOJIIICHHOM TOpe poja 2. Ha BTOpoMm 3Tame MbI CTPOUM TaONUILy NMPUMAPHBIX MPOCKIHMH y3II0B B
YTOJIIIEHHOM TOpe poaa 2, uMermmx He Oojee 4 mepekpecTkoB. s 3Toro mMel nmepeuucisieM rpagsl
CIEUALHOTO BUJIA M pacCMaTPUBAEM BCE BO3MOXKHBIE BIOXKEHUS 3TUX TpadoB B TOp pojaa 2, KOTOpbIE
MPUBOJAT K MPUMAapPhIM MPOEKIHSIM. 37€Ch MBI JOKa3hIBaeM HECKOJIBKO BCIIOMOTATEIBHBIX YTBEPIKIe-
HUW, COKpalIaloIINX MEPEUrcICHUE TaKUX BIOKeHUU. HakoHell, Ha TpeThbeM 3Tare, MBI JOKa3bIBacM,
YTO BCE MOJYYCHHBIC MPOCKIUU HEIKBUBAJIICHTHBI. Psii U3BECTHBIX U HOBBIX MPUEMOB MO3BOJIWI yAEP-
KaTh MPOIECC B Pa3yMHBIX MpeAesiaXx U CTPOro TEOPETUIECKH JOKa3aTh MOJHOTY MOCTPOSHHOMW Tabiu-
IIBI.

Knioueswie cnosa: npumapuas npoexyus, y3en, ymoayeHHvlid mop pooa 2; mabauya.
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