Анализ ударно-волновых нагрузок на ракету, пусковую установку и контейнер в процессе старта

Р. А. Пешков, Р. В. Сидельников

Аннотация


Представлены результаты численного моделирования с помощью программного комплекса ANSYS FLUENT ударно-волновых нагрузок на ракету, транспортно-пусковой контейнер и шахтную пусковую установку в период раскрытия контейнерного подракетного пространства, когда днище ракеты сходит с кромки пускового контейнера. На основании тестовых расчетов была подобрана комбинация схем, позволяющая получать достаточно быстро устойчивое сходящееся решение. В статье даны рекомендации по построению сеточной модели, выборе метода перестроения сеток, задании физической модели газа, в том числе и моделей турбулентности, выборе схемы дискретизации по пространству. Для снижения временных затрат и вычислительных ресурсов использовалась гексаэдрическая двумерная сетка, симметричная относительно оси ракеты, построенная инструментами сеточного генератора ANSYS ICEM CFD. Использование данного типа сетки, позволило выстроить ее в соответствии с распространением фронта ударной волны. В статье отмечается, что возможны различные подходы к реению задач с подвижными границами, а именно с использованием динамических и скользящих сеток. При этом закон движения определялся с помощью специальной пользовательской функции Motion UDF/Profile. Данная функция записывалась на языке C++ и компилировалась в бинарный файл. Расчеты ударно-волновых нагрузок по приведенному алгоритму исследования позволили выявить ряд особенностей в нагружении пускового контейнера, связанные с распространением волн разряжения-сжатия в каналах пусковой установки. Произведена оценка влияния параметров продуктов сгорания порохового аккумулятора давления на распространение и величину ударных волн в каналах пусковой установки и в окрестности ракеты не только качественно, но и количественно.

Ключевые слова


пусковой контейнер, методика, численное моделирование, раскрытие, ракета

Полный текст:

PDF

Литература


Edquist C.T. Canister Gas Dynamics of Gas Generator Launched Missiles. AIAA-80-1186, 1980. 8 p.

Edquist C.T. Prediction of the Launch Pulse for Gas Generator Launched Missiles. Journal of Propulsion and Power, 1990, vol. 6, iss. 6, pp. 705–712.

Erdos J.I., Del Guidice P.D. Calculation of Muzzle Blast Flowfields. AIAA Journal, 1975, vol. 13, iss. 8, pp. 1048–1055.

Romine G.L., Edquist C.T. Muzzle Blast from Canister Launched Missiles. 16th Joint Propulsion Conference. 1980 AIAA-80-1187, 1980. 12 p.

Xiao-hai J., Bao-chun F., Hong-zhin L. Numerical Investigations on Dynamic Process of Muzzle Flow. Applied Mathematics and Mechanics (English Edition), 2008, vol. 29, iss. 3, pp. 351–360.

Konyukhov, S.N. Minometnyiy start mezhkontinentalnyih ballisticheskih raket [Mortar Launched Intercontinental Ballistic Missiles]. Dnepropetrovsk: National Academy of Sciences, Space Agency of Ukraine, Institute of Technical Mechanics, design office “Yuzhnoye”, 1997. 211 p.

Degtyarenko V.I. [Terms and conditions of applicability of simplified mathematical models for unsteady gas dynamic processes in containers]. Tehnicheskaya mehanika, 2002, no. 1, рр. 33–42. (in Russ.)

Debin F., Qi L., Jianwei C., Jiang Y. Numerical Simulation on Missile Launching Procedure. Journal of Ballistics, 2004, vol. 16, iss. 3, рр. 11–16.

Debin F., Dian-jun Y., Zhi-young Z. Lumped Parameter Model for Concentric Canister Launcher. Journal of Solid Rocket Technology, 2012, vol. 35, iss. 3, рр. 301–305.

Yong Y., Xinwen X., Debin F. Aerodynamic Theory Analysis of Gas Exhausting from Concentric Canister Launcher. Hangkong Dongli Xuebao (Journal of Aerospace Power), 2012, vol. 27, iss. 3, рр. 501–507.

Debin F., Yong Y. Simulation of Gas Flow and Additional Thrust with Missile Launching from Concentric Canister Launcher. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, vol. 227, iss. 12, рр. 1977–1987.

Shouzhen R., Yuming X. Comparative Studies of Interior Ballistic Performance Among Several Missile Eject Power Systems. Journal of Beijing University of Aeronautics and Astronautics, 2009. vol. 35, iss. 6, рр. 766–770.

Yanhui T., Yaoguo X., Chunlong Z. Working Process Simulation of Gas and Steam Launching System. Journal of Naval Aeronautical and Astronautical University, 2009, vol. 24, iss. 4, рр. 431–434.

Shou-Zhen R., Yu-Ming X. Numerical Simulation of Two-Phase Flow and Interior Ballistic for Missile Launching System. 25th International Symposium on Ballistics, 2010, рр. 158–165.

Hirt C.W., Amsden A.A., Cook J.L. An Arbitrary Lagrangian-Eulerian Computing Method for All Speeds. Journal of Computational physics, 1974, vol. 14, iss. 3, рр. 227–253.

Minakov A.V., Gavrilov A.A., Dekterev A.A. [Numerical algorithm for solving three-dimensional problems of hydrodynamics with moving solid bodies and free surface]. Sibirskiy zhurnal industrialnoy mehaniki, 2008, no. 2, рр. 94–104. (in Russ.)

Yongquan L., Anmin X., Hohgfei L. An Interior Ballistic Simulation of the Gas-Steam Missile Ejection. International Conference on Information Engineering, 2013, vol. 4, рр. 235–237.

Yongquan L., Anmin X. An Interior Trajectory Simulation of the Gassteam Missile Ejection. Journal of Computers (Finland), 2013, vol. 8, iss. 5, рр. 1321–1326.

Sergeyev I.D. Oruzhie Rossii. T. 4: Vooruzhenie i voennaya tehnika Raketnyih voysk strategicheskogo naznacheniya [Russia’s Arms Catalog Volume IV Strategic Missile Forces]. Moscow: Military Parade Ltd, 1997. P. 404.

Kolesnikov S.G. Strategicheskoe raketno-yadernoe oruzhie [Strategic Nuclear Missiles]. Moscow:

Arsenal-Press, 1966. P. 128.

ANSYS FLUENT User’s Guide. 2011. Fluent Inc. Central Source Park, 10 Cavendish Court,

Lebanon, NH 03766, USA.


Ссылки

  • На текущий момент ссылки отсутствуют.