СРАВНИТЕЛЬНАЯ ОЦЕНКА РАЗЛИЧНЫХ СПОСОБОВ УПРАВЛЕНИЯ КОММУТАЦИЕЙ ВЕНТИЛЬНЫХ ДВИГАТЕЛЕЙ ПО ЭНЕРГЕТИЧЕСКИМ ПОКАЗАТЕЛЯМ И РЕГУЛИРОВОЧНЫМ СВОЙСТВАМ*

С.Г. Воронин, Д.А. Курносов, А.С. Кульмукаметова

Решается задача сравнительной оценки способов коммутации обмотки ВД с точки зрения энергетической эффективности, возможности расширения диапазона рабочих скоростей и моментов, а также улучшения регулировочных свойств с целью применения его в конкретном электроприводе.

Сравнительная оценка проводилась при одинаковых значениях относительной скорости и относительной индуктивности. Показано, что в двигателях, имеющих относительно небольшие значения индуктивности обмотки вращения, при использовании дискретной коммутации с точки зрения обеспечения максимального значения электромагнитного КПД целесообразно использование 120-градусной коммутации, при этом указанный параметр оказывается выше, чем при векторном управлении. В случае большего значения относительной индуктивности 120-градусная коммутация перерождается в 180-градусную, поэтому целесообразно сразу программировать работу двигателя на эту коммутацию. Представлено, что при векторном управлении за счет регулирования угла коммутации вентильного двигателя в функции от скорости вращения ротора появляется возможность не только решать вопросы минимизации энергопотребления двигателя, но и существенно изменять его механические характеристики от характера, присущих двигателю постоянного тока независимого возбуждения, до характеристик, аналогичных двигателям последовательного возбуждения.

Ключевые слова: вентильный электропривод, способы коммутации обмоток, векторное управление, электромагнитный КПД

1. Постановка задачи

При выборе типа и принципа построения электропривода чаще всего руководствуются соображениями обеспечения заданного диапазона рабочих скоростей, моментов, минимизации энергопотребления. С точки зрения обеспечения лучших энергетических показателей наиболее перспективными признаны электроприводы с вентильными двигателями (ВД). Существуют различные способы коммутации обмоток ВД. Например, дискретная коммутация — когда вектор поля статора по сигналам датчика положения ротора (ДПР) дискретно перемещается по окружности расточки статора. Или векторное управление — когда вектор поля осуществляет плавное вращение. Упомянутые способы питания ВД допускают изменение модуля вектора поля статора и его углового положения относительно вектора поля ротора. Данный факт определяет возможность воздействия как на энергетические характеристики, так и на регулировочные свойства двигателя.

Дискретная коммутация обмоток ВД не исключает децентных технических решений. Векторное управление — дороже. Алгоритмы формирования поля статора — ресурсоемкие (реализуются лишь специализированными микроконтроллерами). Поэтому возникает задача сравнительной оценки способов коммутации обмоток ВД с точки зрения энергетической эффективности, возможности расширения диапазонов рабочих скоростей и моментов, а также улучшения регулировочных свойств. В статье описано решение этой задачи. Даны рекомендации, позволяющие рационально выбирать способ питания ВД в конкретном электроприводе.

2. Методы описания характеристик ВД в установившихся режимах

При векторном управлении ВД можно рассматривать как синхронный двигатель, питаемый от источника синфазного напряжения с фиксированным значением угла нагрузки (θ) [1, 2], который в теории ВД называют углом коммутации. Тогда в установившемся режиме для определения электромагнитной и потребляемой мощности могут быть использованы выражения, приня-

* Работа выполнялась при финансовой поддержке Министерства образования и науки Российской Федерации в рамках комплексного проекта «Создание высокотехнологичного производства модельного ряда энергосберегающих низкопольных трамвайных вагонов модульной конструкции» по договору № 02.G36.31.0002 между Министерством образования и науки Российской Федерации и Федеральным государственным унитарным предприятием «Государственный космический научно-производственный центр имени М.В. Хруничева» в кооперации с головным исполнителем НИОКТР – Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский университет).
ные в теории синхронных машин. В частности, если предположить, что ротор ВД имеет возбуждение от постоянных магнитов и разностью индуктивных сопротивлений по осям d и q можно пренебречь, уравнения относительных значений электромагнитной \(P_d \) и потребляемой \(P_n \) мощностей можно записать в виде [3]:

\[
P_d = \frac{v(\cos(\theta)+v\xi\sin(\theta)-v)}{1+\xi^2},
\]

\[
P_n = \frac{v(\xi\sin(\theta)-\cos(\theta))+1}{1+\xi^2},
\]

где \(v = K\Phi_0/\omega \) — относительная скорость двигателя, \(\omega \) — мгновенное значение скорости вращения якоря, \(\Phi \) — мгновенное значение потока, \(K \) — конструктивный коэффициент, который определяется соотношением \(K=pN/2a \), где \(p \) — число пар полюсов, \(N \), \(a \) — соответственно число активных проводников и число параллельных ветвей якорной обмотки; \(\xi = \omega L/R \) — параметр, определенный конструкцией ВД, где \(L \), \(R \) — индуктивное и активное сопротивление обмотки.

Электромагнитный КПД (\(\eta \)) будет определяться отношением электромагнитной мощности к потребляемой

\[
\eta = \frac{P_d}{P_n}.
\]

При дискретной коммутации трёхфазного ВД распространены два способа коммутации: 180-градусная и 120-градусная [4, 5]. При первом способе на каждом межкоммутационном интервале (МКИ) к шинам источника питания подключаются три фазные обмотки, а при втором — две. Электромагнитные процессы, а соответственно, и энергетические показатели двигателя при различных способах коммутации обмоток отличаются. Математические модели, описывающие эти процессы, в настоящее время хорошо отработаны [4, 6–8]. Для расчета рабочих характеристик, определения электромагнитной и потребляемой мощности, а также КПД можно выбрать любую из них. Использовались модели, описанные в работе [6].

3. Сравнивальная оценка способов коммутации ВД по энергетическим показателям

Сравнивальная оценка всех описанных выше способов коммутации ВД проводилась при одинаковом значении параметра \(\xi \) и \(v \). В зависимости от способа коммутации, либо по выражениям (1)–(3), либо по моделям, представленным в [4, 6–8], были рассчитаны электромагнитная мощность и электромагнитный КПД двигателя. По результатам расчета были построены зависимости этих величин от угла коммутации \(\theta \) при \(\xi = [0,5; 0,05] \) и \(v = [0,5; 0,8] \), представленные на рис. 1–4.

Из сравнения полученных зависимостей можно заключить:

1. Для двигателей с относительно малой индуктивностью обмотки \((\xi < 1) \) наиболее КПД получаем при 120-градусной коммутации. Немного уступает векторное управление. И худший вариант — 180-градусная коммутация.

2. При \(\xi > 1 \) у ВД с векторным управлением
Электромеханические системы

Рис. 2. Зависимость электромагнитного КПД от угла коммутации θ при $v = 0.5$ для $\xi = [0.5; 0.05]$, где 1а – КПД при векторном управлении для $\xi = 0.5$; 1б – для $\xi = 0.05$; 2а – КПД при 180-градусной коммутации для $\xi = 0.5$; 2б – для $\xi = 0.05$; 3а – КПД при 120-градусной коммутации для $\xi = 0.5$; 3б – для $\xi = 0.05$

Рис. 3. Зависимость электромагнитной мощности $P_{э}$ от угла коммутации θ при $v = 0.8$ для $\xi = [0.5; 0.05]$, где 1а – $P_{э}$ при векторном управлении для $\xi = 0.5$; 1б – для $\xi = 0.05$; 2а – $P_{э}$ при 180-градусной коммутации для $\xi = 0.5$; 2б – для $\xi = 0.05$; 3а – $P_{э}$ при 120-градусной коммутации для $\xi = 0.5$; 3б – для $\xi = 0.05$

и со 180-градусной коммутацией зависимости $\eta(\theta)$ и $P_{э}(\theta)$ практически совпадают и имеют максимум по электромагнитной мощности и КПД.

3. При 120-градусной коммутации для рассматриваемых значений параметров при изменении угла коммутации от 0 до $\pi/2$ величина электромагнитной мощности и КПД с увеличением θ падает. Таким образом, для этого способа коммутации, как по электромагнитной мощности, так и по КПД оптимальным является значение угла $\theta = 0$.

Можно отметить, что при определённых значениях параметров и скорости вращения ток в от-
Воронин С.Г., Курносов Д.А., Кульмухаметова А.С.
Сравнительная оценка различных способов управления
коммутацией вентильных двигателей...

ключённой от источника питания сечения за один МКИ не успевает затухнуть до нуля. В результате по характеру электромагнитных процессов 120-градусная коммутация перестает отличаться от 180-градусной и может быть описана теми же зависимостями. Уравнение для определения условий перехода 120-градусной коммутации в 180-градусную получено в работе [5] и при переходе к принятой нами системе относительных единиц имеет вид

\[C_1 \cdot (1 - b) - C_2 \cdot b = 0 \]

где

\[C_1 = 1 - b + \frac{(v')^2}{1 + (v')^2} \left[\left(\frac{1}{\sqrt{\xi}} \cdot \cos \theta - \sin \theta \right) \cdot b - \left(\frac{1}{\sqrt{\xi}} \cdot \cos \left(\frac{\pi}{3} - \theta \right) - \sin \left(\frac{\pi}{3} - \theta \right) \right) \right] \]

\[C_2 = 1 - b \times \left[\left(\frac{1}{\sqrt{\xi}} \cdot \cos \left(\frac{2\pi}{3} + \theta \right) - \sin \left(\frac{2\pi}{3} + \theta \right) \right) \cdot b - \left(\frac{1}{\sqrt{\xi}} \cdot \cos \left(\frac{\pi}{3} + \theta \right) - \sin \left(\frac{\pi}{3} + \theta \right) \right) \right] \]

\[b = e^{-\frac{\pi}{5\sqrt{\xi}}}. \quad v' = \frac{6}{\pi} \cdot v. \]

4. Определение угла коммутации, соответствующего максимальному значению электромагнитного момента или электромагнитного КПД

Если применяется 180-градусная коммутация или векторное управление, значение угла коммутации (\(\theta^{\text{max}}\)), при котором электромагнитная мощность имеет максимальное значение, определяется известным соотношением [9]

\[\theta^{\text{max}} = \arctg(\xi). \quad (4) \]

Им можно пользоваться для задания уставки угла коммутации в динамических режимах, когда актуально обеспечение максимального момента двигателя для скорейшего завершения переходного процесса.

Аналитическая зависимость для угла коммутации от скорости вала, при котором достигается максимальный электромагнитный КПД заданного ВД, в элементарных функциях не выражается. Поэтому предлагается пользоваться приближенными аппроксимирующими соотношениями. Для их выво да были проведены численные эксперименты, в результате которых получены значения углов коммутации \(\theta_n\), соответствующие максимальному электромагнитному КПД и сами значения КПД в диапазоне параметров \(v = (0,1, ..., 0,9)\) и \(\xi = (0,1, ..., 1,5)\). По результатам этого эксперимента методом наименьших квадратов были получены аппроксимирующие зависимости, связывающие \(\theta_n\), \(v\) и \(\xi\). За базовые функции для аппроксимации были приняты полиномы второго и третьего порядка [10]

\[\theta(v, \xi) = C_1 + C_2 \cdot v + C_3 \cdot \xi + C_4 \cdot v \cdot \xi + C_5 \cdot v^2 + +C_6 \cdot \xi^2 + C_7 \cdot v^2 \cdot \xi + C_8 \cdot v \cdot \xi^2 + C_9 \cdot v^3 + C_{10} \cdot \xi^3. \]

В результате расчёта полином второго порядка удалось представить в виде

\[\theta(v, \xi) = 7,15 - 28,11 \cdot v + 40,19 \cdot \xi - -34,54 \cdot v \cdot \xi + 21,67 \cdot v^2 - 5,40 \cdot \xi^2. \quad (5) \]
Электромеханические системы

Здесь сумма квадратов ошибки, рассчитанная по методике [11], составляет \(\Delta = 103,21 \), относительная ошибка \(\delta = 0,54\% \).

Соответственно для полинома третьей степени получим

\[
\theta = 1,85 - 15,13 \cdot x + 56,44 \cdot y - 75,69 \cdot x \cdot y + +26,55 \cdot x^2 - 14,86 \cdot y^2 + 18,84 \cdot x^2 \cdot y + +13,95 \cdot x \cdot y^2 - 13,3 \cdot x^3 - 1,03 \cdot y^3. \tag{6}
\]

Здесь имеем \(\Delta=20,1\), \(\delta=0,24\% \).

Для оценки достоверности соотношений (5) и (6) во всём рабочем диапазоне параметров по ним были рассчитаны и построены зависимости \(\theta_m = f(\xi) \) при различных значениях \(v \), представленные на рис. 5 (пунктирные – рассчитаны по выражению (5), а штрихпунктирные – по выражению (6)). На том же рисунке сплошными линиями представлены аналогичные зависимости, но полученные путём поиска \(\theta_m \) при известных численных значениях \(v \) и \(\xi \) по выражениям (1)-(3). Сравнение этих кривых показывает, что по выражениям (5) или (6) можно с достаточной для практики точностью находить \(\theta_m \) при решении вопросов оптимизации энергетических показателей привода.

6. Заключение

1. В двигателях, имеющих относительно небольшие значения индуктивности обмотки якоря, при использовании дискретной коммутации с точки зрения энергетических показателей целесообразно использование 120-градусной коммутации, при котором этот показатель оказывается не хуже, чем при векторном управлении. При этом наиболее эффективной оказывается нейтральная коммутация (\(\theta=0 \)), обеспечивающая максимальный для
имеющейся скорости электромагнитный КПД и близкое к максимальному значение электромагнитного момента.

2. В случае большого относительного значения индуктивности 120-градусная коммутация переживается в 180-градусную, поэтому целесообразно сразу программировать работу двигателя на эту коммутацию. При этом значении угла θ, соответствующее максимальному КПД и максимальному моменту, будут различными. Для определения первого из них может быть использовано выражение (4), для второго – выражения (5) или (6). Эти же соотношения могут быть использованы при реализации векторного управления электроприводом.

3. При векторном управлении за счет регулирования угла коммутации ВД при изменении скорости вращения появляется возможность не только решать вопросы минимизации энергопотребления двигателя, но и существенно изменять его механические характеристики от характеристики, присущей двигателю постоянного тока независимого возбуждения, до характеристик, аналогичных двигателям последовательного возбуждения.

Литература

Comparison of Different Ways Switching Control Synchronous Motor with Permanent Magnet at Energy Indicators and Settings Properties

S.G. Voronin, South Ural State University, Chelyabinsk, Russian Federation
D.A. Kurnosov, South Ural State University, Chelyabinsk, Russian Federation
A.S. Kulmukhametova, South Ural State University, Chelyabinsk, Russian Federation,
kulmukhametovaas@susu.ac.ru.

There are various ways of switching the windings SMPM. This raises the problem of the comparative evaluation of methods of switching windings SMPM in terms of energy efficiency, the possibility of expanding the range of operating speeds and torques as well as improving the adjustment properties. This article describes a solution to this problem. The recommendations of making rational to choose a way of eating in a particular SMPM drive.

Comparative evaluation of the methods described above switching SMPM held at the same value of the parameter ξ and v. As a result, the engine having a relatively small value of inductance of armature winding, using a discrete switching in terms of energy performance of appropriate use of 120-degree switch, in which the rate is no worse than in vector control. The most effective is a neutral switching ($\theta = 0$), which provides for the maximum available speed of electromagnetic efficiency and close to the maximum value of the electromagnetic torque. Vector control by adjusting the angle of SMPM when the switching speed of the opportunity not only to solve the problems of minimizing energy consumption motor, but also significantly change the mechanical characteristics of the characteristics shared by the DC motor with separate excitation, up features the same engine series excitation.

Keywords: synchronous motor with permanent magnet, means switching windings, vector control, electromagnetic efficiency.

References