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In this paper, with the help of the density functional theory, the structural
and elastic properties of A2, B2, D03, and L1, phases of Fejg_xGey alloys (12,5 < X
< 28,125 at. %) have been studied. The electronic and full ionic relaxations were
used for the investigation of crystal structures. The concentration dependencies of
the atomic volumes, structural phase transition temperatures, tetragonal and
rhombohedral shear moduli have been calculated. We show that the atomic vol-
ume curves correlate with the sequence of phase transitions observed experimen-
tally: A2—B2—D0; (x <22 at. % of Ge content). The structural phase transition
temperatures increase with the Ge concentration. The calculated tetragonal
moduli for the D03, A2, and L1, structures decrease with the increasing of the Ge
content, what agrees with the experimental results. The dependence of
rhombohedral shear moduli as a function of Ge concentration does not change
significantly with increasing Ge atoms. The Cy, is increased for the D03 phase,
while for A2, B2, and L1,, it decreases.
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Introduction

The discovery of large magnetostrictive strains in iron-gallium alloys in 1999 started the extensive
study of rare-earth-free binary alloys based on a-Fe [1, 2]. These alloys are promising materials for sen-
sors and actuator applications. Among them, iron-gallium alloys are the most thoroughly investigated.
The phase diagram of Fe-Ge alloys is very similar to Fe-Ga systems in the Fe-rich region [3]. Ga and Ge
are p-elements that have a significant influence on electronic structures of binary compounds, which, in
turn, determines their structural and magnetic properties. In both alloys, in the range of Ga(Ge) content
up to 12 at. %, the phase diagram is characterized by the existence of the disordered a-phase (A2 struc-
ture). At these compositions, the values of magnetostriction (A1) for Fe-Ga and Fe-Ge are similar and
positive [1]. The further increase of Ga content up to 19 at. % leads to the formation of mixing phase
DO05+A2 [4]. The magnetostriction of Feg;Ga,e reaches 340-10°° in slowly cooled samples. In the case of
Feg15Geuss, B2 and DO; phases are observed [6], and A0 = —96-10°° [1]. In contrast to Fe-Ga alloys, the
properties of Fe-Ge systems are not well investigated. Experimental studies of phase formation and tran-
sitions in alloys with Ge additives are presented in [5-13, etc.]. For Fe-Ge alloys in the phase region
X <22 at. %, three types of the base-centered cubic (bcc) structures with different ordering (fully disor-
dered A2, partially ordered B2, and ordered DOs) exist [5, 7, 9, 10, 13]. In the concentration range of Ge
content 22 < x < 28 at. %, low temperature face-centered cubic (fcc) L1, and high-temperature hexago-
nal DOyg phases were also observed [5, 6, 8, 10-12]. The effect of the addition of Ge atoms on the elastic
properties of Fe-Ge alloys is considered in [1, 14]: with the increase of Ge atoms in Fe lattice the tetrag-
onal elastic modulus decreases.

The magnetic moments and Curie temperatures of Feigy «Gey alloys were investigated theoretically
in [15-18]. With adding of Ge atoms the total magnetic moment and Curie temperature reduced.
Cao et al. [19] with the help of a full-potential-linearized augmented plane wave method studied the
magnetostriction as a function of Ge concentration. They found that A1qy increased linearly with x up to
11 at. % and then decreased. In our recent work [15, 18] based on the total energy calculation of
Fe100 xGey alloys with different structures, the phase diagram as a function of x was constructed. Never-
theless, the existing theoretical results are insufficient to understand the relation between phase trans-
formations and magneto-elastic properties.

Therefore, this study aims to investigate the structural and elastic properties of cubic phases of
Feio xGex (12,5 <x < 28,125 at. %) alloys within different approaches to geometry optimization. The
paper is organized as follows. Section 2 presents the details of ab initio calculations. Section 3 contains
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the main results and discussion. Conclusions are provided at the end of the article (Section 4).

1. Calculation details

Ab initio calculations were performed by using the projector augmented wave (PAW) method im-
plemented in the Vienna ab initio simulation package (VASP) [20, 21]. The exchange-correlation effects
were treated in generalized gradient approximation (Perdew-Burke—Ernzerhof formalization [22]).
Pseudopotentials were taken for the following electronic configurations: Fe(3p®3d’4s') and Ge(4s°4p?).
Kinetic energy cut-off was 450 eV, and kinetic energy cut-off for the augmentation charges was 800 eV.
The Brillouin zone integration was performed by the Monkhorst—Pack scheme [23] with 8x8x8 k-point
sampling. The calculations were converged with the energy accuracy of 10 eV. The geometry optimi-
zation of 32-atom supercells was carried out with the help of electronic and ionic relaxation. In the case
of electronic relaxation, the equilibrium lattice parameters a, were obtained from the dependency of total
energy E on the cell volume with a fitting to the Birch—Murnaghan equation of states. While the ionic
optimization was fulfilled assuming that the cell shapes and ions degrees of freedom were fixed. The
following phases in Fejq xGeyx (12,5 <x < 28,125 at. %) alloys, which were observed experimentally,

were considered: A2 (o-Fe-type structure, space group Im3m no. 229), B2 (CsCl-type structure, space
group Pm3m no. 221), DO; (BiFs-type structure, space group Fm3 m no. 225), and L1, (CusAu-type

structure, space group Pm3m no. 221). To create off-stoichiometric compositions in 32-supercell for
each structure, either Fe or Ge atoms were replaced by Ge or Fe on randomly chosen lattice sites, re-
spectively. This allowed us to change the composition with the step of 3,125 at. %.

After obtaining the lattice constants, we calculated the elastic moduli for cubic structures using
strain tensors, which correspond to isotropic, orthorhombic, and monoclinic deformations. We assumed
that the volume of the unit cell was constant, and the distortion parameter changed in the range of £3 %.
Additional calculation details can be found in [24].

2. Calculation results

The calculated equilibrium lattice parameters ao, total energies per atom E,, and formation energies
Esm for electronic and ionic relaxation are presented in Table. The formation energy can be defined as a
difference between the total energy per atom of an alloy and total energies per atom of its components in
their equilibrium bulk structures:

Eronm = Eo (Fesoo_x Ge,) 32| (100 X) EEF (Fe)+ XEg* |/100,

where E;e(ee) is the total energy per atom of alloys components, X is the Ge content concentration. For

A2, B2, D03, and L1, cubic structures, the lattice parameter increases with Ge content. In the case of B2
and D05 phases, the lattice constant decreases for systems with an excess of Ge (x > 25 at. %). For the
comparison, the experimentally obtained lattice constants are also included in Table. For both relaxa-
tions, the values of lattice parameters are in good agreement with each other and with experimental re-
sults. The difference between a,®' and a,"™" is less than 0,5 %, and between ay®' and a,™" is approximately
1 %. The differences between the obtained total energy values are negligible, and the DO; structure is
energetically favorable for all considered Ge concentrations.

B2, D03, and L1, structures are stable because their formation energies are negative (Eqm < 0). A2
phase is stable at Ge content x < 18 at. %. However, in the disordered A2 structure, the arrangement of
atoms in the lattice has a significant effect on the ground state properties and formation energy, and we
considered only one configuration.

Fig. 1(a) shows the atomic volume V, as a function of Ge concentration in the range of
12,5 <x<28,125 at. %. The available experimental values [6, 9, 10] for the A2 structure are also pre-
sented in Fig. 1(a). The closest to the experiment are A2 phase results obtained with electronic relaxa-
tion and Ge content of up to x = 21,875 at. %. In the range of x > 22 at. %, the experimental volume
changes slightly, while the theoretical estimation continues to increase. The lowest and the largest V, are
observed for the most stable phase D0; and A2 structure, respectively. The V, of the B2 structure is
close to DOz. Under the transition from disordered to ordered state, the unit-cell parameters decrease
slightly and, therefore, the atomic volume also decreases [25-27]. The obtained dependencies of V, on
Ge content correspond to the sequence of phase transitions observed experimentally [5, 13]:

50 Bulletin of the South Ural State University
Ser. Mathematics. Mechanics. Physics, 2020, vol. 12, no. 2, pp. 49-56



Zagrebin M.A., Matyunina M.V.,
Sokolovskiy V.V., Buchelnikov V.D.

Structural and elastic properties of Fe-Ge alloys:
ab initio studies

A2—B2—D0; (8< x <22 at. %). The fcc phase L1, in the range of 21,875 < x < 28,125 at. % has a min-
imum of V, in stoichiometric composition Fe;sGe,s, which is in agreement with the experimental da-
ta [11]. The L1, phase is experimentally observed in the narrow Ge concentration range x =~ 22+25,7
at. % [5, 11, 28, 29]. Here, we simulated a wider range of concentrations for the L1, phase, since the

minimal concentration step in the 32-atoms supercell is 3,125 at. %.

Table
Optimized lattice constant a, (A), total energy E, (eV/atom), and formation energy Ejm (MeV/atom) of Feig<Gey alloys in
comparison with experimental data (a,”"). The positive values of formation energy are bolded

X Phase Electronic relaxation lonic relaxation ad®
aoel EO Eform aolon EO Eform
12,5 A2 2,874 | -7,803 | -12,845 2,867 | -7,802 | —11,566 | 2,885 (13,03 at.%)"
B2 2,865 | -7,809 | —18,965 2,857 | —7,809 | —19,022
D0; |5,72 —7,851 | —60,717 5,707 | —7,851 | —60,709
15,625 | A2 2,879 | -7,680 | -6,744 2,873 | -7,680 | —6,697 | 2,885 (16,13 at.%)’,
2,891 (14 at.%)?
B2 2,865 | -7,695 | -22,112 2,862 | —7,696 | —22,087
D0; |[5,720 | 7,743 | —69,712 5708 | 7,743 | —69,665
18,75 | A2 2,889 | -7,556 | 0,718 2,883 | 7,556 | 0,737 2,899 (20 at.%)”
B2 2,870 | -7,580 | 23,354 2,863 | —7,580 | —23,306
D0; |5,722 | -7,636 | -79,794 5709 | -7,636 | —78,904
21,875 | A2 2,898 | -7,418 | 21,643 2,890 |-7,418 | 22,019 | 2,902 (22.5 at. %)’
2,885 (21 at.%)?
B2 2,868 | —7,462 | —22,965 2,860 | —7,463 | —23,219
D0; |5,725 | -7,530 | -90,285 5711 | -7,529 | -89,203
L1, 3,640 | -7,505 | -65,941 3,633 | —7,505 | —65,358
25 A2 2,909 | -7,275 | 47,329 2,903 | —7,275 | 47,684 | 2,903 (25 at.%)*
B2 2,867 | -7,343 | —19,991 2,861 | —7,343 | -19,911
D0; |5,720 |-7,423 | -100,095 |5,707 |-7,423 | —
100,083
L1, 3,638 | -7,413 | -90,031 3,629 | -7,412 | -89,481 | 3,665
28,125 | A2 2,920 |-7,135 | 70,431 2,914 |-7,136 | 70,408 | 2,901 (27,5 at.%)’
B2 2,867 | -7,218 | -12,121 2,860 | —7,218 | -12,141
D0, 5716 | —7,277 —71,689 5707 | —7,277 | —70,947
L1, |[3,655 |-7,247 |-41225 |3,649 |-7,247 | 41,201 | 3,668" (26,3 at.%)
! Data were taken from [6].
2 Data were extrapolated from [10].
¥ Data were taken from [7].
* Data were taken from [11].
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Fig. 1. Dependence of (a) FeigoxGex atomic volume V,, and (b) calculated temperatures of structural phase transitions on
Ge concentration, x. Atomic volumes V,(x) were obtained by two types of relaxations: electronic (filled symbols) and full

ionic (open symbols). Experimental atomic volumes (half-filled symbols) for A2 (circles) and L1, (triangles) structures
were taken from [6, 9-11]. The experimental values of T were taken from [8, 11-13]
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Fig. 1 (b) presents the calculated temperatures of structural phase transitions Tt,rph as a function of
Ge concentration and their comparison with the available experimental data [8, 11-13]. The estimations
of T,”" can be obtained from AE ~kgT,”, where AE =E,—E,..,, E:, isthe energy of the most ener-
getically favorable structure (DOs in this case), and kg is the Boltzmann constant. The structural phase
transition temperature is the temperature, above which the corresponding phase exists. For all consid-
ered structures, T,”" values increase with Ge concentration. The slope of the theoretical thz(x) curve

TAZ

is steeper than the experimental one. For x >22 at. %, the experimental Tg,;

curve changes slightly,

while the theoretical estimation of T,/*? continues to increase up to 25 at. % of Ge. For the B2 structure,
the experimental Te% curve increases more rapidly than the theoretical one. The pure structure L1, is

experimentally observed at about 25 at. % of Ge content (through the D0;g—L1, transition). The range
22 <x < 27 at. % is characterized by different mixtures of the B2, D03, DOy, and L1, phases [5, 8, 13].
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Fig. 2. Dependence of (a) tetragonal C' and (b) rhombohedral C4 shear moduli of Feig.xGex alloys on Ge concentration, X.
The results were obtained by two types of relaxations: electronic (filled symbols) and full ionic (open symbols). Experi-
mental values (half-filled symbols) were taken from [1] for C' and from [14] for Cy4

The concentration dependencies of tetragonal C' and rhombohedral C,, shear moduli are presented
in Fig. 2 (a, b) together with the room-temperature experimental results. For both elastic moduli, the
closest to the experimental values were calculation results for the DO; structure obtained by electronic
relaxation. The increase of Ge concentration up to x = 25 at. % leads to a decrease in the tetragonal elas-
tic modulus. This indicates a pronounced softening of the DOj3 structure. The rhombohedral shear modu-
lus C44 does not change significantly with x, only slightly decrease for structures with Ge excess
(x > 25 at. %). The same concentration dependencies for both C' and C,4 were obtained theoretically for
the D05 phase in the Fe-Ga system [24]. In the case of A2 and L1, structures, the tetragonal shear modu-
lus decreases in the considered range of 12,5 <x<28,125 at.%. For A2, B2, and L1, structures, the
rhombohedral shear modulus C,4 has a trend similar to C'.

Conclusion

We have studied the structural and elastic properties of Fe-Ge alloys by using the first-principles
methods. Crystal structure optimization was performed for phases A2, B2, D03, and L1, of Fejg Gey
(12,5 <x < 28,125 at. %). We considered two types of relaxations: electronic and full ionic. We showed
that the lattice constants increase with Ge concentration in both approaches, and the difference between
obtained lattice constant, total energy, and formation energy is negligible. The DOj; structure is energeti-

cally favourable for all considered Ge concentrations. The dependence of atomic volume Va(x) on Ge
content corresponds to the sequence of phase transitions observed experimentally (A2—B2—D0s) in the
range 8 <x < 22 at. %. We estimated the temperature of structural phase transitions Tt,rph as a function of

Ge concentration and found that the slope of the calculated curve for the A2 phase is steeper than for the
experimental one. Moreover, we obtained the dependencies of tetragonal C' and rhombohedral C,4 shear
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moduli on Ge content. For A2, D03, and L1, structures the increase of Ge concentration leads to a de-
crease in the tetragonal elastic moduli. The rhombohedral shear moduli do not change significantly with
X. In general, results obtained by electronic relaxation are in good agreement with the experimental data.
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B pabote mpencTaBieHbl UCCIeOBaHUs CTPYKTYPHBIX M yNpyrux cBoicTB (a3 A2, B2, DOs u L1,
cmiaBoB Fejgo xGey (12,5 < x < 28,125 at. %), BHINOIHEHHBIC TIPH TIOMOIIM TEOPUH (YHKIIMOHAJIA TUIOT-
HocTH. Kpucramnnueckne CTpyKTypbl MCCIENOBAINCH NPH MOMOINM JIBYX THIIOB PElaKCalUil: 3JIeK-
TPOHHOH M MOJHOHM MOHHOH. [TocTpoeHBI KOHIIEHTPAIMOHHBIC 3aBUCUMOCTH aTOMHBIX 00BEMOB, TEMITE-
patyp CTPYKTYpHBIX ()a30BBIX NHEpPEXOJIOB, TETPArOHAIBHBIX W POMOORAPHYECKHX MOIYJIEH CHBHTIA.
KpuBble 3aBucHMOCTEN BEIWYMH aTOMHOTO 00BEMa COOTBETCTBYET MOCIENOBATENBLHOCTH (DAa30BBIX Iie-
pexo0B, HaOIOIaeMbIX dKcIepuMeHTanbHo: A2 — B2 — D0; (X <22 at. % conepxanust Ge). IToka-
3aHO, YTO TEMIIEPATypPhbl CTPYKTYPHBIX ()a30BBIX MEPEXOJI0B BO3PACTAIOT C YBEIIMUCHUEM KOHICHTPALIUH
Ge. B cOOTBETCTBHM C 3KCIIEPUMEHTAIBHBIMU PE3YIbTaATAMU PACCUYUTAHHBIE TETPATOHAIBHBIE MOIYIIH
s ctpykryp D03, A2 u L1, ymensimatores ¢ poctom atoMoB Ge B criaBax. Benmnamaa pombosmprde-
CKOT'O MOJYJISl CIIBUr'a CYILIECTBEHHO HE M3MEHsETCs ¢ yBeaudeHueM ducia atomos Ge. Cy4 yBeNIHUMBa-
etcs ans asel D03, B To Bpemst kak anst A2, B2 u L1, ymenbmaercs.

Knrouesvie crosa: ab initio; kpucmaniuueckas cmpykmypa, gasogvie npeepaujenus,; ynpyaue mo-
oynu.
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