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The paper considers electric traction drive with the field regulated reluctance machine (FRRM). The FRRM
principles of operation and main advantages compared with asynchronous machine and synchronous reluctance
machine are presented, disadvantages are marked. Mathematical model of the drive with FRRM is described;
adequate accuracy is proved by the statistical data processing. The paper presents electric drive operating point
determination in the static mode, transient model analysis, which takes into account electrical, electromechani-
cal and mechanical processes of electric traction drive, present the first stage of optimization. The second step
explains a method of increasing the maximum speed of the drive. The third stage is associated with optimization
of FRRM features with over-torque. Therefore, the drive is obtained with improved weight and dimension cha-
racteristics, overload capacity, which meets the requirements of the haulers. Weight-size parameters optimiza-
tion, three-stage characteristics optimization estimate the most favorable parameters of the control system and
the motor. The explanatory drawings are given in the article.
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Introduction

Electric traction drive is the critical part of the
equipment of all electric or hybrid haulers. It impos-
es wide range of requirements to the power facilities,
control system parameters and output performance of
the full electromechanical complex. As hauler drives
often work in extreme mode, it is necessary to form
energy efficiency criteria of the drive in another
way [1, 2].

The existing solutions of the electric drives on
the base of asynchronous motor or synchronous reluc-
tance machine (SynRM) do not meet such require-
ments. Asynchronous motors have the optimized con-
struction, winding performance, insulation materials
and power supply. Nevertheless, the overload indexes
are not high. Increasing the current loading and so-
phisticating the SynRM construction can provide the
rated torque equal to 1.1 of the asynchronous drive
rated torque.

Ample scientific works [3—6] are connected with
optimization of the electromechanical converter.
However, the proposed solutions are oriented to the
bridge m-phase inverters supply with the limited num-
ber of phases.

The new approach to the electric drive designing
provides for improving overload and weight-size
ratings. The “valve-inverter — motor” complex opti-
mization would be made with due account for special
electric traction drive requirements as high overload
usage possibility (e.g. for overtaking or for starting
with heavy cargo); as minimal dimensions (e.g. for
urban electric transport with low floor for convenient
passenger drop-off and pick-up), by the example of
the field regulated reluctance machine (FRRM).

Concept and operating principles of the FRRM

FRRM is the synchronous reluctance machine
where the stator winding can behave as field winding if
the coil is over the interpolar space and it is a full pitch
winding. Such drive works as the inversed DC ma-
chine. Stator windings can be fed by the independent
sources or by the traditional multiphase controlled power
converters, e.g. based on the full bridge circuit.

As the rotor may be done massive, high mechani-
cal stiffness of the shaft can be achieved. Motor can be
made in the same stator housing as the induction mo-
tor, and applying the same stator line current load
FRRM develops torque greater by 20...35 %. By vir-
tue of intentional true neutral plane displacement to
the pole edge, the motor can produce overload torque
up to 4...10 rated values [7-9].
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Fig. 1. Electromagnetic torque ripple rate
as a function of number of phases of the FRRM

However, these values would be decreased with
decreasing number of phases of the machine. The
electromagnetic torque ripples are coming out. The
ripple rate as a function of the number of phases is
shown on fig. 1. Increase of number of phases results
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in increase in the number of power semiconductor
switches and the complex cost. The trade-off accord-
ing to the economical, mass-weight, energy indexes is
to use the six-phase machine.

Optimization of electric drive dynamic

and technological parameters

Thyristor converters have 3...5 ms time delay due
to thyristor groups change-over. This aggravates dynamic
indexes of phase current control loop. In order for taking
this problem away, it is desired to use transistor conver-
ter instead of thyristor converter. It to improve dynamic
parameters of the drive with 2...16 kHz PWM.

Another weakness of the drive in respect to the
technological process is the lost motion in the me-
chanical transmission. Steep edge of the current, huge
impact stresses lead to the early mechanical failure of
the equipment. The preload made by the control sys-
tem of the drive solves this problem.

Mathematical model of electric drive

with the FRRM

The optimization of weight-size parameters of
the electric drive was made on the base of mathemati-
cal model [6, 10-16].

The proposed model was used for mathematical
description of the processes proceeded in the electro-
mechanical complex. It allowed description of the
system under normal conditions, and what is more
essential — under overloads. Geometric model of the
electromechanical converter was made in SolidWorks;
it reduced the time of the data processing stage.
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The magnetic system calculation was made in ANSYS
Maxwell module. The control system was realized in
ANSYS Simplorer. The connection between the pro-
gram modules was carried out by the data exchange
settings in the real time mode. If the calculation of
the magnetic system was made for the given point, a
data vector was sent to the control system module.
The control response vector was formed according to
ANSYS Simplorer calculation results. Then this vector
was transferred to ANSYS Maxwell back.

Detailed structure of the FRRM in ANSYS Sim-
plorer module is given in fig. 2. The model includes
partial derivative equations that consider magnetic
fields distribution in the electric machine. Finite ele-
ment method is used to solve these equations. Finite
element method in comparison with well-known finite
difference method allows significant decrease of er-
rors in the cases where magnetic inductive capacity
changes stepwise during the transition from the ferro-
magnetic to the air substance.

The model consists of two main parts: electrome-
chanical converter Maxwell model (realized in ANSYS
Maxwell) and control system — all elements are rea-
lized in ANSYS Simplorer. Six-phase scheme is shown
in fig. 2. Every phase is supplied by the EMF source
(E1, E2, ..., E6), which is strongly fed back by the
current. Current controller signals (P1, 11, P2, I2, ...,
P6, 16) are to the input of the current source. Current
reference signal (/suml, /sum2, ..., /sum6) and cur-
rent feedback signal (AM1, AM2, ..., AMO6) are
summed up and fed to the current converter. Current
controllers are proportional-integral. The motor control
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Fig. 2. Mathematical model of the electric drive with the FRRM
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Torque-speed curve statistical analysis

Parameter Il TT pieq TT itea d e
Experiment number rated math. model lab. workbench
1 0.3 0.208 0.2 —-0.01 0.0001
2 0.7 0.67 0.7 0.03 0.0009
3 1.1 1.06 1.1 0.04 0.0016
4 1.5 1.55 1.5 —-0.05 0.0025
10 7 6.8 —0.2 0.0400
0.10
0.86
2.040

is made as a function of rotor position, therefore phase
current forming assembly (7V1, TAl, TV2, TA2, ...,
TV6, TA6 modules) was used to make current refe-
rence from the speed controller (RS) or from the exci-
tation reference source. Phase current forming assem-
bly forms input current controller signals as a function
of rotor position. The electric drive control is made by
the dependent control system. The outer control loop
of speed determines the operation of inner torque con-
trol loop, is set with the P/ speed controller. Speed
sensor signal and the speed reference signal are
summed up and fed to the speed controller [15].

To assess the model adequacy we compared
model calculation data and laboratory workbench
results. The machine (rated power P = 23.5 kW, speed
n = 1500 rpm, voltage V' = 150 V, current / = 50 A,
efficiency 0.91) and torque-current curve were taken.
Table shows the statistical analysis of obtained results.

Matched samples method and Student distribu-
tion were chosen to analyze the results. Design coef-
ficient ¢t became less than the critical value f.;. Hence,
it is possible to use the proposed model with adequate
accuracy for next optimization.

Optimization of electric drive

weight-size parameters

In general, the task of the weight-size parameters
optimization can be described with the following cri-
terion:

g =min APy (T, M s T ) »

27 "max > - max
where AF,;, is the electric drive power loss, 7, is the

rated motor torque, n is the maximum motor

max
speed, and 7, is the maximum drive torque.

The basic limitation in this task should be the
heat engine power

Py = const.

For optimizing the electric traction drive it is useful

to divide speed-torque curve into 3 sections (fig. 3, a):
1 — constant power section (4-N-B curve), 2 — maxi-
mum speed section (horizontal section passing
through the A4 point), and 3 — maximum constraint
torque section (vertical section passing the B point).

0.14---C L
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Fig. 3. Drive phase motion path (a), load distribution
function (b), static characteristics (c)

In case of traction drive, e.g. electric drive of a
tractor, 4 and B points can be limited by the technolo-
gical process conditions — maximum torque is the
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slipping torque. If during the drive design, it is neces-
sary to overview the location of the points, such para-
meters of the power equipment as drive power, gear
reduction rate, must be overviewed. Typically, it oc-
curs if high overloads or extended speed range are
difficult to be realized by means of electric drive.

First section optimization

on the steady-state mode

The A-N-B curve (fig. 3, a) is boundary and it is
limited by the diesel generator power. There are two
parts of the curve: AN — voltage V and current [ are
constant values, magnetic flux is varying with the tor-
que; NB — voltage V decreases, current / rises with the
following law:

P, =VI = const.

The A-N-B curve position changes with varying
the gear reduction rate. In the electric traction drive
with the FRRM the basic task of better motion path
selection on the first section can be divided to the task
of providing maximum torque and speed of the drive.

Due to criteria of minimizing the weight-size pa-
rameters of the electromechanical converter, it is
worth to use maximum reduction rate gear box, but it
is necessary to match rated motor speed and tool
speed.

If the current and torque are linear characteristics,
heating constraint can be presented as the following
expression:

where 7. is the rated motor torque; T (t) is the hau-

14
lertorque time curve; T, is the overall cycle time.

Load diagram for electric traction drives is usually set

with frequency function P, which is shown in

fig. 1, b and is conventional. For each concrete case
this diagram would be individual. Using the NB curve
and the frequency function diagram the torque RMS
value can be calculated. This value is used to select
the electric motor by power.

Speed regulation by changing voltage is not effi-
cient, because the semiconductor converter power
should be overrated. For this reason, it is better to use
control systems with field weakening. This can reduce
total power of the equipment to 40 per cent if the sig-
nificant torque overloads are relatively short in time,
as it is in the traction drive.

The position of N point is calculated due to crite-
rion of the minimum electric loss. The next algorithm
of switching the electric drive control structure from
the first zone to the second zone can be suggested: the
range that has calculations of armature winding elec-
tric loss is selected. EMFE, current I, flux ¥ as a func-
tion of torque are illustrated in fig. 3, ¢ to clarify the
estimation process. This optimization procedure can
decrease weight-size parameters to 20 %.

First section optimization in transient

of the electric drive

The task of finding the structure and controller
parameters is essential, because when the drive works
are close to the restricted area of the speed-torque
curve, self-excited oscillation can occur due to the
significant loop error signals [3, 5, 17, 18].

Fig. 4 illustrates the electric traction drive block
diagram. This is a multi-loop control circuit. Speed
control loop SCL operates with the motor speed n
which is equal to linear hauler speed v, in relative
units. Ang is according to wheel slip and is taken
0.02...0.2n. Torque control loop TCL consists of tor-
que controller RT, path current control loops PCCL
(divided into field current control loop FCCL and
armature current control loop ACCL), feedback with
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Fig. 4. Electric traction drive block diagram
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Fig. 5. Traction electric drive time diagrams: of speed (a)
and traction force increment (c) during haler acceleration
linearly, of speed (b) and traction force (d) when sudden
traction force decrease, of speed control loop (e)

electrical P, and mechanical P,,., power, real torque
T components.

Due to multi-loop control the speed-torque curve
(fig. 3, a) of the traction electric drive is provided.
In this respect, the limit of the drive acceptable states
is composed with separate parts considering the maxi-
mum speed, heat engine power, electric drive torque,
current limits. N point on the curve is corresponded to
the electric traction motor rated operating mode.

The D link of the SCL realizes electric drive ro-
tating mass inertia. Integrating elastic link EB explains
the interaction between the wheel and ground. ES link
in feedback registers wheelslip in motor mode and
wheelskid in brake mode.

Note that the relationship between wheel traction
force and slip speed is non-linear and non-stationary.

VK
1.00 ;

0.95 |
0.905 2 1 6 s
b)

AF,

0.6

0.4

021 S

0 2 4 6 Ls
d)

VK

0.5

0 0.5 1 &s
€)

Increasing the force increases the speed in the elastic
slip zone of every traction electric drive. Wheel and
ground mechanical contact loss happens in the 4 point
and the slip takes place. This mode is unallowable for
the drive.

FCCL, ACCL, MCL are tuned by PI-controllers,
outer SCL — by the proportional controller. System
quality is defined by the transient function. Bode dia-
grams are also the quality evaluation.

Mathematical model of traction electric drive
considers ice slick mode, when traction force decreas-
es from maximum value to zero. Speed controller in
this mode limits motor overspeed to the vehicle plat-
form speed. Time diagrams (fig. 5) show that over-
shoot is limited by 5...10 % of base speed, that is
highly satisfactory.
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Fig. 6. Field weakening block diagram of the electric drive
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Second section optimization

This stage deals with increasing electric drive
speed upper limit, because the drive has to provide
maximum speed higher than rated speed predeter-
mined by the technological process. As while at rising
the speed the electromagnetic torque referred to the
current is falling, constant power law is not being held
and the limiting speed-torque curve is distorted. If the
special correction is led, the task would be solved with
the dependent field weakening control system (fig. 6).

Speed controller AR holds the motor speed in the
main operating zone. Voltage controller AV is used in
the second zone and limits the voltage. The block
“FRRM electric drive model” is described well below.

When the sign of the current changes, the phase
winding lies over the interpolar space, EMF is equal to
zero. That explains the decrease of ratio 7// when the
speed rises. EMF signal is given to correct this difficulty.

Such improving technical measures allow exten-
sion of speed range with the electromagnetic condi-
tions up to two times.

Third section optimization

The FRRM has very wide torque overload range.
It is necessary for the traction drive when the hauler
moves along the angled surface. For widening the
linear zone of the electromagnetic torque curve in
overloads, it is necessary to consider the proportion of
active materials of the electric drive and to apply spe-
cial control laws. When the copper part of the drive
is increased, the linearity of the torque curve is also
increased. The more efficient electric drive control
system with overloads may be the series excitation
control system, when armature and field currents are
equal.

Conclusion

Summing up, the optimization results have
shown that the electric traction drive with the field
regulated reluctance machine can reach improved
overload characteristics (up to 7 7/T,..q in practice)
and weight-size parameters (up to 50 %). Due to men-
tioned disadvantages of the FRRM it should be noted
that torque ripples are about 20 % of rated FRRM tor-
que and 30 % of the induction motor torque ripples.
Moreover, the encoder is necessary for the operating
of the drive, it certainly increases the full electric drive
price. The DET-400 tractor electric drive is the com-
mercial introduction result of the FRRM [2, 19, 20].
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PaCCManHBaeTCS[ TSTOBBII QJICKTPOIIPUBOA C CI/IHXpoHHOf/'I peaKTHBHOﬁ MAIIHHOM ¢ HE3aBHCHUMBIM yipan-

JeHueM 1o kaHany Bo30yxnaenusi (CPMHB). IlpencraBneHsl npuHIMI pabOTBl B OCHOBHBIE MIPEHMYIIECTBA
CPMHB 1o cpaBHEHHUIO C aCHHXPOHHOI MaIllMHOW UM CHHXPOHHOH peakTHBHOW MAaIIMHOM, OTMEYeHbl Heloc-
taTk. OnucaHa MaTeMaTnieckas Mozenb anekrponpusona ¢ CPMHB, noka3aHna ee afekBaTHOCTb CTaTUCTHYE-
CKO#t 00paboTKOif TaHHBIX. TpH 3Tama ONTHMH3AIMU MaccorabapuTHBIX MOKa3aTelel ONpeAeNsTioT HarTydIle
TapaMeTphl CHCTEMBI YIpaBlIeHHs U aBuratens. OnpeneneHne padodel TOUKH IIEKTPOIPHUBOA B CTATHKE, HC-
ClIeJOBaHNE TTEPEXOHBIX NIPOIECCOB HA MOJCIH, YIUTHIBAIOIIEH IIEKTPHUIECKHE, HIICKTPOMEXaHNIECKHEe U Me-
XaHHYECKHE MPOIECCH TATOBOTO 3IEKTPOIIPUBOAA, IIPEACTABIIIM IEepBhIi 3Tan onTuMu3anui. Ha BTopoM stame
MOSICHEH CIOCO0 YBEIHMUCHHUS MaKCUMAJIbHON CKOPOCTH IpUBoJa. TpeTuil 3Tan ONTUMHU3aLUU CBS3aH C 0COOCH-
HocTsimu CPMHB npu neperpyskax mo MmomeHTy. TakuM 06pa3om, MOJIydeH IEKTPONPUBOJ C YIyUIICHHBIMH
MaccorabapUTHBIMU IOKA3aTesIMH M Teperpy304HOil CIIOCOOHOCTBIO, KOTOPBIH OTBeYaeT TpeOOBaHMSM,
IPEABbABIAEMBIM K TATOBBIM yCTpOIicTBaM. B cTaThe puBeieHb! MOSICHAIOIINE UIUTIOCTPALUH.

Kniouegvie cnosa: mazoswlii 21eKmponpusoo, CUHXPOHHAA PeaKmueHds MAWUHa ¢ He3a8UCUMbIM Ynpasie-
HUeM O KaHAy 8030YIACOEHUS, MAMEMAMUYECKAs MOOeb, ONMUMUZAYUS MACCOAOAPUMHBIX NOKA3aAmeNell.
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