Модификация свойств конструкционных материалов интенсивными потоками заряженных частиц и плазмы

Артем Ячеславович Лейви, Ксения Анатольевна Талала, Василий Сергеевич Красников, Александр Павлович Яловец

Аннотация


Приведен анализ современного состояния экспериментальных и теоретических исследований по модификации конструкционных материалов интенсивными потоками заряженных частиц и плазмы с плотностями мощности 0,1–1000 МВт/см2.

Показано, что плотность вложенной в мишень энергии и длительность облучения являются главными факторами, определяющими спектр протекающих в веществе процессов. Возможна реализация двух режимов облучения: докритического и закритического. В докритическом режиме облучения вещество мишени остается в твердом состоянии или же переходит в жидкое, в закритическом режиме происходит формирование плазменного факела и его последующий разлет со скоростью более 103 м/с. Переход от докритического к закритическому режиму носит пороговый характер.

Обсуждаются механизмы формирования полей механических напряжений в облучаемой мишени, которые представляют собой распространяющуюся со скоростью звука ударную волну, а также локализованные вблизи облучаемой поверхности напряжения, обусловленные неоднородным по объему полем температур.

Описана природа явлений сглаживания микрорельефа облучаемой поверхности и образования на ней микрократеров. Показано, что проявление того или иного явления определяется режимом облучения.

Проведен анализ явления массопереноса за счет процессов диффузии, термокапиллярной конвекции и развития неустойчивости Рихтмайера–Мешкова в зависимости от режима облучения.

Облучение твердых тел приводит к увеличению плотности дислокаций, в основном, за счет сдвиговой составляющей локализованных напряжений. Уменьшение длительности облучения приводит к более высоким скоростям деформаций, что вызывает более эффективную наработку дислокаций из-за более высоких значений сдвиговых напряжений.


Ключевые слова


электронные пучки; ионные пучки; интенсивные плазменные потоки; модификация микрорельефа; массоперенос; диффузия; термокапиллярная конвекция; дислокации; пластичность

Полный текст:

PDF

Литература


Mesyats G.A. Generirovanie moshchnykh nanosekundnykh impul'sov [Generation of powerful nanosecond pulses]. Moscow, Sov. Radio Publ., 1974. 256 p.

Smirnov V.P. [Getting high-current electron beams (Overview)]. PTE, 1977, no. 2, p. 7–31.

(in Russ.)

Didenko A.N., Grigor'ev V.P., Usov Yu.P. Moshchnye elektronnye puchki i ikh primenenie [Powerful electron beams and their application]. Moscow, Atomizdat Publ., 1977. 277 p.

Abramyan E.A, Al'terkop B.A., Kuleshov G.D. Intensivnye elektronnye puchki [Electron beam intensity]. Moscow, Energoatomizdat Publ., 1984. 231 p.

Didenko A.N., Ligachev A.E., Kurakin I.B. Vozdeystvie puchkov zaryazhennykh chastits na poverkhnost' metallov i splavov [Impact of beams of charged particles on the surface of metals and

alloys]. Moscow, Energoatomizdat Publ., 1987. 184 p.

Boyko V.I., Valyaev A.N., Pogrebnyak A.D. [Metal modification by high-power pulsed particle beams]. UFN, 1999, vol. 169, pp. 1243–1271. (in Russ.)

Paulea Y. (Ed.) Materials Surface Processing by Directed Energy Techniques. Elsevier., 2006. 722 p.

Starodubtsev S.V., Romanov A.M. Prokhozhdenie zaryazhennykh chastits cherez veshchestvo [Passage of charged particles through matter]. Tashkent, Nauka Publ., Uzb. SSR, 1962, p. 227.

Val'chuk V.V., Khalikov S.V. Yalovets A.P. [Modeling the impact of charged particles on laminates]. Mathematical modeling, 1992, vol. 4, no. 10, pp. 111–123. (in Russ.)

Leyvi A.Ya., Talala K.A., Yalovets А.P. [The Dynamics of Metal Target Surface at Irradiation by Intense Plasma Streams]. 10-th International Conference on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2010, P. 173–176.

Uilkins M.L. Raschet uprugoplasticheskikh techeniy. [Calculation elastic-plastic flow]. Vychislitel'nye metody v gidrodinamike [Computational methods in hydrodynamics]. Moscow, Mir Publ., 1967. 384 p.

Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Tom VI. Gidrodinamika [Theoretical physics. Volume VI. Hydrodynamics]. Moscow, Nauka Publ., 1988. 733 p.

Godunov S.K., Zabrodin A.V., Ivanov M.Ya. Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki [Numerical solution of multi-dimensional problems in gas dynamics]. Moscow, Nauka Publ., 1976.

Yalovets A.P. [The calculation for Wednesday when exposed to intense fluxes of charged particles]. PMTF, 1997, no. 1, pp. 151–166. (in Russ.)

Yalovets A.P., Mayer A.E. [Software package BETAIN (BEAM TARGET INTERACTION)]. Proceedings of 6th International Conference on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 23–28 September. Tomsk, 2002. рр. 297–299.

Kolgatin S.N., Khachatur'yanets A.V. [Interpolation equation of state of metals]. TVT, 1982, vol. 20, no. 3, pp. 90–94. (in Russ.)

Oswald R.B., Jr.Eisen H.A., Schallhorn D.R. The Dinamic response of solids exposed to a pulsed-electron beam. Appl. Phys. Lett., 1968, vol. 3, no. 8, pp. 279–281.

Perry F.C. Electron beam induced stress waves in solids. Appl. Phys. Lett., 1970, vol. 17, no. 11, pp. 478–781.

Borshkovskiy I.A., Volovik V.D. [Investigation of the excitation of acoustic waves in a metal electrons and protons]. Izvestiya vuzov. Fizika, 1973, no. 10, pp. 72–76. (in Russ.)

Kalinichenko A.I., Lazurik-El'tsufin V.T. [The excitation of acoustic oscillations by the beam of charged particles]. Journal of Experimental and Theoretical Physics, 1973, vol. 65, pp. 2364–2368. (in Russ.)

Bespal'ko A.A., Gering G.I. [Acoustic dosimetry intense electron beams]. Technical Physics, 1980, vol. 50, pp. 213–215. (in Russ.)

Perkin J.L., Norris E., Large D.W. The spalling of aluminium with a pulsed electron beams.

J. Phys. D: Appl. Phys., 1971, vol. 4, no. 7, pp. 974.

Avery R.T., Keefe D., Finnie J. Shattering rock with intense bursts of energetic electrons. IEEE Trans. Nucl. Sci., 1973, vol. 20, no. 3. pp. 1010–1014.

Gauster W.B., Perry F.C., Buckalew W.H. Pressure response of a solid pulse heated through a polymorphic phase transition: α‐β inversion in quartz. J. Appl. Phys., 1973, vol. 44, pp. 4970.

Demidov B.A., Ivkin M.V., Petrov V.A. [The release of energy at the focus of a high-REP mode of self-focusing]. ZhTF, 1978, vol. 48, pp. 2528–2532. (in Russ.)

Batsanov S.S., Demidov B.A., Rudakov L.I. [The use of high-current REB for structural and chemical transformations]. Pis'ma v ZhETF, 1979, vol. 30, pp. 611–613. (in Russ.)

Demidov B.A., Ivkin M.V., Petrov V.A., Uglov V.S. [The excitation of shock waves in thick targets high-current REB]. ZhTF, 1980, vol. 50, no. 10, pp. 2205–2209. (in Russ.)

Demidov B.A., Ivkin M.V., Obukhov V.V., Timoshchuk Yu.F. [The dynamic characteristics of the interaction of high-power beam with thick anodes]. ZhTF, 1980, vol. 50, no. 10. pp. 2209–2214. (in Russ.)

Chistjakov S.A., Pogrebnjak A.D., Remnev G.E. Dinamical process and changes in metal structure induced high power ion beamsNucl. Instr. and Meth., 1989, vol. 42, p. 342–345.

Chistyakov S.A., Khalikov S.V., Yalovets A.P. [Study the formation of elastoplastic waves in a metal target under the influence of streams of charged particles]. ZhTF, 1993, vol. 63, no. 1,

pp. 31–40. (in Russ.)

Mayer A.E., Yalovets A.P. [Mechanical stresses in the irradiated target with the perturbed surface]. ZhTF, 2006, vol. 76, no. 4, pp. 67–73. (in Russ.)

Meyer L.W., Kunze H.D., Seifert K. Dynamic Properties of High-Strength Steels at Stretching. Shock Waves and High-Strain-Rate Phenomena in Metals. New York, Plenum Press. 1981, pp. 61–67.

Raharjo P., Uemura K., Okada A., Uno Y. Application of Large Area Electron Beam Irradiation for Surface Modification of Metal Dies. Proceedings of the 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2004, pp. 263–266.

Raharjo P., Uemura K., Okada A., Uno Y. Application of Large Area Electron Beam Irradiation for Surface Modification of Implant Materials. Proceedings of the 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2004, pp. 267–270.

Korotaev A.D., Ovchinnikov S.V., Pochivalov Yu.I. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams. Surface and Coatings Technology, 1998, vol. 105, pp. 84–90.

Korotaev A.D., Tyumentsev A.N., Tretjak M.V. Surface morphology and defect substructure of the surface layer of treated by a high-power ion beam. Physics of Metals and Metallography, 2000,

vol. 89, pp. 54–61.

Shulov V.A., Engelko V.I., Kovalev I.V., Mueller G. Crater creation on the surface of refractory alloy parts during intense pulsed and electron beam irradiation. Proceedings of the 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2004, pp. 289–292.

Krasnikov V.S., Leyvi A.Ya., Mayer A.E., Yalovets A.P. Surface microrelief smoothing mechanisms in a target irradiated by an intense charged particle beam. Technical Physics, 2007, vol. 52, no. 4, pp. 431–439.

Rotshtein V.P., Markov A.B., Ivanov Yu.F. Surface modification and alloying of metallic materials with low-energy high-current electron beams. Proc. 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, 2004, pp. 258–262.

Shulov V.A., Remnev G.E., Nochovnaya N.A. [Ion-beam processing technology turbine engine compressor blades from titanium alloys using powerful beams of nanosecond]. Aviatsionnaya promyshlennost', 1992, no. 2, pp. 12–18. (in Russ.)

Paykin A.G., Shulov V.A., Engel'ko V.I., Tkachenko K.I., Kraynikov A.V., L'vov A.F., Te-ryaev A.D. [Cratering on the surfaces of the heat-resistant steel 15H16K5N2MVFAB-W by irradiating high-current pulsed electron beams]. Uprochnyayushchie tekhnologii i pokrytiya, 2006, no. 10 (22),

pp. 9–14. (in Russ.)

Belov A.B., Bytsenko O.A., Kraynikov A.V., L'vov A.F., Novikov A.S., Paykin A.G., Te-ryaev A.D., Teryaev D.A., Tkachenko K.I., Shulov V.A., Engel'ko V.I. Sil'notochnye impul'snye elektronnye puchki dlya aviatsionnogo dvigatelestroeniya [Intense pulsed electron beams for the aircraft

engine]. Moscow, Dipak Publ., 2012, 291 p. (in Russ.)

Volkov N.B., Maier A.E., Yalovets A.P. [On the mechanism of cratering on solid surfaces

exposed to an intense charged particle beam]. Technical Physic., 2002, vol. 47, no. 8, pp. 968–977.

Volkov N.B., Mayer A.E., Talala K.A., Yalovets A.P. [On the mechanism of crater formation on solid surfaces when exposed to intense charged particle beams]. Pis'ma v ZhTF, 2006, vol. 32, no. 10, pp. 20–28. (in Russ.)

Richtmyer R.D. Taylor Instability in Shock Acceleration of Compressible Fluids. Comm. on Pure and Appl. Math., 1960, vol. XII, pp. 297–319.

Meshkov E.E. [The instability of the interface between the two gases accelerated by the shock wave]. Izv. AN SSSR, Mekhanika zhidkosti i gaza, 1969, no. 5. pp. 151. (in Russ.)

Leyvi A.Ya., Mayer A.E., Shulov V.A., Yalovets A.P. [Influence of irradiation parameters low-current pulsed beams of charged particles and the initial state of the surface of solid targets on their

microrelief]. Uprochnyayushchie tekhnologii i pokrytiya, 2008, no. 11, pp. 22–30. (in Russ.)

Astashynski V.M., Leyvi A.Y., Talala K.A., Uglov V.V., Cherenda N.N., Yalovets A.P., [Change in the relief of a target surface treated by compression plasma flows]. Journal of Surface Investigation, 2013, vol. 7 no. 5, pp. 1005–1012. DOI: 10.7868/S0207352814060055

Uglov V.V., Anishchik V.M., Astashinskiy V.V. [Submicron cylindrical structure when exposed to the silicon surface compression plasma flow]. Pis'ma v ZhETF, 2001, vol. 74, no. 4, pp. 234–236.

(in Russ.)

Rotshteyn V.P., Markov A.B., Shevchenko N., Reuther H., Oskomov K.V., Shulov V.A. [Pulsed electron-beam doping the zirconium alloy BT6 by mixing pre-precipitated multilayered Zr / Ti film]. Pis'ma v ZhTF, 2008, vol. 34, no. 20, pp. 65–72. (in Russ.)

Rotshtein V.P., Markov A.B., Ivanov Yu.F., Karlik K.V., Uglov B.V., Kuleshov A.K., Novi-tskaya M.V., Dub S.N., Pauleau Y., Thiery F., Shulepov I.A. Pulsed Electron-Beam Melting of Cu-Steel 316 System: Evolution of Chemical Composition and Properties. Proceedings of the 6th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2002, pp. 258–263.

Rotshteyn V.P., Markov A.B. [Surface modification and alloying metallic materials low-current low-energy electron beams]. Vestnik TGPU. Seriya: Estestvennye i tochnye nauki, 2006, no. 6 (57),

pp. 11–18. (in Russ.)

Kalin B.A., Volkov N.V. [Some features of doping atoms from the polycrystalline material multi-layer films by irradiation systems “film-substrate” argon ion beam with a broad energy spectrum]. The 6th international conference on modification of materials with particle beams and plasma flows. Tomsk, 2002, pp. 353–358. (in Russ.)

Sisodia V., Jain I.P. Mixing induced by swift heavy ion irradiation at Fe/Si interface. Bull.

Mater. Sci., 2004, vol. 27, no. 4, pp. 393–394.

Mueller G., Bluhm H., Heinzel A., Schumacher G., Strauss D., Weisenburger A., Zimmermann F., Engelko V., Shulov V., Notchovnaya N. Application of pulsed electron beams for improvement of material surface properties. Proceedings 6th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2002, p. 328.

Gershuni G.Z., Zhukhovitskiy E.M. Konvektivnaya neustoychivost' neszhimaemoy zhidkosti [Convective stability of incompressible fluid]. Moscow, Nauka Publ., 1972. 285 p.

Talala K.A., Leyvi A.Ya., Yalovets A.P. [Diffusion mass transfer in a multi-target under the influence of intense energy flows.]. FKhOM, 2011, no. 4, pp. 13–19. (in Russ.)

Volkov N.B., Leivi A.Y., Talala K.A., Yalovets A.P. [Thermocapillary convection in a target irradiated by an intense charged particle beam]. Technical Physics, 2010, vol. 55, no. 4, pp. 484–490.

Leivi A.Ya., Yalovets A.P., Krasnikov V.S. The Liquid-Phase Mass Transfer of Material in the Film–Substrate System Exposed to Intense Energy Flows. High Temperature Material Processes, 2013, vol. 17(1), pp. 15–23.

Dudarev E.F., Kornienko L.A., Lykov S.V., Markov A.B., Pochivalova G.P., Rotshteyn V.P., Chubenko T.Yu. [The dislocation substructure formed by irradiation of iron low-energy high-current electron beam]. Izv. vyssh. ucheb. zaved. Fizika, 1993, vol. 36, no. 5. pp. 42–47. (in Russ.)

Krasnikov V.S., Mayer A.E. Numerical investigation of the change of dislocation density and microhardness in surface layer of iron targets under the high power ion- and electron-beam treatment. Surf. Coat. Technol., 2012, vol. 212, pp. 79–87.

Pogrebnjak A.D., Mikhaliov A.D., Pogrebnjak N.A., Tsvintarnaya Yu.V., Lavrentiev V.I.,

Iljashenko M., Valyaev A.N., Bratushka S., Zecca A., Sandrik R. Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment. Physics Letters, A, 1998, vol. 241, pp. 357–363.

Proskurovsky D.I., Rotshtein V.P., Ozur G.E., Ivanov Yu.F., Markov A.B. Physical foundations for surface treatment of materials with low energy, high current electron beams. Surf. Coat. Technol., 2000, vol. 125, pp. 49.

Uglov V.V., Anishchik V.M., Cherenda N.N., Sveshnikov Yu.V., Astashynski V.M., Kostyukevich E.A., Kuzmitski A.M., Askerko V.V. The formation of a tungsten containing surface layer in a carbon steel by compression plasma flow. Surf. Coat. Technol., 2008, vol. 202, pp. 2439–2442. DOI: 10.1016/j.surfcoat.2007.08.045


Ссылки

  • На текущий момент ссылки отсутствуют.