ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКИЕ БИОМАРКЕРЫ ЭКСПЕРИМЕНТАЛЬНО ИНДУЦИРОВАННОГО СТРЕССА
Аннотация
Представлены результаты анализа опубликованных за рубежом психофизиологических исследований, посвященных проблеме использования электроэнцефалографических (ЭЭГ) показателей в качестве объективных и надежных биомаркеров стресса, экспериментально вызванного у испытуемых в лабораторных условиях. Описаны основные экспериментальные протоколы, используемые для индуцирования стресса у здоровых испытуемых. На основании анализа опубликованных работ выделены и детально описаны основные электроэнцефалографические биомаркеры стресса, представлены возможные перспективы использования данных маркеров в клинической практике для диагностики психических расстройств и формирование группы мишеней для исследования в условиях экспериментального воздействия и терапии.
Проанализированы принципиальные ограничения использования электроэнцефалографических биомаркеров в качестве основного диагностического инструмента в фундаментальных научных и прикладных исследованиях. Дано представление о перспективах дальнейшего использования данных ЭЭГ для изучения феномена стресса. Показано, что ЭЭГ- и биомаркеры вызванных потенциалов (ВП-биомаркеры) наряду с клиническими (нейроэндокринными, иммунными и т. п.) биомаркерами и биомаркерами, полученными при использовании других методов нейровизуализации (позитронно-эмиссионной томографии, ПЭТ и функциональной магнитно-резонансной томографии, фМРТ), являются информативным инструментом диагностики стресса и его последствий.
Ключевые слова
Полный текст:
PDFЛитература
Aftanas L.I., Reva N.V., Varlamov A.A., Pavlov S.V., Makhnev V.P. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neuroscience and behavioral physiology, 2004, no. 8, pp. 859–867. DOI: https://doi.org/10.1023/B:NEAB.0000038139.39812.eb.
Antov M.I., Melicherova U., Stockhorst U. Cold pressor test improves fear extinction in healthy men. Psychoneuroendocrinology, 2015, no. 54, pp. 54–59. DOI: https://doi.org/10.1016/j.psyneuen.2015.01.009
Banis C., Geerlings L., Lorist M.M. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power. PLOS One, 2014, no. 4, pp. 1–17. DOI: https://doi.org/10.1371/journal.pone.0095690
Baratta M.V., Rozeske R.R., Maier S.F. Understanding stress resilience. Frontiers in behavioral neuroscience, 2013, no. 7, pp. 1–2. DOI: https://doi.org/10.3389/fnbeh.2013.00158
Bazanova O.M., Vernon D. Interpreting EEG alpha activity. Neuroscience and Biobehavioral re-views, 2014, no. 44, pp. 94–110. DOI: https://doi.org/10.1016/j.neubiorev.2013.05.007
Boto E., Meyer S.S., Shah V., Alem O., Knappe S. et al. A new generation of magnetoencepha-lography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 2017, no. 149, pp. 404–414. DOI: https://doi.org/10.1016/j.neuroimage.2017.01.034
Calcia M.A., Bonsall D.R., Bloomfield P.S., Selvaraj S., Barichello T., Howes O.D. Stress and neuro-inflammation: a systematic review of the effects stress on microglia and the implications for mental illness. Psychopharmacology, 2016, no. 9, pp. 1637–1650. DOI: https://doi.org/10.1007/s00213-016-4218-9
Cavanagh J.F., Shackman A.J. Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence. Journal of physiology-Paris, 2015, no. 109, pp. 3–15. DOI: https://doi.org/10.1016/j.jphysparis.2014.04.003
Cavanagh J.F., Frank M.J., Allen J.J.B. Social stress reactivity alters reward and punishment learning. Social Cognitive and Affective Neuroscience, 2011, no. 6, pp. 311–320. DOI: https://doi.org/10.1093/scan/nsq041
Cohen M.X. Where Does EEG Come From and What Does It Mean? Trends in Neurosciences, 2017, no. 4, pp. 208–218. DOI: https://doi.org/10.1016/j.tins.2017.02.004
Dunkley B.T., Sedge P.A., Doesburg S.M., Grodecki R.J., Jetly R.et al. Theta, mental flexibility, and post-traumatic stress disorder: connecting in the parietal cortex. PLOS One, 2015, no. 4, pp. 1–17. DOI: https://doi.org/10.1371/journal.pone.0123541
Fingelkurts A.A. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biological Psychiatry, 2015, no. 12, pp. 1050–1060. DOI: https://doi.org/10.1016/j.biopsych.2014.12.011
Fontenelle L.F., Mendlowicz M.V., Ribeiro P., Piedade R.A., Versiani M. Low-resolution electro-magnetic tomography and treatment response in obsessive–compulsive disorder. International Journal of Neuropsychopharmacology, 2006, no. 9, pp. 89–94. DOI: https://doi.org/10.1017/S1461145705005584
Fumoto M., Sato-Suzuki I., Seki Y., Mohri Y., Arita H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. Neuroscience research, 2004, no. 3, pp. 307–317. DOI: https://doi.org/10.1016/j.neures.2004.08.005
Gärtner M., Grimm S., Bajbouj M. Frontal midline theta oscillations during mental arithmetic: effect of stress. Frontiers in Behavioral Neuroscience, 2015, no. 9, pp. 1–8. DOI: https://doi.org/10.3389/fnbeh.2015.00096
Gruzelier J.H. EEG-neurofeedback for optimising performance. I: a review of cognitive and af-fective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 2014, no. 44,
pp. 124–141. DOI: https://doi.org/10.1016/j.neubiorev.2013.09.015
Güntekin B., Basar E. A review of brain oscillations in perception of faces and emotional pic-tures. Neuropsychologia, 2014, no. 58, pp. 33–51. DOI: https://doi.org/10.1016/ j.neuropsychologia.2014.03.014
Harrewijn A., Van der Molen M.J.W., Westenberg P.M. Putative EEG measures of social anxi-ety: Comparing frontal alpha asymmetry and delta–beta cross-frequency correlation. Cognitive, Affective and Behavioral Neuroscience, 2016, no. 6, pp. 1086–1098. DOI: https://doi.org/10.3758/s13415-016-0455-y
Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Current opinion in neurology, 2015, no. 28, pp. 110–116. DOI: https://doi.org/10.1097/WCO.0000000000000181
Knyazev G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational proc-esses. Neuroscience and Biobehavioral Reviews, 2012, no. 36, pp. 677–695. DOI: https://doi.org/10.1016/j.neubiorev.2011.10.002
Koolhaas J.M., Bartolomucci A., Buwalda B., de Boer S.F., Korte S.M. et al. Stress revisited: a critical evaluation of stress concept. Neuroscience and Biobehavioral Reviews, 2011, no. 5, pp. 1291–1301. DOI: https://doi.org/10.1016/j.neubiorev.2011.02.003
Kurdi B., Lozano S., Banaji M.R. Introducing the Open Affective Standardized Image Set (OASIS). Behavioral research methods, 2017, no. 49, pp. 457–470. DOI: https://doi.org/10.3758/s13428-016-0715-3
Libkuman T.M., Otani H., Kern R., Viger S.G., Novak N. Multidimensional normative ratings for the International Affective Picture System. Behavioral research methods, 2007, no. 39, pp. 326–334. DOI: https://doi.org/10.3758/BF03193164
Liu Q., Farahibozorg S., Porcaro C., Wenderoth N., Mantini D. Detecting large-scale networks in the human brain using high-density electroencephalography. Human Brain Mapping, 2017, no. 9,
pp. 4631–4643. DOI: https://doi.org/10.1002/hbm.23688
Maras P.M., Baram T.Z. Sculpting the hippocampus from within: stress, spines and CRH. Trends in neuroscience, 2012, no. 5, pp. 315–324. DOI: https://doi.org/10.1016/j.tins.2012.01.005
Marchewka A., Zurawski L., Jednorog K., Grabowska A. The Nencki Affective Picture System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Be-havioral research methods, 2014, no. 46, pp. 596–610. DOI: https://doi.org/10.3758/s13428-013-0379-1
McEwen B.S., Nasca C., Gray J.D. Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex. Neuropsychopharmacology, 2016, no. 1, pp. 3–23. DOI: https://doi.org/10.1038/npp.2015.171
Menard C., Pfau M.L., Hodes G.E., Russo S.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology, 2017, no. 1, pp. 62–80. DOI: https://doi.org/10.1038/npp.2016.90
Murphy P.R., Robertson I.H., Balsters J.H., Connell R.G. O' Pupillometry and P3 index the lo-cus coeruleus – noradrenergic arousal function in humans. Psychophysiology, 2011, no. 6, pp. 1–12. DOI: https://doi.org/10.1111/j.1469-8986.2011.01226.x
Naegeli C., Zeffiro T., Piccirelli M., Jaillard A., Weilenmann A. Locus Coeruleus Activity Me-diates Hyper-Responsiveness in Posttraumatic Stress Disorder. Biological psychiatry, 2017, no. 17,
pp. 31940–31946.
Narayanan N.S., Cavanagh J.F., Frank M.J., Laubach M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 2013, no. 12, pp. 1888–1895. DOI: https://doi.org/10.1038/nn.3549
Nelson B.D., Hodges A., Hajcak G., Shankman S.A. Anxiety sensitivity and the anticipation of predictable and unpredictable threat: Evidence from the startle response and event-related potentials. Journal of Anxiety Disorders, 2015, no. 33, pp. 62–71. DOI: https://doi.org/10.1016/ j.janxdis.2015.05.003
Nelson B.D., Hajcak G., Shankman S.A. Event-related potentials to acoustic startle probes dur-ing the anticipation of predictable and unpredictable threat. Psychophysiology, 2015, no. 7, pp. 887–894. DOI: https://doi.org/10.1111/psyp.12418
Palmiero M., Piccardi L. Frontal EEG Asymmetry of Mood: A Mini-Review. Frontiers in Be-havioral Neuroscience, 2017, no. 11, pp. 1–8. DOI: https://doi.org/10.3389/fnbeh.2017.00224
Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchro-nization: basic principles. Clinical Neurophysiology, 1999, no. 11, pp. 1842–1857. DOI: https://doi.org/10.1016/S1388-2457(99)00141-8
Pinner J.F.L., Cavanagh J.F. Frontal theta accounts for individual differences in the cost of con-flict on decision making. Brain Research, 2017, no. 10, pp. 73–80. DOI: https://doi.org/10.1016/j.brainres.2017.07.026
Poil S.S., de Haan W., van der Flier W.M., Mansvelder H.D., Scheltens P. et al. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage. Frontiers in aging neurosci-ence, 2013, no. 5, pp. 1–12. DOI: https://doi.org/10.3389/fnagi.2013.00058
Pornpattananangkul N., Nusslock R. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards. Neuropsychologia, 2016, no. 91,
pp. 141–162. DOI: https://doi.org/10.1016/j.neuropsychologia.2016.07.037
Putman P., Verkuil B., Arias-Garcia E., Pantazi I., van Schie C. EEG theta/beta ratio as a po-tential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective and Behavioral Neuroscience, 2014, no. 14, pp. 782–791. DOI: https://doi.org/10.3758/s13415-013-0238-7
Quaedflieg C.W.E.M., Meyer T., Smeets T. The imaging Maastricht Acute Stress Test (iMAST): A neuroimaging compatible psychophysiological stressor. Psychophysiology, 2013, no. 50, pp. 758–766. DOI: https://doi.org/10.1111/psyp.12058
Rhudy J.L., Meagher M.W. Noise stress and human pain thresholds: divergent effects in men and women. Journal of Pain, 2001, no. 2, pp. 57–64. DOI: https://doi.org/10.1054/jpai.2000.19947
Sänger J., Bechtold L., Schoofs D., Blaszkewicz M., Wascher E. The influence of acute stress on attention mechanisms and its electrophysiological correlates. Frontiers in Behavioral Neuroscience, 2014, no. 8, pp. 1–13.
Sege C.T., Bradley M.M., Lang P.J. Startle modulation during emotional anticipation and per-ception. Psychophysiology, 2014, no. 10, pp. 977–981. DOI: https://doi.org/10.1111/psyp.12244
Schmitz A., Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nature Protocols. 2012, no. 3, pp. 527–532. DOI: https://doi.org/10.1038/nprot.2012.001
Schneiderman N., Ironson G., Siegel S.D. Stress and health: psychological, behavioral and bio-logical determinants. Annual reviews in clinical psychology, 2005, no. 1, pp. 607–628. DOI: https://doi.org/10.1146/annurev.clinpsy.1.102803.144141
Schwabe L., Joëls M., Roozendaal B., Wolf O.T. Stress effect on memory: an update and inte-gration. Neuroscience and biobehavioral reviews, 2012, no. 36, pp. 1740–1749. DOI: https://doi.org/10.1016/j.neubiorev.2011.07.002
Shafi M.M., Brandon Westover M., Oberman L., Cash S.S., Pascual-Leone A. Modulation of EEG functional connectivity networks in subjects undergoing repetitive transcranial magnetic stimula-tion. Brain topography, 2014, no. 1, pp. 172–191. DOI: https://doi.org/10.1007/s10548-013-0277-y
Shankman S.A., Gorka S.M. Psychopathology research in the RDoC era: Unanswered questions and the importance of the psychophysiological unit of analysis. International journal of psychophysiol-ogy, 2015, no. 98, pp. 330–337. DOI: https://doi.org/10.1016/j.ijpsycho.2015.01.001
Shiban Y., Dieme J., Brandl S., Zack R., Mühlberger A., Wüst S. Trier social stress test in vivo and in virtual reality: Dissociation of response domains. International Journal of Psychophysiology, 2016, no. 110, pp. 47–55. DOI: https://doi.org/10.1016/j.ijpsycho.2016.10.008
Shim M., Im C.H., Lee S.H. Disrupted cortical brain network in post-traumatic stress disorder patients: a resting-state electroencephalographic study. Translational Psychiatry, 2017, no. 9, pp. 1–8. DOI: https://doi.org/10.1038/tp.2017.200
Smith E.E., Reznik S.J., Stewart J.L., Allen J.J.B. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 2017, no. 111, pp. 98–114. DOI: https://doi.org/10.1016/j.ijpsycho.2016.11.005
Spronk D., Arns M., Barnett K.J., Cooper N.J., Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: A pilot study. Journal of Affective Disorders, 2011, no. 128, pp. 41–48. DOI: https://doi.org/10.1016/j.jad.2010.06.021
Staljanssens W., Strobbe G., Van Holen R., Keereman V., Gadeyne S. et al. EEG source con-nectivity to localize the seizure onset zone in patients with drug resistant epilepsy. NeuroImage: Clini-cal, 2017, no. 16, pp. 689–698. DOI: https://doi.org/10.1016/j.nicl.2017.09.011
Sun Y., Hant S., Sah P.Norepinephrine and corticotropin-releasing hormone: partners in the neural circuits that underpin stress and anxiety. Neuron, 2015, no. 3, pp. 468–470. DOI: https://doi.org/10.1016/j.neuron.2015.07.022
Takahashi T., Cho R.Y., Mizuno T., Kikuchi M., Murata T. et al. Antipsychotics reverse ab-normal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage, 2010, no. 51, pp. 173–182. DOI: https://doi.org/10.1016/j.neuroimage.2010.02.009
Thul A., Lechinger J., Donis J., Michitsch G., Pichler G., Kochs E.F. EEG entropy measures in-dicate decrease of cortical information processing in Disorders of Consciousness. Clinical Neurophysi-ology, 2016, no. 2, pp. 1419–1427. DOI: https://doi.org/10.1016/j.clinph.2015.07.039
Tsuda N., Hayashi K., Hagihira S., Sawa T. Ketamine, an NMDA-antagonist, increases the os-cillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesi-ologica Scandinavica, 2007, no. 4, pp. 472–481. DOI: https://doi.org/10.1111/j.1399-6576.2006.01246.x
Ulrich-Lai Y.M., Neural regulation of endocrine and autonomic stress response. Nature reviews neuroscience, 2009, no. 6, pp. 397–409. DOI: https://doi.org/10.1038/nrn2647
Vickers K., Jafarpour S., Mofidi A., Rafat B., Woznica A. The 35% carbon dioxide test in stress and panic research: Overview of effects and integration of findings. Clinical Psychology Review, 2012, no. 32, pp. 153–164. DOI: https://doi.org/10.1016/j.cpr.2011.12.004
Weinberg A., Sandre A. Distinct associations between low positive affect, panic, and neural re-sponses to reward and threat during late stages of affective picture processing. Biological Psychiatry: Cogni-tive Neuroscience and Neuroimaging, 2017. (in press). DOI: https://doi.org/10.1016/j.bpsc.2017.09.013
Werff S.J., van der Berg S.M., Pannekoek J.N., Elzinga B.M., van der Wee N.J. Neuroimaging resilience to stress: a review. Frontiers in Behavioral Neuroscience, 2013, no. 7, pp. 1–14.
Yang J., Guan L., Hou Y., Yang Y. The time course of psychological stress as revealed by event-related potentials. Neuroscience Letters, 2012, no. 530, pp. 1–6. DOI: https://doi.org/10.1016/j.neulet.2012.09.042
Yi L., Xiao-ping L., Xian-hong L., Jing-qi L., Wen-wei Y. et al. Mapping Brain Injury with Symmetrical-channels’ EEG Signal Analysis – A Pilot Study. Scientific reports, 2014, no. 4, pp. 1–7.
Zappasod F., Olejarczyk E., Marzetti L., Assenza G., Pizzella V., Tecchio F. Fractal Dimension of EEG Activity Senses Neuronal Impairment in Acute Stroke. PLOS One, 2014, no. 6, pp. 1–8. DOI: https://doi.org/10.1371/journal.pone.0100199
Zunhammer M., Eberle H., Eichhammer P., Busch V. Somatic symptoms evoked by exam stress in university students: the role of alexithymia, neuroticism, anxiety and depression. PLOS One, 2013, no. 12, pp. 1–11. DOI: https://doi.org/10.1371/journal.pone.0084911
DOI: http://dx.doi.org/10.14529/psy170407
Ссылки
- На текущий момент ссылки отсутствуют.