DOI: 10.14529/power160110

ARTIFICIAL NEURAL NETWORKS OF TECHNICAL STATE PREDICTION
OF GAS COMPRESSOR UNITS ELECTRIC MOTORS

O.V. KryukoV', o.kryukov@ggc.nnov.ru,
A.V. SerebryakoVv?, serebryakov@ardman.ru

" Giprogazcenter JSC, Nizhny Novgorod, Russian Federation,
* Nizhny Novgorod State Technical University n.a. R.E. Alexeev, Nizhny Novgorod,

Russian Federation

Issues of engineering effective and reliable systems for on-line diagnostics of electric motors of electrically
driven compressor stations are considered. The paper provides failure statistics for the most critical gas-
transport systems’ units — electrically driven gas-compressor stations. Artificial neural networks methodology
and architecture were developed to obtain prediction models of MW electric machines. Examples of neuro-
fuzzy prediction of synchronous machines stator winding performance and service life are given. Selected net-
work tests, the Box-Jenkins fuzzy model, models of the analysis technique of spectral components dynamics,
current magnitude and stator temperature prediction are received. Based on results of comparative analysis of
anticipated conditions of electric machines for main gas transport with due regard to various operational factors
of electrically driven gas-compressor units, recommendations on application of the artificial neural network me-

thod have been drawn up.
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Introduction

Nowadays, all process units of the main gas pipe-
line compressor stations (CS) are classified as hazard-
ous industrial facilities [1-5]; therefore, the develop-
ment of reliable and operative monitoring systems of
their performance is a task of the first priority at gas
transport systems designing. Up-to-date electrically
driven gas compressor units (EGCU) as diagnostic
objects represent complicated and space-distributed
engineering systems with heterogeneous elements [4-7].
A great number of methods of evaluation and predic-
tion of their technical condition is used for their state
identification [8—12].

Statistical data on more than 100 EGCU failure
events at 6 CS of Gazprom JSC have demonstrated
that recovery after the failure of electric drive motor
and especially stator fault is the most cost- and time-
consuming [13-17].

Main operational factors of 60 STD-12500-2 and
SDG-12500 electric motors were measured in dif-
ferent modes under conditions of operating compres-
sor shops to reveal the most typical damage types.
A complex analysis helped to determine 4 groups of
operational factors [14—18] having an influence on
EGCU electric motors lifetime: heating insulation of
the stator winding, variation of supply voltage para-
meters, electrodynamic loads in rods and partial dis-
charges in the winding insulation.

Methodology of EGCU technical state

neural networks

The most efficient method of monitoring and
prediction of EGCU technical state as well as other
electromechanical systems with MW machines is

the well-approved mathematical tool of automated
setting parameters of the diagnostic algorithms based
on the artificial neural networks (ANN) aggregated in
the decision-making system (DMS) for identification
of different defects [19-23].

The ANN’s enable an independent solving
the problems of classification of item variables and
their forms as well as self-learning using the predic-
tive algorithms based on previously registered fail-
ures. The ANN allows developing a nonparametric
model that can reproduce any operative/fault state of
the EGCU and approximate its identification.

This model is capable to store examples of
events, allocate significance of structure connections
on their basis and eliminate neurons or connections
that do not influence storing these examples.

The architecture of the in-built monitoring and
prediction systems (IBMPS) of EGCU technical
condition in ANN represents two subsystems:

e a subsystem of data reception and processing
that corresponds to IBMPS of EGCU STD-12500-2
operation with receiving data on technical condition of
the drive high-voltage synchronous motor (DHVSM)
and its further processing (data distribution and
valuation of variables);

e a subsystem of interpretation of the received
data on technical condition with the use of ANN
failure-recognition algorithms and recommendations
on its further actions realization (Fig. 1).

DHVSM ANN construction sequence. Applica-
tion of a great number of DHVSM controllable va-
riables (voltage, currents, partial discharges and stator
winding temperatures) at EGCU technical condition
prediction allows improving accuracy and efficiency
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Fig. 1. Architecture of automated ANN of EGCU DHVSM

of monitoring procedure. At the first stage of the ANN
module realization, its dimensions, that is, the number
of its inputs and outputs shall be specified (it is rea-
sonable to take these values as equal to 3 and 1).

Then, the network architecture is designed based
on the learning algorithm and minimization of the
root-mean-square error of monitoring results and pre-
diction prospects of DHVSM technical condition with
determination of residual life.

Before embedding the ANN unit (Fig. 1) into
the subsystem of information interpretation within
the IBMPS structure, it is necessary to examine
the functioning of three ANNs with inputs of different
architecture. At this, the inputs of these three ANNs
are not of the same size, therefore, their structures
selected after the learning phase will differ and have
a different number of internal layers and neurons in
these layers. After the most reasonable network of
DHVSM technical condition based on volumetric pa-
rametric study of the three ANNs has been selected,
the following four decisions are required.

1. Final choice of diagnosed variables. Copper
temperature, intensity of partial discharges and over-
voltage level of supply mains are the most informative
input variables describing technical condition of insu-
lation of the STD-12500-2 stator winding. In-situ ex-
perimental research has demonstrated at different
compressor stations (CS) that an adequate assessment
of technical condition and prediction of abnormal
modes are possible exactly with these parameters.
Besides, these variables are available for direct mea-
surement by standard facilities and their direct entry in
the neural knowledge base (NKB). The papers [1-3,
24-28] represent results of measurements of these

operational factors and general statistics of observa-
tions for the period since 1985 till 2010 with recorded
62 events of STD-12500-2 failures.

2. NKB design. The ANN-based model desc-
ribing operative and fault states of EGCU DHVSM
stator winding requires an optimal NKB design with
a sufficient information on possible troubles occurring
in various EGCU-12.5 modes. Based on existing fail-
ure statistics (and probable trouble simulations) of
STD-12500-2 machine, all failures are divided into
12 types (including serviceable conditions); current
variations of three previously selected input variables
are assessed for each state during the whole period of
measurements. As a result, the NKB for each variable
amounted 3,000 different values (vectors) describing
possible electric motor’s modes of operation. This
value corresponding to the measurement number and
results of the experiments carried out shall be entered
into the ANN structure (Table 1).

3. ANN block creation. Determined neural net-
works are multilevel ones with an optimal self-
learning algorithm. To integrate the ANN block into
the DHVSM IBMPS, three neural networks may be
studied. After they have been tested and compared with
each other, the most eligible one for solution of
the whole complex of ANN prediction tasks may be
chosen. At this, neural networks engineering and feasi-
bility stages are divided into three phases (Fig. 2).
The first one is connected with the choice of inputs and
NKB design premised on the files obtained during
the analysis of three above monitoring parameters.
The second one is associated with the choice of net-
works outputs (for each separately) and their codes, and
the third — with the choice of network architectures.
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Table 1
NKB structure on ANN basis
Stator winding failure type Symbol ANN code
Overheating in bore slotted area 000 000 000 001
Overheating at end winding 000 000 000 010
Overheating at leads 000 000 000 100
Overheating during unit startup 000 000 001 000
Hold-off overvoltage 000 000 010 000
Overvoltage at contact chatter 000 000 100 000
Overvoltage at single phase earth fault 000 001 000 000
Overvoltage at turn-to-turn short circuit 000 010 000 000
Contamination with oil and graphite mixture 000 100 000 000
Insulation fault in slotted area 001 000 000 000
Insulation fault at end winding 010 000 000 000
Absence of insulation faults features QN 100 000 000 000

UK UO UM QM QP QL

V. TZ US

TL

TP

Echelon overvoltage
values k-1,...k-p

Echelon partial
discharge values
k-1,...k-p

Echelon temperature
values k-1,...k-p

Fig. 2. Structure of the third ANN

4. Determination of selected networks tests.
At number of used ANN block inputs equal to ten
(in fig. 2 — p = 10), table 2 gives test results accord-
ing to [1-3] for each controllable variable.

For the three networks, the stage of selecting is
carried out when testing the second network ends after
148 presentations of each example. At that, the testing
is carried out in two stages: at first one the network
performs 100 repeated studies for each failure condi-
tion, at the second — they are re-entered into the test
program that terminates after 48 iterations with
a root-mean-square error of the testing results equal
to 3.7 Ve ' (Fig. 3).

Testing neuron networks. After three neuron
networks have been generated and the desired accurate
indices at their learning have been achieved, their com-
plex comparison becomes the most important stage.
At that, the comparison is performed by testing each
ANN input and output. This procedure is associated
with the learning stage and determination of the base
for testing ANN ability to detect hidden defects that
previously were not considered at the EGCU perfor-
mance evaluation, and its ability to generalize results.

So, IBMPS of technical condition of DHVSM of
STD-12500-2 type provided for selection of the best
of three ANNSs (Fig. 2) by their testing for the above-
mentioned defects (Table 1). It enabled their
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Fig. 3. Root-mean-square error evolution for ANN

identification with high precision; that is proved by
the values of diagnosis root-mean-square errors close
to zero (Table 2). The third network was tested for
STD-125000-2 failures studied at the network learning
phase, results of its simulation to reveal faults
associated with overheating in bore slotted area are
given in table 3.

The outputs of the third network are given here
under various relative loads of mechanical
components of the electric motor. The first line of
table 3 corresponds to the defect considered at this test
phase, i.e. at overheating the STD-12500-2 stator
winding insulation in its bore middle part. This defect
was detected almost by 100 % for the most EGCU
modes. ANN input variables test results do not differ
distinctly for other modes. Therefore, for example,
the minimum value of test results corresponding to
the considered defect was equal to 0.857; that is, close
to manifestation of the same defect in the mode of
40 % of DHVSM rated load.

The analysis of results obtained at test phase of
all three ANNs revealed that the third neuron network
(see Tables 2 and 3) is the most efficient and therefore
may be reasonably used in the EGCU IBMPS.
The third network outputs that are close to the desired
value should be approximated to zero or to one to pro-
vide reliability of identification of failures in
the DHVSM stator insulation with indication of their
source and location. At that, the substantiation of ob-
jective recommendations for elimination of similar
problems is the principal result of IBMPS operation
on the ANN base.

Comparison of EGCU technical condition

prediction results

For comparison of prediction results’ validity for
forecasting EGCU DHVSM technical condition with
different methods, we will consider the trend describ-
ing daily variations of STD-12500-2 stator tempera-
ture during EGCU operation (Fig. 4, a curve) and

make performance analysis of inertial prognostic me-
thods. For this purpose, we will divide the known time
series describing temperature variation into two parts;
first of them will be the basis for prediction and
the second one — for checking a posteriori precision of
prediction.

Application of the methods based on fuzzy
ARMA-models (particularly, Box-Jenkins method) [1]
is possible as the numerical series of ordinary differ-
ences of temperature time series is stationary. As fol-
lows from the diagram in Fig. 4, methods based on
the Box-Jenkins models make a very optimistic prog-
nosis with an increasing trend (c curve). Obtained data
cannot help to determine the moment of temperature
values going beyond the permissible limits authenti-

Table 2
Testing results for three ANN

ANN Number of neurons
Input Internal Output
No
layer layer layer
1 10 13 11
2 20 8 11
3 30 6 11

Root-mean-
square error
3.24221 ¢
3.71314 ¢7'°
3.26580 ¢ 7

Table 3
Test results of the third ANN

ANN
outputs

Load, % of nominal
90% | 80% | 60% | 40% | 20% | 10 %
1,0000 | 1,0000 | 1,0000 | 0,8570 | 1,0000 | 0,9605
0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0005
0,0000 | 0,0000 | 0,0002 | 0,0000 | 0,0000 | 0,0034
0,0049 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000| 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000| 0,0057 | 0,0000 | 0,0000
0,2310| 0,0000 | 0,0067 | 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
0,0000 | 0,0000 | 0,0000| 0,0000 | 0,0000 | 0,0000
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cally. The value of a mean relative prediction error
made up 23-58 % (A= 0.23 — 0.58).

The above ANN-based method was also used for
efficiency check. The Ward network was applied for
this purpose; previous values of time series were sup-
plied to its inputs. This type was selected because
the ANNs of this type are capable to determine signi-
ficance of the input values. The modelling has demon-
strated that the developed and learnt ANN allows
determining a general tendency of temperature rise at
the uncertainty limit of a temperature time series but
gives a pessimistic prediction (b curve). As a result, it
is possible to determine the trend in process, but it is
impossible to determine authentically the moment of
temperature values going beyond the permissible lim-
its. The value of a mean relative prediction error made
up 1646 % (A = 0.16 —0.46).

For temperature trend prediction with the method
of time series (SCDA) [4] the background of a tem-
perature series with N=400 readouts was used.
The obtained multi-step forecast (d curve) allows to
mark out an increasing trend of the series and to de-

termine the moment of temperature values going
beyond the permissible limits with a high accuracy.
The value of a mean relative prediction error made up
8-34 % (A =0.08 — 0.34).

Based on the above studies we may conclude that
the time series method enables more exact predictions of
temperature drift of STD-12500-2 stators in comparison
with those based on predictive models and ANN.

Similar results were received at comparison of
prediction of STD-12500-2 stator currents (Fig. 5)
with the Box-Jenkins methods (¢ curve) with an error
of 34—-127 %, the Ward’s ANN (6 curve) with an error
of 27-84 % and the method of SCDA time series
(d curve) with an error of 11-58 %.

However, the specificity of the EGCU operation
is a slow response (time constants) including thermal
conditions and partial discharge parameters changes.
Therefore, a method for forecasting specific EGCU
conditions may be determined based on a combination
of main gas pipelines’ conditions, operational modes
and various system peculiarities of compressor
equipment at compressor stations.
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Fig. 4. STD-12500-2 electric motor stator temperature prediction: a — actual temperature series,

b — prediction, received with ANN application

(Ward network), c — prediction, received with Box-

Jenkins model application, d — prediction, received with SCDA (spectral components dynamic
analysis) method application
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received with ANN application (Ward), c — prediction, received with Box-Jenkins model application,
d — prediction, received with time series method application
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Conclusions

1. The monitoring system for assessment of im-
pact of DHVSM operational factors on stator insula-
tion lifetime has been developed; it demonstrates that:

— The temperature of windings in motor middle
part is by 23 °C higher than that in its end parts, the fre-
quency of insulation failure makes up more than 86 %
here. Besides, at machine sudden shutdown the tempera-
ture increases by another 15-20 °C posing a threat of
thermal shock and overheating of the windings;

— ISG-10 kV line voltage during 82 hours of obser-
vation may make up 10.37-10.91 kV, that is, exceed
standard values and have considerable form distortions;

— mechanical loads are insignificant because of
electrodynamic efforts in bars of stator windings even
at DHVSM reactor start-up;

— All STD-12500 machines have partial dis-
charge of different amplitude and intensity; on-line
monitoring partial discharges enables an adequate
assessing of DHVSM technical condition.

2. Results of estimation of the DHVSM
IBMPS efficiency on the base of fuzzy logic methods
(Box-Jenkins) and ANN (Ward’s net) at STD-12500
engineering data prediction in cases of the develop-
ing gradual failures have demonstrated that they pro-
duce more precise results in comparison with tradi-
tional extrapolation methods and enable more ade-
quate and timely decisions. The prediction method
based on time series gives a more exact result at multi-
step prediction of quick current changes with ab-
sence of additional data at the stage of the model
identification. However, a rational choice of a tech-
nical condition prediction method of a particular
EGCU is determined by the combination of main gas
pipelines’ conditions, operational modes and various
system peculiarities of gas compressor equipment at
compressor stations.
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UCKYCCTBEHHbIE HEMPOHHbIE CETHU NMPOrHO3NPOBAHUA
TEXHUYECKOIO COCTOAHUA INEKTPOOBUIATENEN
FA3OMNEPEKAYUBAIOLLUUX ATPEI'ATOB

O.B. Kptokoe', A.B. Cepebpsikoe’

" OAO «lunpozasuyeHmp», 2. HuxHuii Hoszopood,

2 Huxezopodckuii 2ocydapcmeeHHbIli mexHudeckull yHusepcumem um. P.E. Anexceesa,

2. HuxHut Hoszopod

PaccMoTpeHBI BOmpoCkl MPOSKTHPOBaHUS I(P(EKTUBHBIX M JIOCTOBEPHBIX CHCTEM OICPATUBHOM JHArHOCTHKH
JMEKTPOABHTaTeNell AIEKTPONPUBOJHBIX KOMIIPECCOPHBIX CTaHIMH. IIpercTaBieHa CTaTHCTHKA BBIXOAA U3 CTPOS
HanboJIee OTBETCTBEHHBIX YCTAHOBOK ra30TPAHCIIOPTHBIX CHCTEM — JIEKTPONPHBOAHBIX Ta30NepeKauNBAIONIHX arpe-
raroB. Pa3zpaboTaHa METOMOJIOTHS M apXUTEKTypa MCKYCCTBEHHBIX HEHPOHHBIX CETeH U MOTydIeHUsS IPOTHO3HBIX
MoJIeTIel HIEKTPUYECKUX MAIllMH METaBaTTHOTO Kiacca. [IpuBeneHs! mprMeps! HeHpo-HEYeTKOTO MPOrHO3HPOBAHHS
TEXHHYECKOTO COCTOSIHHSI U Pecypca CTaTOPHBIX OOMOTOK CHHXPOHHBIX MaIlHH. [I0JIydeHBI TeCThI CeleKIMOHUPO-
BaHHBIX ceTel, HeueTkas Mozelb bokca — JDkeHKuHCa, MOZICIM METO/ia aHaIu3a JUHAMUKHU CIEKTPaIbHBIX COCTaB-
JITIOIINX, TIPOTHO3UPOBAHUE BEIMYMH TOKA U TeMIepaTyp craTopa. CormocTaBUTENIbHBIC PE3Y/bTaThl aHAIM3a OXKU-
JTA€MBIX COCTOSHUHM 3JIEKTPUUECKUX MAIMH MAarucTpajbHOTO TPAHCIOPTA asa, UCXOMd U3 ydeTa PasjIMyHbIX JKC-
IUTyaTallMOHHBIX ()aKTOPOB PabOTHI AMEKTPOIPHUBOAHBIX Ta30IIEPEKAINBAIOIINX arpPeraToB, IO3BOJIIIIN BEIPAbOTATh
PEKOMEHAALY TI0 IPUMEHEHNIO METO/Ia HCKYCCTBEHHBIX HeHPOHHBIX CETeH.

Kniouesvie crosa:snekmponpugoonsie KoMnpeccoprvle CManyul, 2a30nepekavusarowull azpezam, ieK-
mpoogueament Me2asammHo20 Kiacca, UCKYCCMBEHHble HeUpOHHble cemu, mecmbl CeleKYUOHUPOBAHHBIX ce-
meiti, MOOeIUNPOSHOIUPOBAHUA BEIUHUH MOKA U MeMnepamyp cmamopa.
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